1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SSAUpdater class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/SSAUpdater.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/TinyPtrVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/DebugLoc.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Use.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "ssaupdater" 39 40 using AvailableValsTy = DenseMap<BasicBlock *, Value *>; 41 42 static AvailableValsTy &getAvailableVals(void *AV) { 43 return *static_cast<AvailableValsTy*>(AV); 44 } 45 46 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) 47 : InsertedPHIs(NewPHI) {} 48 49 SSAUpdater::~SSAUpdater() { 50 delete static_cast<AvailableValsTy*>(AV); 51 } 52 53 void SSAUpdater::Initialize(Type *Ty, StringRef Name) { 54 if (!AV) 55 AV = new AvailableValsTy(); 56 else 57 getAvailableVals(AV).clear(); 58 ProtoType = Ty; 59 ProtoName = std::string(Name); 60 } 61 62 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { 63 return getAvailableVals(AV).count(BB); 64 } 65 66 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const { 67 return getAvailableVals(AV).lookup(BB); 68 } 69 70 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { 71 assert(ProtoType && "Need to initialize SSAUpdater"); 72 assert(ProtoType == V->getType() && 73 "All rewritten values must have the same type"); 74 getAvailableVals(AV)[BB] = V; 75 } 76 77 static bool IsEquivalentPHI(PHINode *PHI, 78 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { 79 unsigned PHINumValues = PHI->getNumIncomingValues(); 80 if (PHINumValues != ValueMapping.size()) 81 return false; 82 83 // Scan the phi to see if it matches. 84 for (unsigned i = 0, e = PHINumValues; i != e; ++i) 85 if (ValueMapping[PHI->getIncomingBlock(i)] != 86 PHI->getIncomingValue(i)) { 87 return false; 88 } 89 90 return true; 91 } 92 93 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { 94 Value *Res = GetValueAtEndOfBlockInternal(BB); 95 return Res; 96 } 97 98 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { 99 // If there is no definition of the renamed variable in this block, just use 100 // GetValueAtEndOfBlock to do our work. 101 if (!HasValueForBlock(BB)) 102 return GetValueAtEndOfBlock(BB); 103 104 // Otherwise, we have the hard case. Get the live-in values for each 105 // predecessor. 106 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; 107 Value *SingularValue = nullptr; 108 109 // We can get our predecessor info by walking the pred_iterator list, but it 110 // is relatively slow. If we already have PHI nodes in this block, walk one 111 // of them to get the predecessor list instead. 112 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 113 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { 114 BasicBlock *PredBB = SomePhi->getIncomingBlock(i); 115 Value *PredVal = GetValueAtEndOfBlock(PredBB); 116 PredValues.push_back(std::make_pair(PredBB, PredVal)); 117 118 // Compute SingularValue. 119 if (i == 0) 120 SingularValue = PredVal; 121 else if (PredVal != SingularValue) 122 SingularValue = nullptr; 123 } 124 } else { 125 bool isFirstPred = true; 126 for (BasicBlock *PredBB : predecessors(BB)) { 127 Value *PredVal = GetValueAtEndOfBlock(PredBB); 128 PredValues.push_back(std::make_pair(PredBB, PredVal)); 129 130 // Compute SingularValue. 131 if (isFirstPred) { 132 SingularValue = PredVal; 133 isFirstPred = false; 134 } else if (PredVal != SingularValue) 135 SingularValue = nullptr; 136 } 137 } 138 139 // If there are no predecessors, just return undef. 140 if (PredValues.empty()) 141 return UndefValue::get(ProtoType); 142 143 // Otherwise, if all the merged values are the same, just use it. 144 if (SingularValue) 145 return SingularValue; 146 147 // Otherwise, we do need a PHI: check to see if we already have one available 148 // in this block that produces the right value. 149 if (isa<PHINode>(BB->begin())) { 150 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), 151 PredValues.end()); 152 for (PHINode &SomePHI : BB->phis()) { 153 if (IsEquivalentPHI(&SomePHI, ValueMapping)) 154 return &SomePHI; 155 } 156 } 157 158 // Ok, we have no way out, insert a new one now. 159 PHINode *InsertedPHI = 160 PHINode::Create(ProtoType, PredValues.size(), ProtoName); 161 InsertedPHI->insertBefore(BB->begin()); 162 163 // Fill in all the predecessors of the PHI. 164 for (const auto &PredValue : PredValues) 165 InsertedPHI->addIncoming(PredValue.second, PredValue.first); 166 167 // See if the PHI node can be merged to a single value. This can happen in 168 // loop cases when we get a PHI of itself and one other value. 169 if (Value *V = 170 simplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) { 171 InsertedPHI->eraseFromParent(); 172 return V; 173 } 174 175 // Set the DebugLoc of the inserted PHI, if available. 176 DebugLoc DL; 177 if (const Instruction *I = BB->getFirstNonPHI()) 178 DL = I->getDebugLoc(); 179 InsertedPHI->setDebugLoc(DL); 180 181 // If the client wants to know about all new instructions, tell it. 182 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 183 184 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); 185 return InsertedPHI; 186 } 187 188 void SSAUpdater::RewriteUse(Use &U) { 189 Instruction *User = cast<Instruction>(U.getUser()); 190 191 Value *V; 192 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 193 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 194 else 195 V = GetValueInMiddleOfBlock(User->getParent()); 196 197 U.set(V); 198 } 199 200 void SSAUpdater::UpdateDebugValues(Instruction *I) { 201 SmallVector<DbgValueInst *, 4> DbgValues; 202 SmallVector<DPValue *, 4> DPValues; 203 llvm::findDbgValues(DbgValues, I, &DPValues); 204 for (auto &DbgValue : DbgValues) { 205 if (DbgValue->getParent() == I->getParent()) 206 continue; 207 UpdateDebugValue(I, DbgValue); 208 } 209 for (auto &DPV : DPValues) { 210 if (DPV->getParent() == I->getParent()) 211 continue; 212 UpdateDebugValue(I, DPV); 213 } 214 } 215 216 void SSAUpdater::UpdateDebugValues(Instruction *I, 217 SmallVectorImpl<DbgValueInst *> &DbgValues) { 218 for (auto &DbgValue : DbgValues) { 219 UpdateDebugValue(I, DbgValue); 220 } 221 } 222 223 void SSAUpdater::UpdateDebugValues(Instruction *I, 224 SmallVectorImpl<DPValue *> &DPValues) { 225 for (auto &DPV : DPValues) { 226 UpdateDebugValue(I, DPV); 227 } 228 } 229 230 void SSAUpdater::UpdateDebugValue(Instruction *I, DbgValueInst *DbgValue) { 231 BasicBlock *UserBB = DbgValue->getParent(); 232 if (HasValueForBlock(UserBB)) { 233 Value *NewVal = GetValueAtEndOfBlock(UserBB); 234 DbgValue->replaceVariableLocationOp(I, NewVal); 235 } else 236 DbgValue->setKillLocation(); 237 } 238 239 void SSAUpdater::UpdateDebugValue(Instruction *I, DPValue *DPV) { 240 BasicBlock *UserBB = DPV->getParent(); 241 if (HasValueForBlock(UserBB)) { 242 Value *NewVal = GetValueAtEndOfBlock(UserBB); 243 DPV->replaceVariableLocationOp(I, NewVal); 244 } else 245 DPV->setKillLocation(); 246 } 247 248 void SSAUpdater::RewriteUseAfterInsertions(Use &U) { 249 Instruction *User = cast<Instruction>(U.getUser()); 250 251 Value *V; 252 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 253 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 254 else 255 V = GetValueAtEndOfBlock(User->getParent()); 256 257 U.set(V); 258 } 259 260 namespace llvm { 261 262 template<> 263 class SSAUpdaterTraits<SSAUpdater> { 264 public: 265 using BlkT = BasicBlock; 266 using ValT = Value *; 267 using PhiT = PHINode; 268 using BlkSucc_iterator = succ_iterator; 269 270 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } 271 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } 272 273 class PHI_iterator { 274 private: 275 PHINode *PHI; 276 unsigned idx; 277 278 public: 279 explicit PHI_iterator(PHINode *P) // begin iterator 280 : PHI(P), idx(0) {} 281 PHI_iterator(PHINode *P, bool) // end iterator 282 : PHI(P), idx(PHI->getNumIncomingValues()) {} 283 284 PHI_iterator &operator++() { ++idx; return *this; } 285 bool operator==(const PHI_iterator& x) const { return idx == x.idx; } 286 bool operator!=(const PHI_iterator& x) const { return !operator==(x); } 287 288 Value *getIncomingValue() { return PHI->getIncomingValue(idx); } 289 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } 290 }; 291 292 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 293 static PHI_iterator PHI_end(PhiT *PHI) { 294 return PHI_iterator(PHI, true); 295 } 296 297 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds 298 /// vector, set Info->NumPreds, and allocate space in Info->Preds. 299 static void FindPredecessorBlocks(BasicBlock *BB, 300 SmallVectorImpl<BasicBlock *> *Preds) { 301 // We can get our predecessor info by walking the pred_iterator list, 302 // but it is relatively slow. If we already have PHI nodes in this 303 // block, walk one of them to get the predecessor list instead. 304 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) 305 append_range(*Preds, SomePhi->blocks()); 306 else 307 append_range(*Preds, predecessors(BB)); 308 } 309 310 /// GetUndefVal - Get an undefined value of the same type as the value 311 /// being handled. 312 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { 313 return UndefValue::get(Updater->ProtoType); 314 } 315 316 /// CreateEmptyPHI - Create a new PHI instruction in the specified block. 317 /// Reserve space for the operands but do not fill them in yet. 318 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, 319 SSAUpdater *Updater) { 320 PHINode *PHI = 321 PHINode::Create(Updater->ProtoType, NumPreds, Updater->ProtoName); 322 PHI->insertBefore(BB->begin()); 323 return PHI; 324 } 325 326 /// AddPHIOperand - Add the specified value as an operand of the PHI for 327 /// the specified predecessor block. 328 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { 329 PHI->addIncoming(Val, Pred); 330 } 331 332 /// ValueIsPHI - Check if a value is a PHI. 333 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { 334 return dyn_cast<PHINode>(Val); 335 } 336 337 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 338 /// operands, i.e., it was just added. 339 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { 340 PHINode *PHI = ValueIsPHI(Val, Updater); 341 if (PHI && PHI->getNumIncomingValues() == 0) 342 return PHI; 343 return nullptr; 344 } 345 346 /// GetPHIValue - For the specified PHI instruction, return the value 347 /// that it defines. 348 static Value *GetPHIValue(PHINode *PHI) { 349 return PHI; 350 } 351 }; 352 353 } // end namespace llvm 354 355 /// Check to see if AvailableVals has an entry for the specified BB and if so, 356 /// return it. If not, construct SSA form by first calculating the required 357 /// placement of PHIs and then inserting new PHIs where needed. 358 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { 359 AvailableValsTy &AvailableVals = getAvailableVals(AV); 360 if (Value *V = AvailableVals[BB]) 361 return V; 362 363 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); 364 return Impl.GetValue(BB); 365 } 366 367 //===----------------------------------------------------------------------===// 368 // LoadAndStorePromoter Implementation 369 //===----------------------------------------------------------------------===// 370 371 LoadAndStorePromoter:: 372 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, 373 SSAUpdater &S, StringRef BaseName) : SSA(S) { 374 if (Insts.empty()) return; 375 376 const Value *SomeVal; 377 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) 378 SomeVal = LI; 379 else 380 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); 381 382 if (BaseName.empty()) 383 BaseName = SomeVal->getName(); 384 SSA.Initialize(SomeVal->getType(), BaseName); 385 } 386 387 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) { 388 // First step: bucket up uses of the alloca by the block they occur in. 389 // This is important because we have to handle multiple defs/uses in a block 390 // ourselves: SSAUpdater is purely for cross-block references. 391 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; 392 393 for (Instruction *User : Insts) 394 UsesByBlock[User->getParent()].push_back(User); 395 396 // Okay, now we can iterate over all the blocks in the function with uses, 397 // processing them. Keep track of which loads are loading a live-in value. 398 // Walk the uses in the use-list order to be determinstic. 399 SmallVector<LoadInst *, 32> LiveInLoads; 400 DenseMap<Value *, Value *> ReplacedLoads; 401 402 for (Instruction *User : Insts) { 403 BasicBlock *BB = User->getParent(); 404 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; 405 406 // If this block has already been processed, ignore this repeat use. 407 if (BlockUses.empty()) continue; 408 409 // Okay, this is the first use in the block. If this block just has a 410 // single user in it, we can rewrite it trivially. 411 if (BlockUses.size() == 1) { 412 // If it is a store, it is a trivial def of the value in the block. 413 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 414 updateDebugInfo(SI); 415 SSA.AddAvailableValue(BB, SI->getOperand(0)); 416 } else 417 // Otherwise it is a load, queue it to rewrite as a live-in load. 418 LiveInLoads.push_back(cast<LoadInst>(User)); 419 BlockUses.clear(); 420 continue; 421 } 422 423 // Otherwise, check to see if this block is all loads. 424 bool HasStore = false; 425 for (Instruction *I : BlockUses) { 426 if (isa<StoreInst>(I)) { 427 HasStore = true; 428 break; 429 } 430 } 431 432 // If so, we can queue them all as live in loads. We don't have an 433 // efficient way to tell which on is first in the block and don't want to 434 // scan large blocks, so just add all loads as live ins. 435 if (!HasStore) { 436 for (Instruction *I : BlockUses) 437 LiveInLoads.push_back(cast<LoadInst>(I)); 438 BlockUses.clear(); 439 continue; 440 } 441 442 // Otherwise, we have mixed loads and stores (or just a bunch of stores). 443 // Since SSAUpdater is purely for cross-block values, we need to determine 444 // the order of these instructions in the block. If the first use in the 445 // block is a load, then it uses the live in value. The last store defines 446 // the live out value. We handle this by doing a linear scan of the block. 447 Value *StoredValue = nullptr; 448 for (Instruction &I : *BB) { 449 if (LoadInst *L = dyn_cast<LoadInst>(&I)) { 450 // If this is a load from an unrelated pointer, ignore it. 451 if (!isInstInList(L, Insts)) continue; 452 453 // If we haven't seen a store yet, this is a live in use, otherwise 454 // use the stored value. 455 if (StoredValue) { 456 replaceLoadWithValue(L, StoredValue); 457 L->replaceAllUsesWith(StoredValue); 458 ReplacedLoads[L] = StoredValue; 459 } else { 460 LiveInLoads.push_back(L); 461 } 462 continue; 463 } 464 465 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 466 // If this is a store to an unrelated pointer, ignore it. 467 if (!isInstInList(SI, Insts)) continue; 468 updateDebugInfo(SI); 469 470 // Remember that this is the active value in the block. 471 StoredValue = SI->getOperand(0); 472 } 473 } 474 475 // The last stored value that happened is the live-out for the block. 476 assert(StoredValue && "Already checked that there is a store in block"); 477 SSA.AddAvailableValue(BB, StoredValue); 478 BlockUses.clear(); 479 } 480 481 // Okay, now we rewrite all loads that use live-in values in the loop, 482 // inserting PHI nodes as necessary. 483 for (LoadInst *ALoad : LiveInLoads) { 484 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); 485 replaceLoadWithValue(ALoad, NewVal); 486 487 // Avoid assertions in unreachable code. 488 if (NewVal == ALoad) NewVal = PoisonValue::get(NewVal->getType()); 489 ALoad->replaceAllUsesWith(NewVal); 490 ReplacedLoads[ALoad] = NewVal; 491 } 492 493 // Allow the client to do stuff before we start nuking things. 494 doExtraRewritesBeforeFinalDeletion(); 495 496 // Now that everything is rewritten, delete the old instructions from the 497 // function. They should all be dead now. 498 for (Instruction *User : Insts) { 499 if (!shouldDelete(User)) 500 continue; 501 502 // If this is a load that still has uses, then the load must have been added 503 // as a live value in the SSAUpdate data structure for a block (e.g. because 504 // the loaded value was stored later). In this case, we need to recursively 505 // propagate the updates until we get to the real value. 506 if (!User->use_empty()) { 507 Value *NewVal = ReplacedLoads[User]; 508 assert(NewVal && "not a replaced load?"); 509 510 // Propagate down to the ultimate replacee. The intermediately loads 511 // could theoretically already have been deleted, so we don't want to 512 // dereference the Value*'s. 513 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); 514 while (RLI != ReplacedLoads.end()) { 515 NewVal = RLI->second; 516 RLI = ReplacedLoads.find(NewVal); 517 } 518 519 replaceLoadWithValue(cast<LoadInst>(User), NewVal); 520 User->replaceAllUsesWith(NewVal); 521 } 522 523 instructionDeleted(User); 524 User->eraseFromParent(); 525 } 526 } 527 528 bool 529 LoadAndStorePromoter::isInstInList(Instruction *I, 530 const SmallVectorImpl<Instruction *> &Insts) 531 const { 532 return is_contained(Insts, I); 533 } 534