1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SSAUpdater class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/SSAUpdater.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/TinyPtrVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugLoc.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/Use.h" 27 #include "llvm/IR/Value.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "ssaupdater" 39 40 using AvailableValsTy = DenseMap<BasicBlock *, Value *>; 41 42 static AvailableValsTy &getAvailableVals(void *AV) { 43 return *static_cast<AvailableValsTy*>(AV); 44 } 45 46 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) 47 : InsertedPHIs(NewPHI) {} 48 49 SSAUpdater::~SSAUpdater() { 50 delete static_cast<AvailableValsTy*>(AV); 51 } 52 53 void SSAUpdater::Initialize(Type *Ty, StringRef Name) { 54 if (!AV) 55 AV = new AvailableValsTy(); 56 else 57 getAvailableVals(AV).clear(); 58 ProtoType = Ty; 59 ProtoName = std::string(Name); 60 } 61 62 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { 63 return getAvailableVals(AV).count(BB); 64 } 65 66 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const { 67 return getAvailableVals(AV).lookup(BB); 68 } 69 70 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { 71 assert(ProtoType && "Need to initialize SSAUpdater"); 72 assert(ProtoType == V->getType() && 73 "All rewritten values must have the same type"); 74 getAvailableVals(AV)[BB] = V; 75 } 76 77 static bool IsEquivalentPHI(PHINode *PHI, 78 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { 79 unsigned PHINumValues = PHI->getNumIncomingValues(); 80 if (PHINumValues != ValueMapping.size()) 81 return false; 82 83 // Scan the phi to see if it matches. 84 for (unsigned i = 0, e = PHINumValues; i != e; ++i) 85 if (ValueMapping[PHI->getIncomingBlock(i)] != 86 PHI->getIncomingValue(i)) { 87 return false; 88 } 89 90 return true; 91 } 92 93 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { 94 Value *Res = GetValueAtEndOfBlockInternal(BB); 95 return Res; 96 } 97 98 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { 99 // If there is no definition of the renamed variable in this block, just use 100 // GetValueAtEndOfBlock to do our work. 101 if (!HasValueForBlock(BB)) 102 return GetValueAtEndOfBlock(BB); 103 104 // Otherwise, we have the hard case. Get the live-in values for each 105 // predecessor. 106 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; 107 Value *SingularValue = nullptr; 108 109 // We can get our predecessor info by walking the pred_iterator list, but it 110 // is relatively slow. If we already have PHI nodes in this block, walk one 111 // of them to get the predecessor list instead. 112 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 113 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { 114 BasicBlock *PredBB = SomePhi->getIncomingBlock(i); 115 Value *PredVal = GetValueAtEndOfBlock(PredBB); 116 PredValues.push_back(std::make_pair(PredBB, PredVal)); 117 118 // Compute SingularValue. 119 if (i == 0) 120 SingularValue = PredVal; 121 else if (PredVal != SingularValue) 122 SingularValue = nullptr; 123 } 124 } else { 125 bool isFirstPred = true; 126 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 127 BasicBlock *PredBB = *PI; 128 Value *PredVal = GetValueAtEndOfBlock(PredBB); 129 PredValues.push_back(std::make_pair(PredBB, PredVal)); 130 131 // Compute SingularValue. 132 if (isFirstPred) { 133 SingularValue = PredVal; 134 isFirstPred = false; 135 } else if (PredVal != SingularValue) 136 SingularValue = nullptr; 137 } 138 } 139 140 // If there are no predecessors, just return undef. 141 if (PredValues.empty()) 142 return UndefValue::get(ProtoType); 143 144 // Otherwise, if all the merged values are the same, just use it. 145 if (SingularValue) 146 return SingularValue; 147 148 // Otherwise, we do need a PHI: check to see if we already have one available 149 // in this block that produces the right value. 150 if (isa<PHINode>(BB->begin())) { 151 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), 152 PredValues.end()); 153 for (PHINode &SomePHI : BB->phis()) { 154 if (IsEquivalentPHI(&SomePHI, ValueMapping)) 155 return &SomePHI; 156 } 157 } 158 159 // Ok, we have no way out, insert a new one now. 160 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), 161 ProtoName, &BB->front()); 162 163 // Fill in all the predecessors of the PHI. 164 for (const auto &PredValue : PredValues) 165 InsertedPHI->addIncoming(PredValue.second, PredValue.first); 166 167 // See if the PHI node can be merged to a single value. This can happen in 168 // loop cases when we get a PHI of itself and one other value. 169 if (Value *V = 170 SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) { 171 InsertedPHI->eraseFromParent(); 172 return V; 173 } 174 175 // Set the DebugLoc of the inserted PHI, if available. 176 DebugLoc DL; 177 if (const Instruction *I = BB->getFirstNonPHI()) 178 DL = I->getDebugLoc(); 179 InsertedPHI->setDebugLoc(DL); 180 181 // If the client wants to know about all new instructions, tell it. 182 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 183 184 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); 185 return InsertedPHI; 186 } 187 188 void SSAUpdater::RewriteUse(Use &U) { 189 Instruction *User = cast<Instruction>(U.getUser()); 190 191 Value *V; 192 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 193 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 194 else 195 V = GetValueInMiddleOfBlock(User->getParent()); 196 197 U.set(V); 198 } 199 200 void SSAUpdater::RewriteUseAfterInsertions(Use &U) { 201 Instruction *User = cast<Instruction>(U.getUser()); 202 203 Value *V; 204 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 205 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 206 else 207 V = GetValueAtEndOfBlock(User->getParent()); 208 209 U.set(V); 210 } 211 212 namespace llvm { 213 214 template<> 215 class SSAUpdaterTraits<SSAUpdater> { 216 public: 217 using BlkT = BasicBlock; 218 using ValT = Value *; 219 using PhiT = PHINode; 220 using BlkSucc_iterator = succ_iterator; 221 222 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } 223 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } 224 225 class PHI_iterator { 226 private: 227 PHINode *PHI; 228 unsigned idx; 229 230 public: 231 explicit PHI_iterator(PHINode *P) // begin iterator 232 : PHI(P), idx(0) {} 233 PHI_iterator(PHINode *P, bool) // end iterator 234 : PHI(P), idx(PHI->getNumIncomingValues()) {} 235 236 PHI_iterator &operator++() { ++idx; return *this; } 237 bool operator==(const PHI_iterator& x) const { return idx == x.idx; } 238 bool operator!=(const PHI_iterator& x) const { return !operator==(x); } 239 240 Value *getIncomingValue() { return PHI->getIncomingValue(idx); } 241 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } 242 }; 243 244 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 245 static PHI_iterator PHI_end(PhiT *PHI) { 246 return PHI_iterator(PHI, true); 247 } 248 249 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds 250 /// vector, set Info->NumPreds, and allocate space in Info->Preds. 251 static void FindPredecessorBlocks(BasicBlock *BB, 252 SmallVectorImpl<BasicBlock *> *Preds) { 253 // We can get our predecessor info by walking the pred_iterator list, 254 // but it is relatively slow. If we already have PHI nodes in this 255 // block, walk one of them to get the predecessor list instead. 256 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) 257 append_range(*Preds, SomePhi->blocks()); 258 else 259 append_range(*Preds, predecessors(BB)); 260 } 261 262 /// GetUndefVal - Get an undefined value of the same type as the value 263 /// being handled. 264 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { 265 return UndefValue::get(Updater->ProtoType); 266 } 267 268 /// CreateEmptyPHI - Create a new PHI instruction in the specified block. 269 /// Reserve space for the operands but do not fill them in yet. 270 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, 271 SSAUpdater *Updater) { 272 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, 273 Updater->ProtoName, &BB->front()); 274 return PHI; 275 } 276 277 /// AddPHIOperand - Add the specified value as an operand of the PHI for 278 /// the specified predecessor block. 279 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { 280 PHI->addIncoming(Val, Pred); 281 } 282 283 /// ValueIsPHI - Check if a value is a PHI. 284 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { 285 return dyn_cast<PHINode>(Val); 286 } 287 288 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 289 /// operands, i.e., it was just added. 290 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { 291 PHINode *PHI = ValueIsPHI(Val, Updater); 292 if (PHI && PHI->getNumIncomingValues() == 0) 293 return PHI; 294 return nullptr; 295 } 296 297 /// GetPHIValue - For the specified PHI instruction, return the value 298 /// that it defines. 299 static Value *GetPHIValue(PHINode *PHI) { 300 return PHI; 301 } 302 }; 303 304 } // end namespace llvm 305 306 /// Check to see if AvailableVals has an entry for the specified BB and if so, 307 /// return it. If not, construct SSA form by first calculating the required 308 /// placement of PHIs and then inserting new PHIs where needed. 309 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { 310 AvailableValsTy &AvailableVals = getAvailableVals(AV); 311 if (Value *V = AvailableVals[BB]) 312 return V; 313 314 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); 315 return Impl.GetValue(BB); 316 } 317 318 //===----------------------------------------------------------------------===// 319 // LoadAndStorePromoter Implementation 320 //===----------------------------------------------------------------------===// 321 322 LoadAndStorePromoter:: 323 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, 324 SSAUpdater &S, StringRef BaseName) : SSA(S) { 325 if (Insts.empty()) return; 326 327 const Value *SomeVal; 328 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) 329 SomeVal = LI; 330 else 331 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); 332 333 if (BaseName.empty()) 334 BaseName = SomeVal->getName(); 335 SSA.Initialize(SomeVal->getType(), BaseName); 336 } 337 338 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) { 339 // First step: bucket up uses of the alloca by the block they occur in. 340 // This is important because we have to handle multiple defs/uses in a block 341 // ourselves: SSAUpdater is purely for cross-block references. 342 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; 343 344 for (Instruction *User : Insts) 345 UsesByBlock[User->getParent()].push_back(User); 346 347 // Okay, now we can iterate over all the blocks in the function with uses, 348 // processing them. Keep track of which loads are loading a live-in value. 349 // Walk the uses in the use-list order to be determinstic. 350 SmallVector<LoadInst *, 32> LiveInLoads; 351 DenseMap<Value *, Value *> ReplacedLoads; 352 353 for (Instruction *User : Insts) { 354 BasicBlock *BB = User->getParent(); 355 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; 356 357 // If this block has already been processed, ignore this repeat use. 358 if (BlockUses.empty()) continue; 359 360 // Okay, this is the first use in the block. If this block just has a 361 // single user in it, we can rewrite it trivially. 362 if (BlockUses.size() == 1) { 363 // If it is a store, it is a trivial def of the value in the block. 364 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 365 updateDebugInfo(SI); 366 SSA.AddAvailableValue(BB, SI->getOperand(0)); 367 } else 368 // Otherwise it is a load, queue it to rewrite as a live-in load. 369 LiveInLoads.push_back(cast<LoadInst>(User)); 370 BlockUses.clear(); 371 continue; 372 } 373 374 // Otherwise, check to see if this block is all loads. 375 bool HasStore = false; 376 for (Instruction *I : BlockUses) { 377 if (isa<StoreInst>(I)) { 378 HasStore = true; 379 break; 380 } 381 } 382 383 // If so, we can queue them all as live in loads. We don't have an 384 // efficient way to tell which on is first in the block and don't want to 385 // scan large blocks, so just add all loads as live ins. 386 if (!HasStore) { 387 for (Instruction *I : BlockUses) 388 LiveInLoads.push_back(cast<LoadInst>(I)); 389 BlockUses.clear(); 390 continue; 391 } 392 393 // Otherwise, we have mixed loads and stores (or just a bunch of stores). 394 // Since SSAUpdater is purely for cross-block values, we need to determine 395 // the order of these instructions in the block. If the first use in the 396 // block is a load, then it uses the live in value. The last store defines 397 // the live out value. We handle this by doing a linear scan of the block. 398 Value *StoredValue = nullptr; 399 for (Instruction &I : *BB) { 400 if (LoadInst *L = dyn_cast<LoadInst>(&I)) { 401 // If this is a load from an unrelated pointer, ignore it. 402 if (!isInstInList(L, Insts)) continue; 403 404 // If we haven't seen a store yet, this is a live in use, otherwise 405 // use the stored value. 406 if (StoredValue) { 407 replaceLoadWithValue(L, StoredValue); 408 L->replaceAllUsesWith(StoredValue); 409 ReplacedLoads[L] = StoredValue; 410 } else { 411 LiveInLoads.push_back(L); 412 } 413 continue; 414 } 415 416 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 417 // If this is a store to an unrelated pointer, ignore it. 418 if (!isInstInList(SI, Insts)) continue; 419 updateDebugInfo(SI); 420 421 // Remember that this is the active value in the block. 422 StoredValue = SI->getOperand(0); 423 } 424 } 425 426 // The last stored value that happened is the live-out for the block. 427 assert(StoredValue && "Already checked that there is a store in block"); 428 SSA.AddAvailableValue(BB, StoredValue); 429 BlockUses.clear(); 430 } 431 432 // Okay, now we rewrite all loads that use live-in values in the loop, 433 // inserting PHI nodes as necessary. 434 for (LoadInst *ALoad : LiveInLoads) { 435 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); 436 replaceLoadWithValue(ALoad, NewVal); 437 438 // Avoid assertions in unreachable code. 439 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); 440 ALoad->replaceAllUsesWith(NewVal); 441 ReplacedLoads[ALoad] = NewVal; 442 } 443 444 // Allow the client to do stuff before we start nuking things. 445 doExtraRewritesBeforeFinalDeletion(); 446 447 // Now that everything is rewritten, delete the old instructions from the 448 // function. They should all be dead now. 449 for (Instruction *User : Insts) { 450 // If this is a load that still has uses, then the load must have been added 451 // as a live value in the SSAUpdate data structure for a block (e.g. because 452 // the loaded value was stored later). In this case, we need to recursively 453 // propagate the updates until we get to the real value. 454 if (!User->use_empty()) { 455 Value *NewVal = ReplacedLoads[User]; 456 assert(NewVal && "not a replaced load?"); 457 458 // Propagate down to the ultimate replacee. The intermediately loads 459 // could theoretically already have been deleted, so we don't want to 460 // dereference the Value*'s. 461 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); 462 while (RLI != ReplacedLoads.end()) { 463 NewVal = RLI->second; 464 RLI = ReplacedLoads.find(NewVal); 465 } 466 467 replaceLoadWithValue(cast<LoadInst>(User), NewVal); 468 User->replaceAllUsesWith(NewVal); 469 } 470 471 instructionDeleted(User); 472 User->eraseFromParent(); 473 } 474 } 475 476 bool 477 LoadAndStorePromoter::isInstInList(Instruction *I, 478 const SmallVectorImpl<Instruction *> &Insts) 479 const { 480 return is_contained(Insts, I); 481 } 482