xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Utils/LoopUtils.h"
32 
33 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
35 #else
36 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
37 #endif
38 
39 using namespace llvm;
40 
41 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
42     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
43     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
44              "controls the budget that is considered cheap (default = 4)"));
45 
46 using namespace PatternMatch;
47 
48 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
49 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
50 /// creating a new one.
51 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
52                                        Instruction::CastOps Op,
53                                        BasicBlock::iterator IP) {
54   // This function must be called with the builder having a valid insertion
55   // point. It doesn't need to be the actual IP where the uses of the returned
56   // cast will be added, but it must dominate such IP.
57   // We use this precondition to produce a cast that will dominate all its
58   // uses. In particular, this is crucial for the case where the builder's
59   // insertion point *is* the point where we were asked to put the cast.
60   // Since we don't know the builder's insertion point is actually
61   // where the uses will be added (only that it dominates it), we are
62   // not allowed to move it.
63   BasicBlock::iterator BIP = Builder.GetInsertPoint();
64 
65   Value *Ret = nullptr;
66 
67   // Check to see if there is already a cast!
68   for (User *U : V->users()) {
69     if (U->getType() != Ty)
70       continue;
71     CastInst *CI = dyn_cast<CastInst>(U);
72     if (!CI || CI->getOpcode() != Op)
73       continue;
74 
75     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
76     // the cast must also properly dominate the Builder's insertion point.
77     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
78         (&*IP == CI || CI->comesBefore(&*IP))) {
79       Ret = CI;
80       break;
81     }
82   }
83 
84   // Create a new cast.
85   if (!Ret) {
86     SCEVInsertPointGuard Guard(Builder, this);
87     Builder.SetInsertPoint(&*IP);
88     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
89   }
90 
91   // We assert at the end of the function since IP might point to an
92   // instruction with different dominance properties than a cast
93   // (an invoke for example) and not dominate BIP (but the cast does).
94   assert(!isa<Instruction>(Ret) ||
95          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
96 
97   return Ret;
98 }
99 
100 BasicBlock::iterator
101 SCEVExpander::findInsertPointAfter(Instruction *I,
102                                    Instruction *MustDominate) const {
103   BasicBlock::iterator IP = ++I->getIterator();
104   if (auto *II = dyn_cast<InvokeInst>(I))
105     IP = II->getNormalDest()->begin();
106 
107   while (isa<PHINode>(IP))
108     ++IP;
109 
110   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
111     ++IP;
112   } else if (isa<CatchSwitchInst>(IP)) {
113     IP = MustDominate->getParent()->getFirstInsertionPt();
114   } else {
115     assert(!IP->isEHPad() && "unexpected eh pad!");
116   }
117 
118   // Adjust insert point to be after instructions inserted by the expander, so
119   // we can re-use already inserted instructions. Avoid skipping past the
120   // original \p MustDominate, in case it is an inserted instruction.
121   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
122     ++IP;
123 
124   return IP;
125 }
126 
127 BasicBlock::iterator
128 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
129   // Cast the argument at the beginning of the entry block, after
130   // any bitcasts of other arguments.
131   if (Argument *A = dyn_cast<Argument>(V)) {
132     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
133     while ((isa<BitCastInst>(IP) &&
134             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
135             cast<BitCastInst>(IP)->getOperand(0) != A) ||
136            isa<DbgInfoIntrinsic>(IP))
137       ++IP;
138     return IP;
139   }
140 
141   // Cast the instruction immediately after the instruction.
142   if (Instruction *I = dyn_cast<Instruction>(V))
143     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
144 
145   // Otherwise, this must be some kind of a constant,
146   // so let's plop this cast into the function's entry block.
147   assert(isa<Constant>(V) &&
148          "Expected the cast argument to be a global/constant");
149   return Builder.GetInsertBlock()
150       ->getParent()
151       ->getEntryBlock()
152       .getFirstInsertionPt();
153 }
154 
155 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
156 /// which must be possible with a noop cast, doing what we can to share
157 /// the casts.
158 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
159   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
160   assert((Op == Instruction::BitCast ||
161           Op == Instruction::PtrToInt ||
162           Op == Instruction::IntToPtr) &&
163          "InsertNoopCastOfTo cannot perform non-noop casts!");
164   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
165          "InsertNoopCastOfTo cannot change sizes!");
166 
167   // inttoptr only works for integral pointers. For non-integral pointers, we
168   // can create a GEP on i8* null  with the integral value as index. Note that
169   // it is safe to use GEP of null instead of inttoptr here, because only
170   // expressions already based on a GEP of null should be converted to pointers
171   // during expansion.
172   if (Op == Instruction::IntToPtr) {
173     auto *PtrTy = cast<PointerType>(Ty);
174     if (DL.isNonIntegralPointerType(PtrTy)) {
175       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
176       assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 &&
177              "alloc size of i8 must by 1 byte for the GEP to be correct");
178       auto *GEP = Builder.CreateGEP(
179           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
180       return Builder.CreateBitCast(GEP, Ty);
181     }
182   }
183   // Short-circuit unnecessary bitcasts.
184   if (Op == Instruction::BitCast) {
185     if (V->getType() == Ty)
186       return V;
187     if (CastInst *CI = dyn_cast<CastInst>(V)) {
188       if (CI->getOperand(0)->getType() == Ty)
189         return CI->getOperand(0);
190     }
191   }
192   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
193   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
194       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
195     if (CastInst *CI = dyn_cast<CastInst>(V))
196       if ((CI->getOpcode() == Instruction::PtrToInt ||
197            CI->getOpcode() == Instruction::IntToPtr) &&
198           SE.getTypeSizeInBits(CI->getType()) ==
199           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
200         return CI->getOperand(0);
201     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
202       if ((CE->getOpcode() == Instruction::PtrToInt ||
203            CE->getOpcode() == Instruction::IntToPtr) &&
204           SE.getTypeSizeInBits(CE->getType()) ==
205           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
206         return CE->getOperand(0);
207   }
208 
209   // Fold a cast of a constant.
210   if (Constant *C = dyn_cast<Constant>(V))
211     return ConstantExpr::getCast(Op, C, Ty);
212 
213   // Try to reuse existing cast, or insert one.
214   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
215 }
216 
217 /// InsertBinop - Insert the specified binary operator, doing a small amount
218 /// of work to avoid inserting an obviously redundant operation, and hoisting
219 /// to an outer loop when the opportunity is there and it is safe.
220 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
221                                  Value *LHS, Value *RHS,
222                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
223   // Fold a binop with constant operands.
224   if (Constant *CLHS = dyn_cast<Constant>(LHS))
225     if (Constant *CRHS = dyn_cast<Constant>(RHS))
226       return ConstantExpr::get(Opcode, CLHS, CRHS);
227 
228   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
229   unsigned ScanLimit = 6;
230   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
231   // Scanning starts from the last instruction before the insertion point.
232   BasicBlock::iterator IP = Builder.GetInsertPoint();
233   if (IP != BlockBegin) {
234     --IP;
235     for (; ScanLimit; --IP, --ScanLimit) {
236       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
237       // generated code.
238       if (isa<DbgInfoIntrinsic>(IP))
239         ScanLimit++;
240 
241       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
242         // Ensure that no-wrap flags match.
243         if (isa<OverflowingBinaryOperator>(I)) {
244           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
245             return true;
246           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
247             return true;
248         }
249         // Conservatively, do not use any instruction which has any of exact
250         // flags installed.
251         if (isa<PossiblyExactOperator>(I) && I->isExact())
252           return true;
253         return false;
254       };
255       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
256           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
257         return &*IP;
258       if (IP == BlockBegin) break;
259     }
260   }
261 
262   // Save the original insertion point so we can restore it when we're done.
263   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
264   SCEVInsertPointGuard Guard(Builder, this);
265 
266   if (IsSafeToHoist) {
267     // Move the insertion point out of as many loops as we can.
268     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
269       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
270       BasicBlock *Preheader = L->getLoopPreheader();
271       if (!Preheader) break;
272 
273       // Ok, move up a level.
274       Builder.SetInsertPoint(Preheader->getTerminator());
275     }
276   }
277 
278   // If we haven't found this binop, insert it.
279   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
280   BO->setDebugLoc(Loc);
281   if (Flags & SCEV::FlagNUW)
282     BO->setHasNoUnsignedWrap();
283   if (Flags & SCEV::FlagNSW)
284     BO->setHasNoSignedWrap();
285 
286   return BO;
287 }
288 
289 /// FactorOutConstant - Test if S is divisible by Factor, using signed
290 /// division. If so, update S with Factor divided out and return true.
291 /// S need not be evenly divisible if a reasonable remainder can be
292 /// computed.
293 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
294                               const SCEV *Factor, ScalarEvolution &SE,
295                               const DataLayout &DL) {
296   // Everything is divisible by one.
297   if (Factor->isOne())
298     return true;
299 
300   // x/x == 1.
301   if (S == Factor) {
302     S = SE.getConstant(S->getType(), 1);
303     return true;
304   }
305 
306   // For a Constant, check for a multiple of the given factor.
307   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
308     // 0/x == 0.
309     if (C->isZero())
310       return true;
311     // Check for divisibility.
312     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
313       ConstantInt *CI =
314           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
315       // If the quotient is zero and the remainder is non-zero, reject
316       // the value at this scale. It will be considered for subsequent
317       // smaller scales.
318       if (!CI->isZero()) {
319         const SCEV *Div = SE.getConstant(CI);
320         S = Div;
321         Remainder = SE.getAddExpr(
322             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
323         return true;
324       }
325     }
326   }
327 
328   // In a Mul, check if there is a constant operand which is a multiple
329   // of the given factor.
330   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
331     // Size is known, check if there is a constant operand which is a multiple
332     // of the given factor. If so, we can factor it.
333     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
334       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
335         if (!C->getAPInt().srem(FC->getAPInt())) {
336           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
337           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
338           S = SE.getMulExpr(NewMulOps);
339           return true;
340         }
341   }
342 
343   // In an AddRec, check if both start and step are divisible.
344   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
345     const SCEV *Step = A->getStepRecurrence(SE);
346     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
347     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
348       return false;
349     if (!StepRem->isZero())
350       return false;
351     const SCEV *Start = A->getStart();
352     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
353       return false;
354     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
355                          A->getNoWrapFlags(SCEV::FlagNW));
356     return true;
357   }
358 
359   return false;
360 }
361 
362 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
363 /// is the number of SCEVAddRecExprs present, which are kept at the end of
364 /// the list.
365 ///
366 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
367                                 Type *Ty,
368                                 ScalarEvolution &SE) {
369   unsigned NumAddRecs = 0;
370   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
371     ++NumAddRecs;
372   // Group Ops into non-addrecs and addrecs.
373   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
374   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
375   // Let ScalarEvolution sort and simplify the non-addrecs list.
376   const SCEV *Sum = NoAddRecs.empty() ?
377                     SE.getConstant(Ty, 0) :
378                     SE.getAddExpr(NoAddRecs);
379   // If it returned an add, use the operands. Otherwise it simplified
380   // the sum into a single value, so just use that.
381   Ops.clear();
382   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
383     Ops.append(Add->op_begin(), Add->op_end());
384   else if (!Sum->isZero())
385     Ops.push_back(Sum);
386   // Then append the addrecs.
387   Ops.append(AddRecs.begin(), AddRecs.end());
388 }
389 
390 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
391 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
392 /// This helps expose more opportunities for folding parts of the expressions
393 /// into GEP indices.
394 ///
395 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
396                          Type *Ty,
397                          ScalarEvolution &SE) {
398   // Find the addrecs.
399   SmallVector<const SCEV *, 8> AddRecs;
400   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
401     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
402       const SCEV *Start = A->getStart();
403       if (Start->isZero()) break;
404       const SCEV *Zero = SE.getConstant(Ty, 0);
405       AddRecs.push_back(SE.getAddRecExpr(Zero,
406                                          A->getStepRecurrence(SE),
407                                          A->getLoop(),
408                                          A->getNoWrapFlags(SCEV::FlagNW)));
409       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
410         Ops[i] = Zero;
411         Ops.append(Add->op_begin(), Add->op_end());
412         e += Add->getNumOperands();
413       } else {
414         Ops[i] = Start;
415       }
416     }
417   if (!AddRecs.empty()) {
418     // Add the addrecs onto the end of the list.
419     Ops.append(AddRecs.begin(), AddRecs.end());
420     // Resort the operand list, moving any constants to the front.
421     SimplifyAddOperands(Ops, Ty, SE);
422   }
423 }
424 
425 /// expandAddToGEP - Expand an addition expression with a pointer type into
426 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
427 /// BasicAliasAnalysis and other passes analyze the result. See the rules
428 /// for getelementptr vs. inttoptr in
429 /// http://llvm.org/docs/LangRef.html#pointeraliasing
430 /// for details.
431 ///
432 /// Design note: The correctness of using getelementptr here depends on
433 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
434 /// they may introduce pointer arithmetic which may not be safely converted
435 /// into getelementptr.
436 ///
437 /// Design note: It might seem desirable for this function to be more
438 /// loop-aware. If some of the indices are loop-invariant while others
439 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
440 /// loop-invariant portions of the overall computation outside the loop.
441 /// However, there are a few reasons this is not done here. Hoisting simple
442 /// arithmetic is a low-level optimization that often isn't very
443 /// important until late in the optimization process. In fact, passes
444 /// like InstructionCombining will combine GEPs, even if it means
445 /// pushing loop-invariant computation down into loops, so even if the
446 /// GEPs were split here, the work would quickly be undone. The
447 /// LoopStrengthReduction pass, which is usually run quite late (and
448 /// after the last InstructionCombining pass), takes care of hoisting
449 /// loop-invariant portions of expressions, after considering what
450 /// can be folded using target addressing modes.
451 ///
452 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
453                                     const SCEV *const *op_end,
454                                     PointerType *PTy,
455                                     Type *Ty,
456                                     Value *V) {
457   SmallVector<Value *, 4> GepIndices;
458   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
459   bool AnyNonZeroIndices = false;
460 
461   // Split AddRecs up into parts as either of the parts may be usable
462   // without the other.
463   SplitAddRecs(Ops, Ty, SE);
464 
465   Type *IntIdxTy = DL.getIndexType(PTy);
466 
467   // For opaque pointers, always generate i8 GEP.
468   if (!PTy->isOpaque()) {
469     // Descend down the pointer's type and attempt to convert the other
470     // operands into GEP indices, at each level. The first index in a GEP
471     // indexes into the array implied by the pointer operand; the rest of
472     // the indices index into the element or field type selected by the
473     // preceding index.
474     Type *ElTy = PTy->getNonOpaquePointerElementType();
475     for (;;) {
476       // If the scale size is not 0, attempt to factor out a scale for
477       // array indexing.
478       SmallVector<const SCEV *, 8> ScaledOps;
479       if (ElTy->isSized()) {
480         const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
481         if (!ElSize->isZero()) {
482           SmallVector<const SCEV *, 8> NewOps;
483           for (const SCEV *Op : Ops) {
484             const SCEV *Remainder = SE.getConstant(Ty, 0);
485             if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
486               // Op now has ElSize factored out.
487               ScaledOps.push_back(Op);
488               if (!Remainder->isZero())
489                 NewOps.push_back(Remainder);
490               AnyNonZeroIndices = true;
491             } else {
492               // The operand was not divisible, so add it to the list of
493               // operands we'll scan next iteration.
494               NewOps.push_back(Op);
495             }
496           }
497           // If we made any changes, update Ops.
498           if (!ScaledOps.empty()) {
499             Ops = NewOps;
500             SimplifyAddOperands(Ops, Ty, SE);
501           }
502         }
503       }
504 
505       // Record the scaled array index for this level of the type. If
506       // we didn't find any operands that could be factored, tentatively
507       // assume that element zero was selected (since the zero offset
508       // would obviously be folded away).
509       Value *Scaled =
510           ScaledOps.empty()
511               ? Constant::getNullValue(Ty)
512               : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
513       GepIndices.push_back(Scaled);
514 
515       // Collect struct field index operands.
516       while (StructType *STy = dyn_cast<StructType>(ElTy)) {
517         bool FoundFieldNo = false;
518         // An empty struct has no fields.
519         if (STy->getNumElements() == 0) break;
520         // Field offsets are known. See if a constant offset falls within any of
521         // the struct fields.
522         if (Ops.empty())
523           break;
524         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
525           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
526             const StructLayout &SL = *DL.getStructLayout(STy);
527             uint64_t FullOffset = C->getValue()->getZExtValue();
528             if (FullOffset < SL.getSizeInBytes()) {
529               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
530               GepIndices.push_back(
531                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
532               ElTy = STy->getTypeAtIndex(ElIdx);
533               Ops[0] =
534                   SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
535               AnyNonZeroIndices = true;
536               FoundFieldNo = true;
537             }
538           }
539         // If no struct field offsets were found, tentatively assume that
540         // field zero was selected (since the zero offset would obviously
541         // be folded away).
542         if (!FoundFieldNo) {
543           ElTy = STy->getTypeAtIndex(0u);
544           GepIndices.push_back(
545             Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
546         }
547       }
548 
549       if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
550         ElTy = ATy->getElementType();
551       else
552         // FIXME: Handle VectorType.
553         // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
554         // constant, therefore can not be factored out. The generated IR is less
555         // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
556         break;
557     }
558   }
559 
560   // If none of the operands were convertible to proper GEP indices, cast
561   // the base to i8* and do an ugly getelementptr with that. It's still
562   // better than ptrtoint+arithmetic+inttoptr at least.
563   if (!AnyNonZeroIndices) {
564     // Cast the base to i8*.
565     if (!PTy->isOpaque())
566       V = InsertNoopCastOfTo(V,
567          Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
568 
569     assert(!isa<Instruction>(V) ||
570            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
571 
572     // Expand the operands for a plain byte offset.
573     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
574 
575     // Fold a GEP with constant operands.
576     if (Constant *CLHS = dyn_cast<Constant>(V))
577       if (Constant *CRHS = dyn_cast<Constant>(Idx))
578         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
579                                               CLHS, CRHS);
580 
581     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
582     unsigned ScanLimit = 6;
583     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
584     // Scanning starts from the last instruction before the insertion point.
585     BasicBlock::iterator IP = Builder.GetInsertPoint();
586     if (IP != BlockBegin) {
587       --IP;
588       for (; ScanLimit; --IP, --ScanLimit) {
589         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
590         // generated code.
591         if (isa<DbgInfoIntrinsic>(IP))
592           ScanLimit++;
593         if (IP->getOpcode() == Instruction::GetElementPtr &&
594             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
595           return &*IP;
596         if (IP == BlockBegin) break;
597       }
598     }
599 
600     // Save the original insertion point so we can restore it when we're done.
601     SCEVInsertPointGuard Guard(Builder, this);
602 
603     // Move the insertion point out of as many loops as we can.
604     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
605       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
606       BasicBlock *Preheader = L->getLoopPreheader();
607       if (!Preheader) break;
608 
609       // Ok, move up a level.
610       Builder.SetInsertPoint(Preheader->getTerminator());
611     }
612 
613     // Emit a GEP.
614     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
615   }
616 
617   {
618     SCEVInsertPointGuard Guard(Builder, this);
619 
620     // Move the insertion point out of as many loops as we can.
621     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
622       if (!L->isLoopInvariant(V)) break;
623 
624       bool AnyIndexNotLoopInvariant = any_of(
625           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
626 
627       if (AnyIndexNotLoopInvariant)
628         break;
629 
630       BasicBlock *Preheader = L->getLoopPreheader();
631       if (!Preheader) break;
632 
633       // Ok, move up a level.
634       Builder.SetInsertPoint(Preheader->getTerminator());
635     }
636 
637     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
638     // because ScalarEvolution may have changed the address arithmetic to
639     // compute a value which is beyond the end of the allocated object.
640     Value *Casted = V;
641     if (V->getType() != PTy)
642       Casted = InsertNoopCastOfTo(Casted, PTy);
643     Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(),
644                                    Casted, GepIndices, "scevgep");
645     Ops.push_back(SE.getUnknown(GEP));
646   }
647 
648   return expand(SE.getAddExpr(Ops));
649 }
650 
651 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
652                                     Value *V) {
653   const SCEV *const Ops[1] = {Op};
654   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
655 }
656 
657 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
658 /// SCEV expansion. If they are nested, this is the most nested. If they are
659 /// neighboring, pick the later.
660 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
661                                         DominatorTree &DT) {
662   if (!A) return B;
663   if (!B) return A;
664   if (A->contains(B)) return B;
665   if (B->contains(A)) return A;
666   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
667   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
668   return A; // Arbitrarily break the tie.
669 }
670 
671 /// getRelevantLoop - Get the most relevant loop associated with the given
672 /// expression, according to PickMostRelevantLoop.
673 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
674   // Test whether we've already computed the most relevant loop for this SCEV.
675   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
676   if (!Pair.second)
677     return Pair.first->second;
678 
679   if (isa<SCEVConstant>(S))
680     // A constant has no relevant loops.
681     return nullptr;
682   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
683     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
684       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
685     // A non-instruction has no relevant loops.
686     return nullptr;
687   }
688   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
689     const Loop *L = nullptr;
690     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
691       L = AR->getLoop();
692     for (const SCEV *Op : N->operands())
693       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
694     return RelevantLoops[N] = L;
695   }
696   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
697     const Loop *Result = getRelevantLoop(C->getOperand());
698     return RelevantLoops[C] = Result;
699   }
700   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
701     const Loop *Result = PickMostRelevantLoop(
702         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
703     return RelevantLoops[D] = Result;
704   }
705   llvm_unreachable("Unexpected SCEV type!");
706 }
707 
708 namespace {
709 
710 /// LoopCompare - Compare loops by PickMostRelevantLoop.
711 class LoopCompare {
712   DominatorTree &DT;
713 public:
714   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
715 
716   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
717                   std::pair<const Loop *, const SCEV *> RHS) const {
718     // Keep pointer operands sorted at the end.
719     if (LHS.second->getType()->isPointerTy() !=
720         RHS.second->getType()->isPointerTy())
721       return LHS.second->getType()->isPointerTy();
722 
723     // Compare loops with PickMostRelevantLoop.
724     if (LHS.first != RHS.first)
725       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
726 
727     // If one operand is a non-constant negative and the other is not,
728     // put the non-constant negative on the right so that a sub can
729     // be used instead of a negate and add.
730     if (LHS.second->isNonConstantNegative()) {
731       if (!RHS.second->isNonConstantNegative())
732         return false;
733     } else if (RHS.second->isNonConstantNegative())
734       return true;
735 
736     // Otherwise they are equivalent according to this comparison.
737     return false;
738   }
739 };
740 
741 }
742 
743 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
744   Type *Ty = SE.getEffectiveSCEVType(S->getType());
745 
746   // Collect all the add operands in a loop, along with their associated loops.
747   // Iterate in reverse so that constants are emitted last, all else equal, and
748   // so that pointer operands are inserted first, which the code below relies on
749   // to form more involved GEPs.
750   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
751   for (const SCEV *Op : reverse(S->operands()))
752     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
753 
754   // Sort by loop. Use a stable sort so that constants follow non-constants and
755   // pointer operands precede non-pointer operands.
756   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
757 
758   // Emit instructions to add all the operands. Hoist as much as possible
759   // out of loops, and form meaningful getelementptrs where possible.
760   Value *Sum = nullptr;
761   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
762     const Loop *CurLoop = I->first;
763     const SCEV *Op = I->second;
764     if (!Sum) {
765       // This is the first operand. Just expand it.
766       Sum = expand(Op);
767       ++I;
768       continue;
769     }
770 
771     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
772     if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
773       // The running sum expression is a pointer. Try to form a getelementptr
774       // at this level with that as the base.
775       SmallVector<const SCEV *, 4> NewOps;
776       for (; I != E && I->first == CurLoop; ++I) {
777         // If the operand is SCEVUnknown and not instructions, peek through
778         // it, to enable more of it to be folded into the GEP.
779         const SCEV *X = I->second;
780         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
781           if (!isa<Instruction>(U->getValue()))
782             X = SE.getSCEV(U->getValue());
783         NewOps.push_back(X);
784       }
785       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
786     } else if (Op->isNonConstantNegative()) {
787       // Instead of doing a negate and add, just do a subtract.
788       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
789       Sum = InsertNoopCastOfTo(Sum, Ty);
790       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
791                         /*IsSafeToHoist*/ true);
792       ++I;
793     } else {
794       // A simple add.
795       Value *W = expandCodeForImpl(Op, Ty, false);
796       Sum = InsertNoopCastOfTo(Sum, Ty);
797       // Canonicalize a constant to the RHS.
798       if (isa<Constant>(Sum)) std::swap(Sum, W);
799       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
800                         /*IsSafeToHoist*/ true);
801       ++I;
802     }
803   }
804 
805   return Sum;
806 }
807 
808 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
809   Type *Ty = SE.getEffectiveSCEVType(S->getType());
810 
811   // Collect all the mul operands in a loop, along with their associated loops.
812   // Iterate in reverse so that constants are emitted last, all else equal.
813   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
814   for (const SCEV *Op : reverse(S->operands()))
815     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
816 
817   // Sort by loop. Use a stable sort so that constants follow non-constants.
818   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
819 
820   // Emit instructions to mul all the operands. Hoist as much as possible
821   // out of loops.
822   Value *Prod = nullptr;
823   auto I = OpsAndLoops.begin();
824 
825   // Expand the calculation of X pow N in the following manner:
826   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
827   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
828   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
829     auto E = I;
830     // Calculate how many times the same operand from the same loop is included
831     // into this power.
832     uint64_t Exponent = 0;
833     const uint64_t MaxExponent = UINT64_MAX >> 1;
834     // No one sane will ever try to calculate such huge exponents, but if we
835     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
836     // below when the power of 2 exceeds our Exponent, and we want it to be
837     // 1u << 31 at most to not deal with unsigned overflow.
838     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
839       ++Exponent;
840       ++E;
841     }
842     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
843 
844     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
845     // that are needed into the result.
846     Value *P = expandCodeForImpl(I->second, Ty, false);
847     Value *Result = nullptr;
848     if (Exponent & 1)
849       Result = P;
850     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
851       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
852                       /*IsSafeToHoist*/ true);
853       if (Exponent & BinExp)
854         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
855                                       SCEV::FlagAnyWrap,
856                                       /*IsSafeToHoist*/ true)
857                         : P;
858     }
859 
860     I = E;
861     assert(Result && "Nothing was expanded?");
862     return Result;
863   };
864 
865   while (I != OpsAndLoops.end()) {
866     if (!Prod) {
867       // This is the first operand. Just expand it.
868       Prod = ExpandOpBinPowN();
869     } else if (I->second->isAllOnesValue()) {
870       // Instead of doing a multiply by negative one, just do a negate.
871       Prod = InsertNoopCastOfTo(Prod, Ty);
872       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
873                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
874       ++I;
875     } else {
876       // A simple mul.
877       Value *W = ExpandOpBinPowN();
878       Prod = InsertNoopCastOfTo(Prod, Ty);
879       // Canonicalize a constant to the RHS.
880       if (isa<Constant>(Prod)) std::swap(Prod, W);
881       const APInt *RHS;
882       if (match(W, m_Power2(RHS))) {
883         // Canonicalize Prod*(1<<C) to Prod<<C.
884         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
885         auto NWFlags = S->getNoWrapFlags();
886         // clear nsw flag if shl will produce poison value.
887         if (RHS->logBase2() == RHS->getBitWidth() - 1)
888           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
889         Prod = InsertBinop(Instruction::Shl, Prod,
890                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
891                            /*IsSafeToHoist*/ true);
892       } else {
893         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
894                            /*IsSafeToHoist*/ true);
895       }
896     }
897   }
898 
899   return Prod;
900 }
901 
902 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
903   Type *Ty = SE.getEffectiveSCEVType(S->getType());
904 
905   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
906   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
907     const APInt &RHS = SC->getAPInt();
908     if (RHS.isPowerOf2())
909       return InsertBinop(Instruction::LShr, LHS,
910                          ConstantInt::get(Ty, RHS.logBase2()),
911                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
912   }
913 
914   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
915   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
916                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
917 }
918 
919 /// Determine if this is a well-behaved chain of instructions leading back to
920 /// the PHI. If so, it may be reused by expanded expressions.
921 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
922                                          const Loop *L) {
923   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
924       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
925     return false;
926   // If any of the operands don't dominate the insert position, bail.
927   // Addrec operands are always loop-invariant, so this can only happen
928   // if there are instructions which haven't been hoisted.
929   if (L == IVIncInsertLoop) {
930     for (Use &Op : llvm::drop_begin(IncV->operands()))
931       if (Instruction *OInst = dyn_cast<Instruction>(Op))
932         if (!SE.DT.dominates(OInst, IVIncInsertPos))
933           return false;
934   }
935   // Advance to the next instruction.
936   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
937   if (!IncV)
938     return false;
939 
940   if (IncV->mayHaveSideEffects())
941     return false;
942 
943   if (IncV == PN)
944     return true;
945 
946   return isNormalAddRecExprPHI(PN, IncV, L);
947 }
948 
949 /// getIVIncOperand returns an induction variable increment's induction
950 /// variable operand.
951 ///
952 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
953 /// operands dominate InsertPos.
954 ///
955 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
956 /// simple patterns generated by getAddRecExprPHILiterally and
957 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
958 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
959                                            Instruction *InsertPos,
960                                            bool allowScale) {
961   if (IncV == InsertPos)
962     return nullptr;
963 
964   switch (IncV->getOpcode()) {
965   default:
966     return nullptr;
967   // Check for a simple Add/Sub or GEP of a loop invariant step.
968   case Instruction::Add:
969   case Instruction::Sub: {
970     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
971     if (!OInst || SE.DT.dominates(OInst, InsertPos))
972       return dyn_cast<Instruction>(IncV->getOperand(0));
973     return nullptr;
974   }
975   case Instruction::BitCast:
976     return dyn_cast<Instruction>(IncV->getOperand(0));
977   case Instruction::GetElementPtr:
978     for (Use &U : llvm::drop_begin(IncV->operands())) {
979       if (isa<Constant>(U))
980         continue;
981       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
982         if (!SE.DT.dominates(OInst, InsertPos))
983           return nullptr;
984       }
985       if (allowScale) {
986         // allow any kind of GEP as long as it can be hoisted.
987         continue;
988       }
989       // This must be a pointer addition of constants (pretty), which is already
990       // handled, or some number of address-size elements (ugly). Ugly geps
991       // have 2 operands. i1* is used by the expander to represent an
992       // address-size element.
993       if (IncV->getNumOperands() != 2)
994         return nullptr;
995       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
996       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
997           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
998         return nullptr;
999       break;
1000     }
1001     return dyn_cast<Instruction>(IncV->getOperand(0));
1002   }
1003 }
1004 
1005 /// If the insert point of the current builder or any of the builders on the
1006 /// stack of saved builders has 'I' as its insert point, update it to point to
1007 /// the instruction after 'I'.  This is intended to be used when the instruction
1008 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1009 /// different block, the inconsistent insert point (with a mismatched
1010 /// Instruction and Block) can lead to an instruction being inserted in a block
1011 /// other than its parent.
1012 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1013   BasicBlock::iterator It(*I);
1014   BasicBlock::iterator NewInsertPt = std::next(It);
1015   if (Builder.GetInsertPoint() == It)
1016     Builder.SetInsertPoint(&*NewInsertPt);
1017   for (auto *InsertPtGuard : InsertPointGuards)
1018     if (InsertPtGuard->GetInsertPoint() == It)
1019       InsertPtGuard->SetInsertPoint(NewInsertPt);
1020 }
1021 
1022 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1023 /// it available to other uses in this loop. Recursively hoist any operands,
1024 /// until we reach a value that dominates InsertPos.
1025 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1026   if (SE.DT.dominates(IncV, InsertPos))
1027       return true;
1028 
1029   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1030   // its existing users.
1031   if (isa<PHINode>(InsertPos) ||
1032       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1033     return false;
1034 
1035   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1036     return false;
1037 
1038   // Check that the chain of IV operands leading back to Phi can be hoisted.
1039   SmallVector<Instruction*, 4> IVIncs;
1040   for(;;) {
1041     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1042     if (!Oper)
1043       return false;
1044     // IncV is safe to hoist.
1045     IVIncs.push_back(IncV);
1046     IncV = Oper;
1047     if (SE.DT.dominates(IncV, InsertPos))
1048       break;
1049   }
1050   for (Instruction *I : llvm::reverse(IVIncs)) {
1051     fixupInsertPoints(I);
1052     I->moveBefore(InsertPos);
1053   }
1054   return true;
1055 }
1056 
1057 /// Determine if this cyclic phi is in a form that would have been generated by
1058 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1059 /// as it is in a low-cost form, for example, no implied multiplication. This
1060 /// should match any patterns generated by getAddRecExprPHILiterally and
1061 /// expandAddtoGEP.
1062 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1063                                            const Loop *L) {
1064   for(Instruction *IVOper = IncV;
1065       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1066                                 /*allowScale=*/false));) {
1067     if (IVOper == PN)
1068       return true;
1069   }
1070   return false;
1071 }
1072 
1073 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1074 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1075 /// need to materialize IV increments elsewhere to handle difficult situations.
1076 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1077                                  Type *ExpandTy, Type *IntTy,
1078                                  bool useSubtract) {
1079   Value *IncV;
1080   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1081   if (ExpandTy->isPointerTy()) {
1082     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1083     // If the step isn't constant, don't use an implicitly scaled GEP, because
1084     // that would require a multiply inside the loop.
1085     if (!isa<ConstantInt>(StepV))
1086       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1087                                   GEPPtrTy->getAddressSpace());
1088     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1089     if (IncV->getType() != PN->getType())
1090       IncV = Builder.CreateBitCast(IncV, PN->getType());
1091   } else {
1092     IncV = useSubtract ?
1093       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1094       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1095   }
1096   return IncV;
1097 }
1098 
1099 /// Check whether we can cheaply express the requested SCEV in terms of
1100 /// the available PHI SCEV by truncation and/or inversion of the step.
1101 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1102                                     const SCEVAddRecExpr *Phi,
1103                                     const SCEVAddRecExpr *Requested,
1104                                     bool &InvertStep) {
1105   // We can't transform to match a pointer PHI.
1106   if (Phi->getType()->isPointerTy())
1107     return false;
1108 
1109   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1110   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1111 
1112   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1113     return false;
1114 
1115   // Try truncate it if necessary.
1116   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1117   if (!Phi)
1118     return false;
1119 
1120   // Check whether truncation will help.
1121   if (Phi == Requested) {
1122     InvertStep = false;
1123     return true;
1124   }
1125 
1126   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1127   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
1128     InvertStep = true;
1129     return true;
1130   }
1131 
1132   return false;
1133 }
1134 
1135 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1136   if (!isa<IntegerType>(AR->getType()))
1137     return false;
1138 
1139   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1140   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1141   const SCEV *Step = AR->getStepRecurrence(SE);
1142   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1143                                             SE.getSignExtendExpr(AR, WideTy));
1144   const SCEV *ExtendAfterOp =
1145     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1146   return ExtendAfterOp == OpAfterExtend;
1147 }
1148 
1149 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1150   if (!isa<IntegerType>(AR->getType()))
1151     return false;
1152 
1153   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1154   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1155   const SCEV *Step = AR->getStepRecurrence(SE);
1156   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1157                                             SE.getZeroExtendExpr(AR, WideTy));
1158   const SCEV *ExtendAfterOp =
1159     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1160   return ExtendAfterOp == OpAfterExtend;
1161 }
1162 
1163 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1164 /// the base addrec, which is the addrec without any non-loop-dominating
1165 /// values, and return the PHI.
1166 PHINode *
1167 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1168                                         const Loop *L,
1169                                         Type *ExpandTy,
1170                                         Type *IntTy,
1171                                         Type *&TruncTy,
1172                                         bool &InvertStep) {
1173   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1174 
1175   // Reuse a previously-inserted PHI, if present.
1176   BasicBlock *LatchBlock = L->getLoopLatch();
1177   if (LatchBlock) {
1178     PHINode *AddRecPhiMatch = nullptr;
1179     Instruction *IncV = nullptr;
1180     TruncTy = nullptr;
1181     InvertStep = false;
1182 
1183     // Only try partially matching scevs that need truncation and/or
1184     // step-inversion if we know this loop is outside the current loop.
1185     bool TryNonMatchingSCEV =
1186         IVIncInsertLoop &&
1187         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1188 
1189     for (PHINode &PN : L->getHeader()->phis()) {
1190       if (!SE.isSCEVable(PN.getType()))
1191         continue;
1192 
1193       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1194       // PHI has no meaning at all.
1195       if (!PN.isComplete()) {
1196         SCEV_DEBUG_WITH_TYPE(
1197             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1198         continue;
1199       }
1200 
1201       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1202       if (!PhiSCEV)
1203         continue;
1204 
1205       bool IsMatchingSCEV = PhiSCEV == Normalized;
1206       // We only handle truncation and inversion of phi recurrences for the
1207       // expanded expression if the expanded expression's loop dominates the
1208       // loop we insert to. Check now, so we can bail out early.
1209       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1210           continue;
1211 
1212       // TODO: this possibly can be reworked to avoid this cast at all.
1213       Instruction *TempIncV =
1214           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1215       if (!TempIncV)
1216         continue;
1217 
1218       // Check whether we can reuse this PHI node.
1219       if (LSRMode) {
1220         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1221           continue;
1222       } else {
1223         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1224           continue;
1225       }
1226 
1227       // Stop if we have found an exact match SCEV.
1228       if (IsMatchingSCEV) {
1229         IncV = TempIncV;
1230         TruncTy = nullptr;
1231         InvertStep = false;
1232         AddRecPhiMatch = &PN;
1233         break;
1234       }
1235 
1236       // Try whether the phi can be translated into the requested form
1237       // (truncated and/or offset by a constant).
1238       if ((!TruncTy || InvertStep) &&
1239           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1240         // Record the phi node. But don't stop we might find an exact match
1241         // later.
1242         AddRecPhiMatch = &PN;
1243         IncV = TempIncV;
1244         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1245       }
1246     }
1247 
1248     if (AddRecPhiMatch) {
1249       // Ok, the add recurrence looks usable.
1250       // Remember this PHI, even in post-inc mode.
1251       InsertedValues.insert(AddRecPhiMatch);
1252       // Remember the increment.
1253       rememberInstruction(IncV);
1254       // Those values were not actually inserted but re-used.
1255       ReusedValues.insert(AddRecPhiMatch);
1256       ReusedValues.insert(IncV);
1257       return AddRecPhiMatch;
1258     }
1259   }
1260 
1261   // Save the original insertion point so we can restore it when we're done.
1262   SCEVInsertPointGuard Guard(Builder, this);
1263 
1264   // Another AddRec may need to be recursively expanded below. For example, if
1265   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1266   // loop. Remove this loop from the PostIncLoops set before expanding such
1267   // AddRecs. Otherwise, we cannot find a valid position for the step
1268   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1269   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1270   // so it's not worth implementing SmallPtrSet::swap.
1271   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1272   PostIncLoops.clear();
1273 
1274   // Expand code for the start value into the loop preheader.
1275   assert(L->getLoopPreheader() &&
1276          "Can't expand add recurrences without a loop preheader!");
1277   Value *StartV =
1278       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1279                         L->getLoopPreheader()->getTerminator(), false);
1280 
1281   // StartV must have been be inserted into L's preheader to dominate the new
1282   // phi.
1283   assert(!isa<Instruction>(StartV) ||
1284          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1285                                  L->getHeader()));
1286 
1287   // Expand code for the step value. Do this before creating the PHI so that PHI
1288   // reuse code doesn't see an incomplete PHI.
1289   const SCEV *Step = Normalized->getStepRecurrence(SE);
1290   // If the stride is negative, insert a sub instead of an add for the increment
1291   // (unless it's a constant, because subtracts of constants are canonicalized
1292   // to adds).
1293   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1294   if (useSubtract)
1295     Step = SE.getNegativeSCEV(Step);
1296   // Expand the step somewhere that dominates the loop header.
1297   Value *StepV = expandCodeForImpl(
1298       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1299 
1300   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1301   // we actually do emit an addition.  It does not apply if we emit a
1302   // subtraction.
1303   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1304   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1305 
1306   // Create the PHI.
1307   BasicBlock *Header = L->getHeader();
1308   Builder.SetInsertPoint(Header, Header->begin());
1309   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1310   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1311                                   Twine(IVName) + ".iv");
1312 
1313   // Create the step instructions and populate the PHI.
1314   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1315     BasicBlock *Pred = *HPI;
1316 
1317     // Add a start value.
1318     if (!L->contains(Pred)) {
1319       PN->addIncoming(StartV, Pred);
1320       continue;
1321     }
1322 
1323     // Create a step value and add it to the PHI.
1324     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1325     // instructions at IVIncInsertPos.
1326     Instruction *InsertPos = L == IVIncInsertLoop ?
1327       IVIncInsertPos : Pred->getTerminator();
1328     Builder.SetInsertPoint(InsertPos);
1329     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1330 
1331     if (isa<OverflowingBinaryOperator>(IncV)) {
1332       if (IncrementIsNUW)
1333         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1334       if (IncrementIsNSW)
1335         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1336     }
1337     PN->addIncoming(IncV, Pred);
1338   }
1339 
1340   // After expanding subexpressions, restore the PostIncLoops set so the caller
1341   // can ensure that IVIncrement dominates the current uses.
1342   PostIncLoops = SavedPostIncLoops;
1343 
1344   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1345   // effective when we are able to use an IV inserted here, so record it.
1346   InsertedValues.insert(PN);
1347   InsertedIVs.push_back(PN);
1348   return PN;
1349 }
1350 
1351 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1352   Type *STy = S->getType();
1353   Type *IntTy = SE.getEffectiveSCEVType(STy);
1354   const Loop *L = S->getLoop();
1355 
1356   // Determine a normalized form of this expression, which is the expression
1357   // before any post-inc adjustment is made.
1358   const SCEVAddRecExpr *Normalized = S;
1359   if (PostIncLoops.count(L)) {
1360     PostIncLoopSet Loops;
1361     Loops.insert(L);
1362     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1363   }
1364 
1365   // Strip off any non-loop-dominating component from the addrec start.
1366   const SCEV *Start = Normalized->getStart();
1367   const SCEV *PostLoopOffset = nullptr;
1368   if (!SE.properlyDominates(Start, L->getHeader())) {
1369     PostLoopOffset = Start;
1370     Start = SE.getConstant(Normalized->getType(), 0);
1371     Normalized = cast<SCEVAddRecExpr>(
1372       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1373                        Normalized->getLoop(),
1374                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1375   }
1376 
1377   // Strip off any non-loop-dominating component from the addrec step.
1378   const SCEV *Step = Normalized->getStepRecurrence(SE);
1379   const SCEV *PostLoopScale = nullptr;
1380   if (!SE.dominates(Step, L->getHeader())) {
1381     PostLoopScale = Step;
1382     Step = SE.getConstant(Normalized->getType(), 1);
1383     if (!Start->isZero()) {
1384         // The normalization below assumes that Start is constant zero, so if
1385         // it isn't re-associate Start to PostLoopOffset.
1386         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1387         PostLoopOffset = Start;
1388         Start = SE.getConstant(Normalized->getType(), 0);
1389     }
1390     Normalized =
1391       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1392                              Start, Step, Normalized->getLoop(),
1393                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1394   }
1395 
1396   // Expand the core addrec. If we need post-loop scaling, force it to
1397   // expand to an integer type to avoid the need for additional casting.
1398   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1399   // We can't use a pointer type for the addrec if the pointer type is
1400   // non-integral.
1401   Type *AddRecPHIExpandTy =
1402       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1403 
1404   // In some cases, we decide to reuse an existing phi node but need to truncate
1405   // it and/or invert the step.
1406   Type *TruncTy = nullptr;
1407   bool InvertStep = false;
1408   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1409                                           IntTy, TruncTy, InvertStep);
1410 
1411   // Accommodate post-inc mode, if necessary.
1412   Value *Result;
1413   if (!PostIncLoops.count(L))
1414     Result = PN;
1415   else {
1416     // In PostInc mode, use the post-incremented value.
1417     BasicBlock *LatchBlock = L->getLoopLatch();
1418     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1419     Result = PN->getIncomingValueForBlock(LatchBlock);
1420 
1421     // We might be introducing a new use of the post-inc IV that is not poison
1422     // safe, in which case we should drop poison generating flags. Only keep
1423     // those flags for which SCEV has proven that they always hold.
1424     if (isa<OverflowingBinaryOperator>(Result)) {
1425       auto *I = cast<Instruction>(Result);
1426       if (!S->hasNoUnsignedWrap())
1427         I->setHasNoUnsignedWrap(false);
1428       if (!S->hasNoSignedWrap())
1429         I->setHasNoSignedWrap(false);
1430     }
1431 
1432     // For an expansion to use the postinc form, the client must call
1433     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1434     // or dominated by IVIncInsertPos.
1435     if (isa<Instruction>(Result) &&
1436         !SE.DT.dominates(cast<Instruction>(Result),
1437                          &*Builder.GetInsertPoint())) {
1438       // The induction variable's postinc expansion does not dominate this use.
1439       // IVUsers tries to prevent this case, so it is rare. However, it can
1440       // happen when an IVUser outside the loop is not dominated by the latch
1441       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1442       // all cases. Consider a phi outside whose operand is replaced during
1443       // expansion with the value of the postinc user. Without fundamentally
1444       // changing the way postinc users are tracked, the only remedy is
1445       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1446       // but hopefully expandCodeFor handles that.
1447       bool useSubtract =
1448         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1449       if (useSubtract)
1450         Step = SE.getNegativeSCEV(Step);
1451       Value *StepV;
1452       {
1453         // Expand the step somewhere that dominates the loop header.
1454         SCEVInsertPointGuard Guard(Builder, this);
1455         StepV = expandCodeForImpl(
1456             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1457       }
1458       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1459     }
1460   }
1461 
1462   // We have decided to reuse an induction variable of a dominating loop. Apply
1463   // truncation and/or inversion of the step.
1464   if (TruncTy) {
1465     Type *ResTy = Result->getType();
1466     // Normalize the result type.
1467     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1468       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1469     // Truncate the result.
1470     if (TruncTy != Result->getType())
1471       Result = Builder.CreateTrunc(Result, TruncTy);
1472 
1473     // Invert the result.
1474     if (InvertStep)
1475       Result = Builder.CreateSub(
1476           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1477   }
1478 
1479   // Re-apply any non-loop-dominating scale.
1480   if (PostLoopScale) {
1481     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1482     Result = InsertNoopCastOfTo(Result, IntTy);
1483     Result = Builder.CreateMul(Result,
1484                                expandCodeForImpl(PostLoopScale, IntTy, false));
1485   }
1486 
1487   // Re-apply any non-loop-dominating offset.
1488   if (PostLoopOffset) {
1489     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1490       if (Result->getType()->isIntegerTy()) {
1491         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1492         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1493       } else {
1494         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1495       }
1496     } else {
1497       Result = InsertNoopCastOfTo(Result, IntTy);
1498       Result = Builder.CreateAdd(
1499           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1500     }
1501   }
1502 
1503   return Result;
1504 }
1505 
1506 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1507   // In canonical mode we compute the addrec as an expression of a canonical IV
1508   // using evaluateAtIteration and expand the resulting SCEV expression. This
1509   // way we avoid introducing new IVs to carry on the comutation of the addrec
1510   // throughout the loop.
1511   //
1512   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1513   // type wider than the addrec itself. Emitting a canonical IV of the
1514   // proper type might produce non-legal types, for example expanding an i64
1515   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1516   // back to non-canonical mode for nested addrecs.
1517   if (!CanonicalMode || (S->getNumOperands() > 2))
1518     return expandAddRecExprLiterally(S);
1519 
1520   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1521   const Loop *L = S->getLoop();
1522 
1523   // First check for an existing canonical IV in a suitable type.
1524   PHINode *CanonicalIV = nullptr;
1525   if (PHINode *PN = L->getCanonicalInductionVariable())
1526     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1527       CanonicalIV = PN;
1528 
1529   // Rewrite an AddRec in terms of the canonical induction variable, if
1530   // its type is more narrow.
1531   if (CanonicalIV &&
1532       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1533       !S->getType()->isPointerTy()) {
1534     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1535     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1536       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1537     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1538                                        S->getNoWrapFlags(SCEV::FlagNW)));
1539     BasicBlock::iterator NewInsertPt =
1540         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1541     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1542                           &*NewInsertPt, false);
1543     return V;
1544   }
1545 
1546   // {X,+,F} --> X + {0,+,F}
1547   if (!S->getStart()->isZero()) {
1548     if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) {
1549       Value *StartV = expand(SE.getPointerBase(S));
1550       assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1551       return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV);
1552     }
1553 
1554     SmallVector<const SCEV *, 4> NewOps(S->operands());
1555     NewOps[0] = SE.getConstant(Ty, 0);
1556     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1557                                         S->getNoWrapFlags(SCEV::FlagNW));
1558 
1559     // Just do a normal add. Pre-expand the operands to suppress folding.
1560     //
1561     // The LHS and RHS values are factored out of the expand call to make the
1562     // output independent of the argument evaluation order.
1563     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1564     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1565     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1566   }
1567 
1568   // If we don't yet have a canonical IV, create one.
1569   if (!CanonicalIV) {
1570     // Create and insert the PHI node for the induction variable in the
1571     // specified loop.
1572     BasicBlock *Header = L->getHeader();
1573     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1574     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1575                                   &Header->front());
1576     rememberInstruction(CanonicalIV);
1577 
1578     SmallSet<BasicBlock *, 4> PredSeen;
1579     Constant *One = ConstantInt::get(Ty, 1);
1580     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1581       BasicBlock *HP = *HPI;
1582       if (!PredSeen.insert(HP).second) {
1583         // There must be an incoming value for each predecessor, even the
1584         // duplicates!
1585         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1586         continue;
1587       }
1588 
1589       if (L->contains(HP)) {
1590         // Insert a unit add instruction right before the terminator
1591         // corresponding to the back-edge.
1592         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1593                                                      "indvar.next",
1594                                                      HP->getTerminator());
1595         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1596         rememberInstruction(Add);
1597         CanonicalIV->addIncoming(Add, HP);
1598       } else {
1599         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1600       }
1601     }
1602   }
1603 
1604   // {0,+,1} --> Insert a canonical induction variable into the loop!
1605   if (S->isAffine() && S->getOperand(1)->isOne()) {
1606     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1607            "IVs with types different from the canonical IV should "
1608            "already have been handled!");
1609     return CanonicalIV;
1610   }
1611 
1612   // {0,+,F} --> {0,+,1} * F
1613 
1614   // If this is a simple linear addrec, emit it now as a special case.
1615   if (S->isAffine())    // {0,+,F} --> i*F
1616     return
1617       expand(SE.getTruncateOrNoop(
1618         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1619                       SE.getNoopOrAnyExtend(S->getOperand(1),
1620                                             CanonicalIV->getType())),
1621         Ty));
1622 
1623   // If this is a chain of recurrences, turn it into a closed form, using the
1624   // folders, then expandCodeFor the closed form.  This allows the folders to
1625   // simplify the expression without having to build a bunch of special code
1626   // into this folder.
1627   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1628 
1629   // Promote S up to the canonical IV type, if the cast is foldable.
1630   const SCEV *NewS = S;
1631   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1632   if (isa<SCEVAddRecExpr>(Ext))
1633     NewS = Ext;
1634 
1635   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1636   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1637 
1638   // Truncate the result down to the original type, if needed.
1639   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1640   return expand(T);
1641 }
1642 
1643 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1644   Value *V =
1645       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1646   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1647                            GetOptimalInsertionPointForCastOf(V));
1648 }
1649 
1650 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1651   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1652   Value *V = expandCodeForImpl(
1653       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1654       false);
1655   return Builder.CreateTrunc(V, Ty);
1656 }
1657 
1658 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1659   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1660   Value *V = expandCodeForImpl(
1661       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1662       false);
1663   return Builder.CreateZExt(V, Ty);
1664 }
1665 
1666 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1667   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1668   Value *V = expandCodeForImpl(
1669       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1670       false);
1671   return Builder.CreateSExt(V, Ty);
1672 }
1673 
1674 Value *SCEVExpander::expandSMaxExpr(const SCEVNAryExpr *S) {
1675   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1676   Type *Ty = LHS->getType();
1677   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1678     // In the case of mixed integer and pointer types, do the
1679     // rest of the comparisons as integer.
1680     Type *OpTy = S->getOperand(i)->getType();
1681     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1682       Ty = SE.getEffectiveSCEVType(Ty);
1683       LHS = InsertNoopCastOfTo(LHS, Ty);
1684     }
1685     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1686     Value *Sel;
1687     if (Ty->isIntegerTy())
1688       Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS},
1689                                     /*FMFSource=*/nullptr, "smax");
1690     else {
1691       Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1692       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1693     }
1694     LHS = Sel;
1695   }
1696   // In the case of mixed integer and pointer types, cast the
1697   // final result back to the pointer type.
1698   if (LHS->getType() != S->getType())
1699     LHS = InsertNoopCastOfTo(LHS, S->getType());
1700   return LHS;
1701 }
1702 
1703 Value *SCEVExpander::expandUMaxExpr(const SCEVNAryExpr *S) {
1704   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1705   Type *Ty = LHS->getType();
1706   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1707     // In the case of mixed integer and pointer types, do the
1708     // rest of the comparisons as integer.
1709     Type *OpTy = S->getOperand(i)->getType();
1710     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1711       Ty = SE.getEffectiveSCEVType(Ty);
1712       LHS = InsertNoopCastOfTo(LHS, Ty);
1713     }
1714     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1715     Value *Sel;
1716     if (Ty->isIntegerTy())
1717       Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS},
1718                                     /*FMFSource=*/nullptr, "umax");
1719     else {
1720       Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1721       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1722     }
1723     LHS = Sel;
1724   }
1725   // In the case of mixed integer and pointer types, cast the
1726   // final result back to the pointer type.
1727   if (LHS->getType() != S->getType())
1728     LHS = InsertNoopCastOfTo(LHS, S->getType());
1729   return LHS;
1730 }
1731 
1732 Value *SCEVExpander::expandSMinExpr(const SCEVNAryExpr *S) {
1733   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1734   Type *Ty = LHS->getType();
1735   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1736     // In the case of mixed integer and pointer types, do the
1737     // rest of the comparisons as integer.
1738     Type *OpTy = S->getOperand(i)->getType();
1739     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1740       Ty = SE.getEffectiveSCEVType(Ty);
1741       LHS = InsertNoopCastOfTo(LHS, Ty);
1742     }
1743     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1744     Value *Sel;
1745     if (Ty->isIntegerTy())
1746       Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS},
1747                                     /*FMFSource=*/nullptr, "smin");
1748     else {
1749       Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1750       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1751     }
1752     LHS = Sel;
1753   }
1754   // In the case of mixed integer and pointer types, cast the
1755   // final result back to the pointer type.
1756   if (LHS->getType() != S->getType())
1757     LHS = InsertNoopCastOfTo(LHS, S->getType());
1758   return LHS;
1759 }
1760 
1761 Value *SCEVExpander::expandUMinExpr(const SCEVNAryExpr *S) {
1762   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1763   Type *Ty = LHS->getType();
1764   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1765     // In the case of mixed integer and pointer types, do the
1766     // rest of the comparisons as integer.
1767     Type *OpTy = S->getOperand(i)->getType();
1768     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1769       Ty = SE.getEffectiveSCEVType(Ty);
1770       LHS = InsertNoopCastOfTo(LHS, Ty);
1771     }
1772     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1773     Value *Sel;
1774     if (Ty->isIntegerTy())
1775       Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS},
1776                                     /*FMFSource=*/nullptr, "umin");
1777     else {
1778       Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1779       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1780     }
1781     LHS = Sel;
1782   }
1783   // In the case of mixed integer and pointer types, cast the
1784   // final result back to the pointer type.
1785   if (LHS->getType() != S->getType())
1786     LHS = InsertNoopCastOfTo(LHS, S->getType());
1787   return LHS;
1788 }
1789 
1790 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1791   return expandSMaxExpr(S);
1792 }
1793 
1794 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1795   return expandUMaxExpr(S);
1796 }
1797 
1798 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1799   return expandSMinExpr(S);
1800 }
1801 
1802 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1803   return expandUMinExpr(S);
1804 }
1805 
1806 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1807   SmallVector<Value *> Ops;
1808   for (const SCEV *Op : S->operands())
1809     Ops.emplace_back(expand(Op));
1810 
1811   Value *SaturationPoint =
1812       MinMaxIntrinsic::getSaturationPoint(Intrinsic::umin, S->getType());
1813 
1814   SmallVector<Value *> OpIsZero;
1815   for (Value *Op : ArrayRef<Value *>(Ops).drop_back())
1816     OpIsZero.emplace_back(Builder.CreateICmpEQ(Op, SaturationPoint));
1817 
1818   Value *AnyOpIsZero = Builder.CreateLogicalOr(OpIsZero);
1819 
1820   Value *NaiveUMin = expandUMinExpr(S);
1821   return Builder.CreateSelect(AnyOpIsZero, SaturationPoint, NaiveUMin);
1822 }
1823 
1824 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1825                                        Instruction *IP, bool Root) {
1826   setInsertPoint(IP);
1827   Value *V = expandCodeForImpl(SH, Ty, Root);
1828   return V;
1829 }
1830 
1831 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1832   // Expand the code for this SCEV.
1833   Value *V = expand(SH);
1834 
1835   if (PreserveLCSSA) {
1836     if (auto *Inst = dyn_cast<Instruction>(V)) {
1837       // Create a temporary instruction to at the current insertion point, so we
1838       // can hand it off to the helper to create LCSSA PHIs if required for the
1839       // new use.
1840       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1841       // would accept a insertion point and return an LCSSA phi for that
1842       // insertion point, so there is no need to insert & remove the temporary
1843       // instruction.
1844       Instruction *Tmp;
1845       if (Inst->getType()->isIntegerTy())
1846         Tmp = cast<Instruction>(Builder.CreateIntToPtr(
1847             Inst, Inst->getType()->getPointerTo(), "tmp.lcssa.user"));
1848       else {
1849         assert(Inst->getType()->isPointerTy());
1850         Tmp = cast<Instruction>(Builder.CreatePtrToInt(
1851             Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user"));
1852       }
1853       V = fixupLCSSAFormFor(Tmp, 0);
1854 
1855       // Clean up temporary instruction.
1856       InsertedValues.erase(Tmp);
1857       InsertedPostIncValues.erase(Tmp);
1858       Tmp->eraseFromParent();
1859     }
1860   }
1861 
1862   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1863   if (Ty) {
1864     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1865            "non-trivial casts should be done with the SCEVs directly!");
1866     V = InsertNoopCastOfTo(V, Ty);
1867   }
1868   return V;
1869 }
1870 
1871 ScalarEvolution::ValueOffsetPair
1872 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1873                                       const Instruction *InsertPt) {
1874   auto *Set = SE.getSCEVValues(S);
1875   // If the expansion is not in CanonicalMode, and the SCEV contains any
1876   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1877   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1878     // If S is scConstant, it may be worse to reuse an existing Value.
1879     if (S->getSCEVType() != scConstant && Set) {
1880       // Choose a Value from the set which dominates the InsertPt.
1881       // InsertPt should be inside the Value's parent loop so as not to break
1882       // the LCSSA form.
1883       for (auto const &VOPair : *Set) {
1884         Value *V = VOPair.first;
1885         ConstantInt *Offset = VOPair.second;
1886         Instruction *EntInst = dyn_cast_or_null<Instruction>(V);
1887         if (!EntInst)
1888           continue;
1889 
1890         assert(EntInst->getFunction() == InsertPt->getFunction());
1891         if (S->getType() == V->getType() &&
1892             SE.DT.dominates(EntInst, InsertPt) &&
1893             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1894              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1895           return {V, Offset};
1896       }
1897     }
1898   }
1899   return {nullptr, nullptr};
1900 }
1901 
1902 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1903 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1904 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1905 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1906 // the expansion will try to reuse Value from ExprValueMap, and only when it
1907 // fails, expand the SCEV literally.
1908 Value *SCEVExpander::expand(const SCEV *S) {
1909   // Compute an insertion point for this SCEV object. Hoist the instructions
1910   // as far out in the loop nest as possible.
1911   Instruction *InsertPt = &*Builder.GetInsertPoint();
1912 
1913   // We can move insertion point only if there is no div or rem operations
1914   // otherwise we are risky to move it over the check for zero denominator.
1915   auto SafeToHoist = [](const SCEV *S) {
1916     return !SCEVExprContains(S, [](const SCEV *S) {
1917               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1918                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1919                   // Division by non-zero constants can be hoisted.
1920                   return SC->getValue()->isZero();
1921                 // All other divisions should not be moved as they may be
1922                 // divisions by zero and should be kept within the
1923                 // conditions of the surrounding loops that guard their
1924                 // execution (see PR35406).
1925                 return true;
1926               }
1927               return false;
1928             });
1929   };
1930   if (SafeToHoist(S)) {
1931     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1932          L = L->getParentLoop()) {
1933       if (SE.isLoopInvariant(S, L)) {
1934         if (!L) break;
1935         if (BasicBlock *Preheader = L->getLoopPreheader())
1936           InsertPt = Preheader->getTerminator();
1937         else
1938           // LSR sets the insertion point for AddRec start/step values to the
1939           // block start to simplify value reuse, even though it's an invalid
1940           // position. SCEVExpander must correct for this in all cases.
1941           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1942       } else {
1943         // If the SCEV is computable at this level, insert it into the header
1944         // after the PHIs (and after any other instructions that we've inserted
1945         // there) so that it is guaranteed to dominate any user inside the loop.
1946         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1947           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1948 
1949         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1950                (isInsertedInstruction(InsertPt) ||
1951                 isa<DbgInfoIntrinsic>(InsertPt))) {
1952           InsertPt = &*std::next(InsertPt->getIterator());
1953         }
1954         break;
1955       }
1956     }
1957   }
1958 
1959   // Check to see if we already expanded this here.
1960   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1961   if (I != InsertedExpressions.end())
1962     return I->second;
1963 
1964   SCEVInsertPointGuard Guard(Builder, this);
1965   Builder.SetInsertPoint(InsertPt);
1966 
1967   // Expand the expression into instructions.
1968   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1969   Value *V = VO.first;
1970 
1971   if (!V)
1972     V = visit(S);
1973   else {
1974     // If we're reusing an existing instruction, we are effectively CSEing two
1975     // copies of the instruction (with potentially different flags).  As such,
1976     // we need to drop any poison generating flags unless we can prove that
1977     // said flags must be valid for all new users.
1978     if (auto *I = dyn_cast<Instruction>(V))
1979       if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))
1980         I->dropPoisonGeneratingFlags();
1981 
1982     if (VO.second) {
1983       if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1984         int64_t Offset = VO.second->getSExtValue();
1985         ConstantInt *Idx =
1986           ConstantInt::getSigned(VO.second->getType(), -Offset);
1987         unsigned AS = Vty->getAddressSpace();
1988         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1989         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1990                               "uglygep");
1991         V = Builder.CreateBitCast(V, Vty);
1992       } else {
1993         V = Builder.CreateSub(V, VO.second);
1994       }
1995     }
1996   }
1997   // Remember the expanded value for this SCEV at this location.
1998   //
1999   // This is independent of PostIncLoops. The mapped value simply materializes
2000   // the expression at this insertion point. If the mapped value happened to be
2001   // a postinc expansion, it could be reused by a non-postinc user, but only if
2002   // its insertion point was already at the head of the loop.
2003   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
2004   return V;
2005 }
2006 
2007 void SCEVExpander::rememberInstruction(Value *I) {
2008   auto DoInsert = [this](Value *V) {
2009     if (!PostIncLoops.empty())
2010       InsertedPostIncValues.insert(V);
2011     else
2012       InsertedValues.insert(V);
2013   };
2014   DoInsert(I);
2015 
2016   if (!PreserveLCSSA)
2017     return;
2018 
2019   if (auto *Inst = dyn_cast<Instruction>(I)) {
2020     // A new instruction has been added, which might introduce new uses outside
2021     // a defining loop. Fix LCSSA from for each operand of the new instruction,
2022     // if required.
2023     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
2024          OpIdx++)
2025       fixupLCSSAFormFor(Inst, OpIdx);
2026   }
2027 }
2028 
2029 /// replaceCongruentIVs - Check for congruent phis in this loop header and
2030 /// replace them with their most canonical representative. Return the number of
2031 /// phis eliminated.
2032 ///
2033 /// This does not depend on any SCEVExpander state but should be used in
2034 /// the same context that SCEVExpander is used.
2035 unsigned
2036 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
2037                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2038                                   const TargetTransformInfo *TTI) {
2039   // Find integer phis in order of increasing width.
2040   SmallVector<PHINode*, 8> Phis;
2041   for (PHINode &PN : L->getHeader()->phis())
2042     Phis.push_back(&PN);
2043 
2044   if (TTI)
2045     // Use stable_sort to preserve order of equivalent PHIs, so the order
2046     // of the sorted Phis is the same from run to run on the same loop.
2047     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
2048       // Put pointers at the back and make sure pointer < pointer = false.
2049       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
2050         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2051       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2052              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
2053     });
2054 
2055   unsigned NumElim = 0;
2056   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
2057   // Process phis from wide to narrow. Map wide phis to their truncation
2058   // so narrow phis can reuse them.
2059   for (PHINode *Phi : Phis) {
2060     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
2061       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
2062         return V;
2063       if (!SE.isSCEVable(PN->getType()))
2064         return nullptr;
2065       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
2066       if (!Const)
2067         return nullptr;
2068       return Const->getValue();
2069     };
2070 
2071     // Fold constant phis. They may be congruent to other constant phis and
2072     // would confuse the logic below that expects proper IVs.
2073     if (Value *V = SimplifyPHINode(Phi)) {
2074       if (V->getType() != Phi->getType())
2075         continue;
2076       Phi->replaceAllUsesWith(V);
2077       DeadInsts.emplace_back(Phi);
2078       ++NumElim;
2079       SCEV_DEBUG_WITH_TYPE(DebugType,
2080                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
2081                                   << '\n');
2082       continue;
2083     }
2084 
2085     if (!SE.isSCEVable(Phi->getType()))
2086       continue;
2087 
2088     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
2089     if (!OrigPhiRef) {
2090       OrigPhiRef = Phi;
2091       if (Phi->getType()->isIntegerTy() && TTI &&
2092           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2093         // This phi can be freely truncated to the narrowest phi type. Map the
2094         // truncated expression to it so it will be reused for narrow types.
2095         const SCEV *TruncExpr =
2096           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2097         ExprToIVMap[TruncExpr] = Phi;
2098       }
2099       continue;
2100     }
2101 
2102     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2103     // sense.
2104     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2105       continue;
2106 
2107     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2108       Instruction *OrigInc = dyn_cast<Instruction>(
2109           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2110       Instruction *IsomorphicInc =
2111           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2112 
2113       if (OrigInc && IsomorphicInc) {
2114         // If this phi has the same width but is more canonical, replace the
2115         // original with it. As part of the "more canonical" determination,
2116         // respect a prior decision to use an IV chain.
2117         if (OrigPhiRef->getType() == Phi->getType() &&
2118             !(ChainedPhis.count(Phi) ||
2119               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2120             (ChainedPhis.count(Phi) ||
2121              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2122           std::swap(OrigPhiRef, Phi);
2123           std::swap(OrigInc, IsomorphicInc);
2124         }
2125         // Replacing the congruent phi is sufficient because acyclic
2126         // redundancy elimination, CSE/GVN, should handle the
2127         // rest. However, once SCEV proves that a phi is congruent,
2128         // it's often the head of an IV user cycle that is isomorphic
2129         // with the original phi. It's worth eagerly cleaning up the
2130         // common case of a single IV increment so that DeleteDeadPHIs
2131         // can remove cycles that had postinc uses.
2132         const SCEV *TruncExpr =
2133             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2134         if (OrigInc != IsomorphicInc &&
2135             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2136             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2137             hoistIVInc(OrigInc, IsomorphicInc)) {
2138           SCEV_DEBUG_WITH_TYPE(
2139               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2140                                 << *IsomorphicInc << '\n');
2141           Value *NewInc = OrigInc;
2142           if (OrigInc->getType() != IsomorphicInc->getType()) {
2143             Instruction *IP = nullptr;
2144             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2145               IP = &*PN->getParent()->getFirstInsertionPt();
2146             else
2147               IP = OrigInc->getNextNode();
2148 
2149             IRBuilder<> Builder(IP);
2150             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2151             NewInc = Builder.CreateTruncOrBitCast(
2152                 OrigInc, IsomorphicInc->getType(), IVName);
2153           }
2154           IsomorphicInc->replaceAllUsesWith(NewInc);
2155           DeadInsts.emplace_back(IsomorphicInc);
2156         }
2157       }
2158     }
2159     SCEV_DEBUG_WITH_TYPE(DebugType,
2160                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2161                                 << '\n');
2162     SCEV_DEBUG_WITH_TYPE(
2163         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
2164     ++NumElim;
2165     Value *NewIV = OrigPhiRef;
2166     if (OrigPhiRef->getType() != Phi->getType()) {
2167       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2168       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2169       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2170     }
2171     Phi->replaceAllUsesWith(NewIV);
2172     DeadInsts.emplace_back(Phi);
2173   }
2174   return NumElim;
2175 }
2176 
2177 Optional<ScalarEvolution::ValueOffsetPair>
2178 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2179                                           Loop *L) {
2180   using namespace llvm::PatternMatch;
2181 
2182   SmallVector<BasicBlock *, 4> ExitingBlocks;
2183   L->getExitingBlocks(ExitingBlocks);
2184 
2185   // Look for suitable value in simple conditions at the loop exits.
2186   for (BasicBlock *BB : ExitingBlocks) {
2187     ICmpInst::Predicate Pred;
2188     Instruction *LHS, *RHS;
2189 
2190     if (!match(BB->getTerminator(),
2191                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2192                     m_BasicBlock(), m_BasicBlock())))
2193       continue;
2194 
2195     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2196       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2197 
2198     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2199       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2200   }
2201 
2202   // Use expand's logic which is used for reusing a previous Value in
2203   // ExprValueMap.  Note that we don't currently model the cost of
2204   // needing to drop poison generating flags on the instruction if we
2205   // want to reuse it.  We effectively assume that has zero cost.
2206   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2207   if (VO.first)
2208     return VO;
2209 
2210   // There is potential to make this significantly smarter, but this simple
2211   // heuristic already gets some interesting cases.
2212 
2213   // Can not find suitable value.
2214   return None;
2215 }
2216 
2217 template<typename T> static InstructionCost costAndCollectOperands(
2218   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2219   TargetTransformInfo::TargetCostKind CostKind,
2220   SmallVectorImpl<SCEVOperand> &Worklist) {
2221 
2222   const T *S = cast<T>(WorkItem.S);
2223   InstructionCost Cost = 0;
2224   // Object to help map SCEV operands to expanded IR instructions.
2225   struct OperationIndices {
2226     OperationIndices(unsigned Opc, size_t min, size_t max) :
2227       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2228     unsigned Opcode;
2229     size_t MinIdx;
2230     size_t MaxIdx;
2231   };
2232 
2233   // Collect the operations of all the instructions that will be needed to
2234   // expand the SCEVExpr. This is so that when we come to cost the operands,
2235   // we know what the generated user(s) will be.
2236   SmallVector<OperationIndices, 2> Operations;
2237 
2238   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2239     Operations.emplace_back(Opcode, 0, 0);
2240     return TTI.getCastInstrCost(Opcode, S->getType(),
2241                                 S->getOperand(0)->getType(),
2242                                 TTI::CastContextHint::None, CostKind);
2243   };
2244 
2245   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2246                        unsigned MinIdx = 0,
2247                        unsigned MaxIdx = 1) -> InstructionCost {
2248     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2249     return NumRequired *
2250       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2251   };
2252 
2253   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2254                         unsigned MaxIdx) -> InstructionCost {
2255     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2256     Type *OpType = S->getOperand(0)->getType();
2257     return NumRequired * TTI.getCmpSelInstrCost(
2258                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2259                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2260   };
2261 
2262   switch (S->getSCEVType()) {
2263   case scCouldNotCompute:
2264     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2265   case scUnknown:
2266   case scConstant:
2267     return 0;
2268   case scPtrToInt:
2269     Cost = CastCost(Instruction::PtrToInt);
2270     break;
2271   case scTruncate:
2272     Cost = CastCost(Instruction::Trunc);
2273     break;
2274   case scZeroExtend:
2275     Cost = CastCost(Instruction::ZExt);
2276     break;
2277   case scSignExtend:
2278     Cost = CastCost(Instruction::SExt);
2279     break;
2280   case scUDivExpr: {
2281     unsigned Opcode = Instruction::UDiv;
2282     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2283       if (SC->getAPInt().isPowerOf2())
2284         Opcode = Instruction::LShr;
2285     Cost = ArithCost(Opcode, 1);
2286     break;
2287   }
2288   case scAddExpr:
2289     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2290     break;
2291   case scMulExpr:
2292     // TODO: this is a very pessimistic cost modelling for Mul,
2293     // because of Bin Pow algorithm actually used by the expander,
2294     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2295     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2296     break;
2297   case scSMaxExpr:
2298   case scUMaxExpr:
2299   case scSMinExpr:
2300   case scUMinExpr:
2301   case scSequentialUMinExpr: {
2302     // FIXME: should this ask the cost for Intrinsic's?
2303     // The reduction tree.
2304     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2305     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2306     switch (S->getSCEVType()) {
2307     case scSequentialUMinExpr: {
2308       // The safety net against poison.
2309       // FIXME: this is broken.
2310       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
2311       Cost += ArithCost(Instruction::Or,
2312                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
2313       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
2314       break;
2315     }
2316     default:
2317       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
2318              "Unhandled SCEV expression type?");
2319       break;
2320     }
2321     break;
2322   }
2323   case scAddRecExpr: {
2324     // In this polynominal, we may have some zero operands, and we shouldn't
2325     // really charge for those. So how many non-zero coeffients are there?
2326     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2327                                     return !Op->isZero();
2328                                   });
2329 
2330     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2331     assert(!(*std::prev(S->operands().end()))->isZero() &&
2332            "Last operand should not be zero");
2333 
2334     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2335     int NumNonZeroDegreeNonOneTerms =
2336       llvm::count_if(S->operands(), [](const SCEV *Op) {
2337                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2338                       return !SConst || SConst->getAPInt().ugt(1);
2339                     });
2340 
2341     // Much like with normal add expr, the polynominal will require
2342     // one less addition than the number of it's terms.
2343     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2344                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2345     // Here, *each* one of those will require a multiplication.
2346     InstructionCost MulCost =
2347         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2348     Cost = AddCost + MulCost;
2349 
2350     // What is the degree of this polynominal?
2351     int PolyDegree = S->getNumOperands() - 1;
2352     assert(PolyDegree >= 1 && "Should be at least affine.");
2353 
2354     // The final term will be:
2355     //   Op_{PolyDegree} * x ^ {PolyDegree}
2356     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2357     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2358     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2359     // FIXME: this is conservatively correct, but might be overly pessimistic.
2360     Cost += MulCost * (PolyDegree - 1);
2361     break;
2362   }
2363   }
2364 
2365   for (auto &CostOp : Operations) {
2366     for (auto SCEVOp : enumerate(S->operands())) {
2367       // Clamp the index to account for multiple IR operations being chained.
2368       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2369       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2370       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2371     }
2372   }
2373   return Cost;
2374 }
2375 
2376 bool SCEVExpander::isHighCostExpansionHelper(
2377     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2378     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2379     SmallPtrSetImpl<const SCEV *> &Processed,
2380     SmallVectorImpl<SCEVOperand> &Worklist) {
2381   if (Cost > Budget)
2382     return true; // Already run out of budget, give up.
2383 
2384   const SCEV *S = WorkItem.S;
2385   // Was the cost of expansion of this expression already accounted for?
2386   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2387     return false; // We have already accounted for this expression.
2388 
2389   // If we can find an existing value for this scev available at the point "At"
2390   // then consider the expression cheap.
2391   if (getRelatedExistingExpansion(S, &At, L))
2392     return false; // Consider the expression to be free.
2393 
2394   TargetTransformInfo::TargetCostKind CostKind =
2395       L->getHeader()->getParent()->hasMinSize()
2396           ? TargetTransformInfo::TCK_CodeSize
2397           : TargetTransformInfo::TCK_RecipThroughput;
2398 
2399   switch (S->getSCEVType()) {
2400   case scCouldNotCompute:
2401     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2402   case scUnknown:
2403     // Assume to be zero-cost.
2404     return false;
2405   case scConstant: {
2406     // Only evalulate the costs of constants when optimizing for size.
2407     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2408       return false;
2409     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2410     Type *Ty = S->getType();
2411     Cost += TTI.getIntImmCostInst(
2412         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2413     return Cost > Budget;
2414   }
2415   case scTruncate:
2416   case scPtrToInt:
2417   case scZeroExtend:
2418   case scSignExtend: {
2419     Cost +=
2420         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2421     return false; // Will answer upon next entry into this function.
2422   }
2423   case scUDivExpr: {
2424     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2425     // HowManyLessThans produced to compute a precise expression, rather than a
2426     // UDiv from the user's code. If we can't find a UDiv in the code with some
2427     // simple searching, we need to account for it's cost.
2428 
2429     // At the beginning of this function we already tried to find existing
2430     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2431     // pattern involving division. This is just a simple search heuristic.
2432     if (getRelatedExistingExpansion(
2433             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2434       return false; // Consider it to be free.
2435 
2436     Cost +=
2437         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2438     return false; // Will answer upon next entry into this function.
2439   }
2440   case scAddExpr:
2441   case scMulExpr:
2442   case scUMaxExpr:
2443   case scSMaxExpr:
2444   case scUMinExpr:
2445   case scSMinExpr:
2446   case scSequentialUMinExpr: {
2447     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2448            "Nary expr should have more than 1 operand.");
2449     // The simple nary expr will require one less op (or pair of ops)
2450     // than the number of it's terms.
2451     Cost +=
2452         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2453     return Cost > Budget;
2454   }
2455   case scAddRecExpr: {
2456     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2457            "Polynomial should be at least linear");
2458     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2459         WorkItem, TTI, CostKind, Worklist);
2460     return Cost > Budget;
2461   }
2462   }
2463   llvm_unreachable("Unknown SCEV kind!");
2464 }
2465 
2466 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2467                                             Instruction *IP) {
2468   assert(IP);
2469   switch (Pred->getKind()) {
2470   case SCEVPredicate::P_Union:
2471     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2472   case SCEVPredicate::P_Equal:
2473     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2474   case SCEVPredicate::P_Wrap: {
2475     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2476     return expandWrapPredicate(AddRecPred, IP);
2477   }
2478   }
2479   llvm_unreachable("Unknown SCEV predicate type");
2480 }
2481 
2482 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2483                                           Instruction *IP) {
2484   Value *Expr0 =
2485       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2486   Value *Expr1 =
2487       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2488 
2489   Builder.SetInsertPoint(IP);
2490   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2491   return I;
2492 }
2493 
2494 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2495                                            Instruction *Loc, bool Signed) {
2496   assert(AR->isAffine() && "Cannot generate RT check for "
2497                            "non-affine expression");
2498 
2499   SCEVUnionPredicate Pred;
2500   const SCEV *ExitCount =
2501       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2502 
2503   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2504 
2505   const SCEV *Step = AR->getStepRecurrence(SE);
2506   const SCEV *Start = AR->getStart();
2507 
2508   Type *ARTy = AR->getType();
2509   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2510   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2511 
2512   // The expression {Start,+,Step} has nusw/nssw if
2513   //   Step < 0, Start - |Step| * Backedge <= Start
2514   //   Step >= 0, Start + |Step| * Backedge > Start
2515   // and |Step| * Backedge doesn't unsigned overflow.
2516 
2517   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2518   Builder.SetInsertPoint(Loc);
2519   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2520 
2521   IntegerType *Ty =
2522       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2523 
2524   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2525   Value *NegStepValue =
2526       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2527   Value *StartValue = expandCodeForImpl(Start, ARTy, Loc, false);
2528 
2529   ConstantInt *Zero =
2530       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2531 
2532   Builder.SetInsertPoint(Loc);
2533   // Compute |Step|
2534   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2535   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2536 
2537   // Compute |Step| * Backedge
2538   // Compute:
2539   //   1. Start + |Step| * Backedge < Start
2540   //   2. Start - |Step| * Backedge > Start
2541   //
2542   // And select either 1. or 2. depending on whether step is positive or
2543   // negative. If Step is known to be positive or negative, only create
2544   // either 1. or 2.
2545   auto ComputeEndCheck = [&]() -> Value * {
2546     // Checking <u 0 is always false.
2547     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2548       return ConstantInt::getFalse(Loc->getContext());
2549 
2550     // Get the backedge taken count and truncate or extended to the AR type.
2551     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2552 
2553     Value *MulV, *OfMul;
2554     if (Step->isOne()) {
2555       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2556       // needed, there is never an overflow, so to avoid artificially inflating
2557       // the cost of the check, directly emit the optimized IR.
2558       MulV = TruncTripCount;
2559       OfMul = ConstantInt::getFalse(MulV->getContext());
2560     } else {
2561       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2562                                              Intrinsic::umul_with_overflow, Ty);
2563       CallInst *Mul =
2564           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2565       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2566       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2567     }
2568 
2569     Value *Add = nullptr, *Sub = nullptr;
2570     bool NeedPosCheck = !SE.isKnownNegative(Step);
2571     bool NeedNegCheck = !SE.isKnownPositive(Step);
2572 
2573     if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2574       StartValue = InsertNoopCastOfTo(
2575           StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace()));
2576       Value *NegMulV = Builder.CreateNeg(MulV);
2577       if (NeedPosCheck)
2578         Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2579       if (NeedNegCheck)
2580         Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
2581     } else {
2582       if (NeedPosCheck)
2583         Add = Builder.CreateAdd(StartValue, MulV);
2584       if (NeedNegCheck)
2585         Sub = Builder.CreateSub(StartValue, MulV);
2586     }
2587 
2588     Value *EndCompareLT = nullptr;
2589     Value *EndCompareGT = nullptr;
2590     Value *EndCheck = nullptr;
2591     if (NeedPosCheck)
2592       EndCheck = EndCompareLT = Builder.CreateICmp(
2593           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2594     if (NeedNegCheck)
2595       EndCheck = EndCompareGT = Builder.CreateICmp(
2596           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2597     if (NeedPosCheck && NeedNegCheck) {
2598       // Select the answer based on the sign of Step.
2599       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2600     }
2601     return Builder.CreateOr(EndCheck, OfMul);
2602   };
2603   Value *EndCheck = ComputeEndCheck();
2604 
2605   // If the backedge taken count type is larger than the AR type,
2606   // check that we don't drop any bits by truncating it. If we are
2607   // dropping bits, then we have overflow (unless the step is zero).
2608   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2609     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2610     auto *BackedgeCheck =
2611         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2612                            ConstantInt::get(Loc->getContext(), MaxVal));
2613     BackedgeCheck = Builder.CreateAnd(
2614         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2615 
2616     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2617   }
2618 
2619   return EndCheck;
2620 }
2621 
2622 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2623                                          Instruction *IP) {
2624   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2625   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2626 
2627   // Add a check for NUSW
2628   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2629     NUSWCheck = generateOverflowCheck(A, IP, false);
2630 
2631   // Add a check for NSSW
2632   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2633     NSSWCheck = generateOverflowCheck(A, IP, true);
2634 
2635   if (NUSWCheck && NSSWCheck)
2636     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2637 
2638   if (NUSWCheck)
2639     return NUSWCheck;
2640 
2641   if (NSSWCheck)
2642     return NSSWCheck;
2643 
2644   return ConstantInt::getFalse(IP->getContext());
2645 }
2646 
2647 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2648                                           Instruction *IP) {
2649   // Loop over all checks in this set.
2650   SmallVector<Value *> Checks;
2651   for (auto Pred : Union->getPredicates()) {
2652     Checks.push_back(expandCodeForPredicate(Pred, IP));
2653     Builder.SetInsertPoint(IP);
2654   }
2655 
2656   if (Checks.empty())
2657     return ConstantInt::getFalse(IP->getContext());
2658   return Builder.CreateOr(Checks);
2659 }
2660 
2661 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2662   assert(PreserveLCSSA);
2663   SmallVector<Instruction *, 1> ToUpdate;
2664 
2665   auto *OpV = User->getOperand(OpIdx);
2666   auto *OpI = dyn_cast<Instruction>(OpV);
2667   if (!OpI)
2668     return OpV;
2669 
2670   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2671   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2672   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2673     return OpV;
2674 
2675   ToUpdate.push_back(OpI);
2676   SmallVector<PHINode *, 16> PHIsToRemove;
2677   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2678   for (PHINode *PN : PHIsToRemove) {
2679     if (!PN->use_empty())
2680       continue;
2681     InsertedValues.erase(PN);
2682     InsertedPostIncValues.erase(PN);
2683     PN->eraseFromParent();
2684   }
2685 
2686   return User->getOperand(OpIdx);
2687 }
2688 
2689 namespace {
2690 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2691 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2692 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2693 // instruction, but the important thing is that we prove the denominator is
2694 // nonzero before expansion.
2695 //
2696 // IVUsers already checks that IV-derived expressions are safe. So this check is
2697 // only needed when the expression includes some subexpression that is not IV
2698 // derived.
2699 //
2700 // Currently, we only allow division by a nonzero constant here. If this is
2701 // inadequate, we could easily allow division by SCEVUnknown by using
2702 // ValueTracking to check isKnownNonZero().
2703 //
2704 // We cannot generally expand recurrences unless the step dominates the loop
2705 // header. The expander handles the special case of affine recurrences by
2706 // scaling the recurrence outside the loop, but this technique isn't generally
2707 // applicable. Expanding a nested recurrence outside a loop requires computing
2708 // binomial coefficients. This could be done, but the recurrence has to be in a
2709 // perfectly reduced form, which can't be guaranteed.
2710 struct SCEVFindUnsafe {
2711   ScalarEvolution &SE;
2712   bool CanonicalMode;
2713   bool IsUnsafe;
2714 
2715   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2716       : SE(SE), CanonicalMode(CanonicalMode), IsUnsafe(false) {}
2717 
2718   bool follow(const SCEV *S) {
2719     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2720       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2721       if (!SC || SC->getValue()->isZero()) {
2722         IsUnsafe = true;
2723         return false;
2724       }
2725     }
2726     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2727       const SCEV *Step = AR->getStepRecurrence(SE);
2728       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2729         IsUnsafe = true;
2730         return false;
2731       }
2732 
2733       // For non-affine addrecs or in non-canonical mode we need a preheader
2734       // to insert into.
2735       if (!AR->getLoop()->getLoopPreheader() &&
2736           (!CanonicalMode || !AR->isAffine())) {
2737         IsUnsafe = true;
2738         return false;
2739       }
2740     }
2741     return true;
2742   }
2743   bool isDone() const { return IsUnsafe; }
2744 };
2745 }
2746 
2747 namespace llvm {
2748 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE, bool CanonicalMode) {
2749   SCEVFindUnsafe Search(SE, CanonicalMode);
2750   visitAll(S, Search);
2751   return !Search.IsUnsafe;
2752 }
2753 
2754 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2755                       ScalarEvolution &SE) {
2756   if (!isSafeToExpand(S, SE))
2757     return false;
2758   // We have to prove that the expanded site of S dominates InsertionPoint.
2759   // This is easy when not in the same block, but hard when S is an instruction
2760   // to be expanded somewhere inside the same block as our insertion point.
2761   // What we really need here is something analogous to an OrderedBasicBlock,
2762   // but for the moment, we paper over the problem by handling two common and
2763   // cheap to check cases.
2764   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2765     return true;
2766   if (SE.dominates(S, InsertionPoint->getParent())) {
2767     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2768       return true;
2769     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2770       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2771         return true;
2772   }
2773   return false;
2774 }
2775 
2776 void SCEVExpanderCleaner::cleanup() {
2777   // Result is used, nothing to remove.
2778   if (ResultUsed)
2779     return;
2780 
2781   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2782 #ifndef NDEBUG
2783   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2784                                             InsertedInstructions.end());
2785   (void)InsertedSet;
2786 #endif
2787   // Remove sets with value handles.
2788   Expander.clear();
2789 
2790   // Remove all inserted instructions.
2791   for (Instruction *I : reverse(InsertedInstructions)) {
2792 #ifndef NDEBUG
2793     assert(all_of(I->users(),
2794                   [&InsertedSet](Value *U) {
2795                     return InsertedSet.contains(cast<Instruction>(U));
2796                   }) &&
2797            "removed instruction should only be used by instructions inserted "
2798            "during expansion");
2799 #endif
2800     assert(!I->getType()->isVoidTy() &&
2801            "inserted instruction should have non-void types");
2802     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2803     I->eraseFromParent();
2804   }
2805 }
2806 }
2807