xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SSAUpdater.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SSAUpdater class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Use.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
33 #include <cassert>
34 #include <utility>
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "ssaupdater"
39 
40 using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
41 
42 static AvailableValsTy &getAvailableVals(void *AV) {
43   return *static_cast<AvailableValsTy*>(AV);
44 }
45 
46 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
47   : InsertedPHIs(NewPHI) {}
48 
49 SSAUpdater::~SSAUpdater() {
50   delete static_cast<AvailableValsTy*>(AV);
51 }
52 
53 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
54   if (!AV)
55     AV = new AvailableValsTy();
56   else
57     getAvailableVals(AV).clear();
58   ProtoType = Ty;
59   ProtoName = std::string(Name);
60 }
61 
62 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
63   return getAvailableVals(AV).count(BB);
64 }
65 
66 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
67   return getAvailableVals(AV).lookup(BB);
68 }
69 
70 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
71   assert(ProtoType && "Need to initialize SSAUpdater");
72   assert(ProtoType == V->getType() &&
73          "All rewritten values must have the same type");
74   getAvailableVals(AV)[BB] = V;
75 }
76 
77 static bool IsEquivalentPHI(PHINode *PHI,
78                         SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
79   unsigned PHINumValues = PHI->getNumIncomingValues();
80   if (PHINumValues != ValueMapping.size())
81     return false;
82 
83   // Scan the phi to see if it matches.
84   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
85     if (ValueMapping[PHI->getIncomingBlock(i)] !=
86         PHI->getIncomingValue(i)) {
87       return false;
88     }
89 
90   return true;
91 }
92 
93 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
94   Value *Res = GetValueAtEndOfBlockInternal(BB);
95   return Res;
96 }
97 
98 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
99   // If there is no definition of the renamed variable in this block, just use
100   // GetValueAtEndOfBlock to do our work.
101   if (!HasValueForBlock(BB))
102     return GetValueAtEndOfBlock(BB);
103 
104   // Otherwise, we have the hard case.  Get the live-in values for each
105   // predecessor.
106   SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
107   Value *SingularValue = nullptr;
108 
109   // We can get our predecessor info by walking the pred_iterator list, but it
110   // is relatively slow.  If we already have PHI nodes in this block, walk one
111   // of them to get the predecessor list instead.
112   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
113     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
114       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
115       Value *PredVal = GetValueAtEndOfBlock(PredBB);
116       PredValues.push_back(std::make_pair(PredBB, PredVal));
117 
118       // Compute SingularValue.
119       if (i == 0)
120         SingularValue = PredVal;
121       else if (PredVal != SingularValue)
122         SingularValue = nullptr;
123     }
124   } else {
125     bool isFirstPred = true;
126     for (BasicBlock *PredBB : predecessors(BB)) {
127       Value *PredVal = GetValueAtEndOfBlock(PredBB);
128       PredValues.push_back(std::make_pair(PredBB, PredVal));
129 
130       // Compute SingularValue.
131       if (isFirstPred) {
132         SingularValue = PredVal;
133         isFirstPred = false;
134       } else if (PredVal != SingularValue)
135         SingularValue = nullptr;
136     }
137   }
138 
139   // If there are no predecessors, just return poison.
140   if (PredValues.empty())
141     return PoisonValue::get(ProtoType);
142 
143   // Otherwise, if all the merged values are the same, just use it.
144   if (SingularValue)
145     return SingularValue;
146 
147   // Otherwise, we do need a PHI: check to see if we already have one available
148   // in this block that produces the right value.
149   if (isa<PHINode>(BB->begin())) {
150     SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
151                                                          PredValues.end());
152     for (PHINode &SomePHI : BB->phis()) {
153       if (IsEquivalentPHI(&SomePHI, ValueMapping))
154         return &SomePHI;
155     }
156   }
157 
158   // Ok, we have no way out, insert a new one now.
159   PHINode *InsertedPHI =
160       PHINode::Create(ProtoType, PredValues.size(), ProtoName);
161   InsertedPHI->insertBefore(BB->begin());
162 
163   // Fill in all the predecessors of the PHI.
164   for (const auto &PredValue : PredValues)
165     InsertedPHI->addIncoming(PredValue.second, PredValue.first);
166 
167   // See if the PHI node can be merged to a single value.  This can happen in
168   // loop cases when we get a PHI of itself and one other value.
169   if (Value *V =
170           simplifyInstruction(InsertedPHI, BB->getDataLayout())) {
171     InsertedPHI->eraseFromParent();
172     return V;
173   }
174 
175   // Set the DebugLoc of the inserted PHI, if available.
176   DebugLoc DL;
177   if (const Instruction *I = BB->getFirstNonPHI())
178       DL = I->getDebugLoc();
179   InsertedPHI->setDebugLoc(DL);
180 
181   // If the client wants to know about all new instructions, tell it.
182   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
183 
184   LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
185   return InsertedPHI;
186 }
187 
188 void SSAUpdater::RewriteUse(Use &U) {
189   Instruction *User = cast<Instruction>(U.getUser());
190 
191   Value *V;
192   if (PHINode *UserPN = dyn_cast<PHINode>(User))
193     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
194   else
195     V = GetValueInMiddleOfBlock(User->getParent());
196 
197   U.set(V);
198 }
199 
200 void SSAUpdater::UpdateDebugValues(Instruction *I) {
201   SmallVector<DbgValueInst *, 4> DbgValues;
202   SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
203   llvm::findDbgValues(DbgValues, I, &DbgVariableRecords);
204   for (auto &DbgValue : DbgValues) {
205     if (DbgValue->getParent() == I->getParent())
206       continue;
207     UpdateDebugValue(I, DbgValue);
208   }
209   for (auto &DVR : DbgVariableRecords) {
210     if (DVR->getParent() == I->getParent())
211       continue;
212     UpdateDebugValue(I, DVR);
213   }
214 }
215 
216 void SSAUpdater::UpdateDebugValues(Instruction *I,
217                                    SmallVectorImpl<DbgValueInst *> &DbgValues) {
218   for (auto &DbgValue : DbgValues) {
219     UpdateDebugValue(I, DbgValue);
220   }
221 }
222 
223 void SSAUpdater::UpdateDebugValues(
224     Instruction *I, SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) {
225   for (auto &DVR : DbgVariableRecords) {
226     UpdateDebugValue(I, DVR);
227   }
228 }
229 
230 void SSAUpdater::UpdateDebugValue(Instruction *I, DbgValueInst *DbgValue) {
231   BasicBlock *UserBB = DbgValue->getParent();
232   if (HasValueForBlock(UserBB)) {
233     Value *NewVal = GetValueAtEndOfBlock(UserBB);
234     DbgValue->replaceVariableLocationOp(I, NewVal);
235   } else
236     DbgValue->setKillLocation();
237 }
238 
239 void SSAUpdater::UpdateDebugValue(Instruction *I, DbgVariableRecord *DVR) {
240   BasicBlock *UserBB = DVR->getParent();
241   if (HasValueForBlock(UserBB)) {
242     Value *NewVal = GetValueAtEndOfBlock(UserBB);
243     DVR->replaceVariableLocationOp(I, NewVal);
244   } else
245     DVR->setKillLocation();
246 }
247 
248 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
249   Instruction *User = cast<Instruction>(U.getUser());
250 
251   Value *V;
252   if (PHINode *UserPN = dyn_cast<PHINode>(User))
253     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
254   else
255     V = GetValueAtEndOfBlock(User->getParent());
256 
257   U.set(V);
258 }
259 
260 namespace llvm {
261 
262 template<>
263 class SSAUpdaterTraits<SSAUpdater> {
264 public:
265   using BlkT = BasicBlock;
266   using ValT = Value *;
267   using PhiT = PHINode;
268   using BlkSucc_iterator = succ_iterator;
269 
270   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
271   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
272 
273   class PHI_iterator {
274   private:
275     PHINode *PHI;
276     unsigned idx;
277 
278   public:
279     explicit PHI_iterator(PHINode *P) // begin iterator
280       : PHI(P), idx(0) {}
281     PHI_iterator(PHINode *P, bool) // end iterator
282       : PHI(P), idx(PHI->getNumIncomingValues()) {}
283 
284     PHI_iterator &operator++() { ++idx; return *this; }
285     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
286     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
287 
288     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
289     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
290   };
291 
292   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
293   static PHI_iterator PHI_end(PhiT *PHI) {
294     return PHI_iterator(PHI, true);
295   }
296 
297   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
298   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
299   static void FindPredecessorBlocks(BasicBlock *BB,
300                                     SmallVectorImpl<BasicBlock *> *Preds) {
301     // We can get our predecessor info by walking the pred_iterator list,
302     // but it is relatively slow.  If we already have PHI nodes in this
303     // block, walk one of them to get the predecessor list instead.
304     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin()))
305       append_range(*Preds, SomePhi->blocks());
306     else
307       append_range(*Preds, predecessors(BB));
308   }
309 
310   /// GetPoisonVal - Get a poison value of the same type as the value
311   /// being handled.
312   static Value *GetPoisonVal(BasicBlock *BB, SSAUpdater *Updater) {
313     return PoisonValue::get(Updater->ProtoType);
314   }
315 
316   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
317   /// Reserve space for the operands but do not fill them in yet.
318   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
319                                SSAUpdater *Updater) {
320     PHINode *PHI =
321         PHINode::Create(Updater->ProtoType, NumPreds, Updater->ProtoName);
322     PHI->insertBefore(BB->begin());
323     return PHI;
324   }
325 
326   /// AddPHIOperand - Add the specified value as an operand of the PHI for
327   /// the specified predecessor block.
328   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
329     PHI->addIncoming(Val, Pred);
330   }
331 
332   /// ValueIsPHI - Check if a value is a PHI.
333   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
334     return dyn_cast<PHINode>(Val);
335   }
336 
337   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
338   /// operands, i.e., it was just added.
339   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
340     PHINode *PHI = ValueIsPHI(Val, Updater);
341     if (PHI && PHI->getNumIncomingValues() == 0)
342       return PHI;
343     return nullptr;
344   }
345 
346   /// GetPHIValue - For the specified PHI instruction, return the value
347   /// that it defines.
348   static Value *GetPHIValue(PHINode *PHI) {
349     return PHI;
350   }
351 };
352 
353 } // end namespace llvm
354 
355 /// Check to see if AvailableVals has an entry for the specified BB and if so,
356 /// return it.  If not, construct SSA form by first calculating the required
357 /// placement of PHIs and then inserting new PHIs where needed.
358 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
359   AvailableValsTy &AvailableVals = getAvailableVals(AV);
360   if (Value *V = AvailableVals[BB])
361     return V;
362 
363   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
364   return Impl.GetValue(BB);
365 }
366 
367 //===----------------------------------------------------------------------===//
368 // LoadAndStorePromoter Implementation
369 //===----------------------------------------------------------------------===//
370 
371 LoadAndStorePromoter::
372 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
373                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
374   if (Insts.empty()) return;
375 
376   const Value *SomeVal;
377   if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
378     SomeVal = LI;
379   else
380     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
381 
382   if (BaseName.empty())
383     BaseName = SomeVal->getName();
384   SSA.Initialize(SomeVal->getType(), BaseName);
385 }
386 
387 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
388   // First step: bucket up uses of the alloca by the block they occur in.
389   // This is important because we have to handle multiple defs/uses in a block
390   // ourselves: SSAUpdater is purely for cross-block references.
391   DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
392 
393   for (Instruction *User : Insts)
394     UsesByBlock[User->getParent()].push_back(User);
395 
396   // Okay, now we can iterate over all the blocks in the function with uses,
397   // processing them.  Keep track of which loads are loading a live-in value.
398   // Walk the uses in the use-list order to be determinstic.
399   SmallVector<LoadInst *, 32> LiveInLoads;
400   DenseMap<Value *, Value *> ReplacedLoads;
401 
402   for (Instruction *User : Insts) {
403     BasicBlock *BB = User->getParent();
404     TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
405 
406     // If this block has already been processed, ignore this repeat use.
407     if (BlockUses.empty()) continue;
408 
409     // Okay, this is the first use in the block.  If this block just has a
410     // single user in it, we can rewrite it trivially.
411     if (BlockUses.size() == 1) {
412       // If it is a store, it is a trivial def of the value in the block.
413       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
414         updateDebugInfo(SI);
415         SSA.AddAvailableValue(BB, SI->getOperand(0));
416       } else
417         // Otherwise it is a load, queue it to rewrite as a live-in load.
418         LiveInLoads.push_back(cast<LoadInst>(User));
419       BlockUses.clear();
420       continue;
421     }
422 
423     // Otherwise, check to see if this block is all loads.
424     bool HasStore = false;
425     for (Instruction *I : BlockUses) {
426       if (isa<StoreInst>(I)) {
427         HasStore = true;
428         break;
429       }
430     }
431 
432     // If so, we can queue them all as live in loads.  We don't have an
433     // efficient way to tell which on is first in the block and don't want to
434     // scan large blocks, so just add all loads as live ins.
435     if (!HasStore) {
436       for (Instruction *I : BlockUses)
437         LiveInLoads.push_back(cast<LoadInst>(I));
438       BlockUses.clear();
439       continue;
440     }
441 
442     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
443     // Since SSAUpdater is purely for cross-block values, we need to determine
444     // the order of these instructions in the block.  If the first use in the
445     // block is a load, then it uses the live in value.  The last store defines
446     // the live out value.  We handle this by doing a linear scan of the block.
447     Value *StoredValue = nullptr;
448     for (Instruction &I : *BB) {
449       if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
450         // If this is a load from an unrelated pointer, ignore it.
451         if (!isInstInList(L, Insts)) continue;
452 
453         // If we haven't seen a store yet, this is a live in use, otherwise
454         // use the stored value.
455         if (StoredValue) {
456           replaceLoadWithValue(L, StoredValue);
457           L->replaceAllUsesWith(StoredValue);
458           ReplacedLoads[L] = StoredValue;
459         } else {
460           LiveInLoads.push_back(L);
461         }
462         continue;
463       }
464 
465       if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
466         // If this is a store to an unrelated pointer, ignore it.
467         if (!isInstInList(SI, Insts)) continue;
468         updateDebugInfo(SI);
469 
470         // Remember that this is the active value in the block.
471         StoredValue = SI->getOperand(0);
472       }
473     }
474 
475     // The last stored value that happened is the live-out for the block.
476     assert(StoredValue && "Already checked that there is a store in block");
477     SSA.AddAvailableValue(BB, StoredValue);
478     BlockUses.clear();
479   }
480 
481   // Okay, now we rewrite all loads that use live-in values in the loop,
482   // inserting PHI nodes as necessary.
483   for (LoadInst *ALoad : LiveInLoads) {
484     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
485     replaceLoadWithValue(ALoad, NewVal);
486 
487     // Avoid assertions in unreachable code.
488     if (NewVal == ALoad) NewVal = PoisonValue::get(NewVal->getType());
489     ALoad->replaceAllUsesWith(NewVal);
490     ReplacedLoads[ALoad] = NewVal;
491   }
492 
493   // Allow the client to do stuff before we start nuking things.
494   doExtraRewritesBeforeFinalDeletion();
495 
496   // Now that everything is rewritten, delete the old instructions from the
497   // function.  They should all be dead now.
498   for (Instruction *User : Insts) {
499     if (!shouldDelete(User))
500       continue;
501 
502     // If this is a load that still has uses, then the load must have been added
503     // as a live value in the SSAUpdate data structure for a block (e.g. because
504     // the loaded value was stored later).  In this case, we need to recursively
505     // propagate the updates until we get to the real value.
506     if (!User->use_empty()) {
507       Value *NewVal = ReplacedLoads[User];
508       assert(NewVal && "not a replaced load?");
509 
510       // Propagate down to the ultimate replacee.  The intermediately loads
511       // could theoretically already have been deleted, so we don't want to
512       // dereference the Value*'s.
513       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
514       while (RLI != ReplacedLoads.end()) {
515         NewVal = RLI->second;
516         RLI = ReplacedLoads.find(NewVal);
517       }
518 
519       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
520       User->replaceAllUsesWith(NewVal);
521     }
522 
523     instructionDeleted(User);
524     User->eraseFromParent();
525   }
526 }
527 
528 bool
529 LoadAndStorePromoter::isInstInList(Instruction *I,
530                                    const SmallVectorImpl<Instruction *> &Insts)
531                                    const {
532   return is_contained(Insts, I);
533 }
534