1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SSAUpdater class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/SSAUpdater.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/TinyPtrVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugLoc.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/Use.h" 27 #include "llvm/IR/Value.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "ssaupdater" 39 40 using AvailableValsTy = DenseMap<BasicBlock *, Value *>; 41 42 static AvailableValsTy &getAvailableVals(void *AV) { 43 return *static_cast<AvailableValsTy*>(AV); 44 } 45 46 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) 47 : InsertedPHIs(NewPHI) {} 48 49 SSAUpdater::~SSAUpdater() { 50 delete static_cast<AvailableValsTy*>(AV); 51 } 52 53 void SSAUpdater::Initialize(Type *Ty, StringRef Name) { 54 if (!AV) 55 AV = new AvailableValsTy(); 56 else 57 getAvailableVals(AV).clear(); 58 ProtoType = Ty; 59 ProtoName = std::string(Name); 60 } 61 62 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { 63 return getAvailableVals(AV).count(BB); 64 } 65 66 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const { 67 AvailableValsTy::iterator AVI = getAvailableVals(AV).find(BB); 68 return (AVI != getAvailableVals(AV).end()) ? AVI->second : nullptr; 69 } 70 71 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { 72 assert(ProtoType && "Need to initialize SSAUpdater"); 73 assert(ProtoType == V->getType() && 74 "All rewritten values must have the same type"); 75 getAvailableVals(AV)[BB] = V; 76 } 77 78 static bool IsEquivalentPHI(PHINode *PHI, 79 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { 80 unsigned PHINumValues = PHI->getNumIncomingValues(); 81 if (PHINumValues != ValueMapping.size()) 82 return false; 83 84 // Scan the phi to see if it matches. 85 for (unsigned i = 0, e = PHINumValues; i != e; ++i) 86 if (ValueMapping[PHI->getIncomingBlock(i)] != 87 PHI->getIncomingValue(i)) { 88 return false; 89 } 90 91 return true; 92 } 93 94 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { 95 Value *Res = GetValueAtEndOfBlockInternal(BB); 96 return Res; 97 } 98 99 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { 100 // If there is no definition of the renamed variable in this block, just use 101 // GetValueAtEndOfBlock to do our work. 102 if (!HasValueForBlock(BB)) 103 return GetValueAtEndOfBlock(BB); 104 105 // Otherwise, we have the hard case. Get the live-in values for each 106 // predecessor. 107 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; 108 Value *SingularValue = nullptr; 109 110 // We can get our predecessor info by walking the pred_iterator list, but it 111 // is relatively slow. If we already have PHI nodes in this block, walk one 112 // of them to get the predecessor list instead. 113 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 114 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { 115 BasicBlock *PredBB = SomePhi->getIncomingBlock(i); 116 Value *PredVal = GetValueAtEndOfBlock(PredBB); 117 PredValues.push_back(std::make_pair(PredBB, PredVal)); 118 119 // Compute SingularValue. 120 if (i == 0) 121 SingularValue = PredVal; 122 else if (PredVal != SingularValue) 123 SingularValue = nullptr; 124 } 125 } else { 126 bool isFirstPred = true; 127 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 128 BasicBlock *PredBB = *PI; 129 Value *PredVal = GetValueAtEndOfBlock(PredBB); 130 PredValues.push_back(std::make_pair(PredBB, PredVal)); 131 132 // Compute SingularValue. 133 if (isFirstPred) { 134 SingularValue = PredVal; 135 isFirstPred = false; 136 } else if (PredVal != SingularValue) 137 SingularValue = nullptr; 138 } 139 } 140 141 // If there are no predecessors, just return undef. 142 if (PredValues.empty()) 143 return UndefValue::get(ProtoType); 144 145 // Otherwise, if all the merged values are the same, just use it. 146 if (SingularValue) 147 return SingularValue; 148 149 // Otherwise, we do need a PHI: check to see if we already have one available 150 // in this block that produces the right value. 151 if (isa<PHINode>(BB->begin())) { 152 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), 153 PredValues.end()); 154 for (PHINode &SomePHI : BB->phis()) { 155 if (IsEquivalentPHI(&SomePHI, ValueMapping)) 156 return &SomePHI; 157 } 158 } 159 160 // Ok, we have no way out, insert a new one now. 161 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), 162 ProtoName, &BB->front()); 163 164 // Fill in all the predecessors of the PHI. 165 for (const auto &PredValue : PredValues) 166 InsertedPHI->addIncoming(PredValue.second, PredValue.first); 167 168 // See if the PHI node can be merged to a single value. This can happen in 169 // loop cases when we get a PHI of itself and one other value. 170 if (Value *V = 171 SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) { 172 InsertedPHI->eraseFromParent(); 173 return V; 174 } 175 176 // Set the DebugLoc of the inserted PHI, if available. 177 DebugLoc DL; 178 if (const Instruction *I = BB->getFirstNonPHI()) 179 DL = I->getDebugLoc(); 180 InsertedPHI->setDebugLoc(DL); 181 182 // If the client wants to know about all new instructions, tell it. 183 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 184 185 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); 186 return InsertedPHI; 187 } 188 189 void SSAUpdater::RewriteUse(Use &U) { 190 Instruction *User = cast<Instruction>(U.getUser()); 191 192 Value *V; 193 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 194 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 195 else 196 V = GetValueInMiddleOfBlock(User->getParent()); 197 198 U.set(V); 199 } 200 201 void SSAUpdater::RewriteUseAfterInsertions(Use &U) { 202 Instruction *User = cast<Instruction>(U.getUser()); 203 204 Value *V; 205 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 206 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 207 else 208 V = GetValueAtEndOfBlock(User->getParent()); 209 210 U.set(V); 211 } 212 213 namespace llvm { 214 215 template<> 216 class SSAUpdaterTraits<SSAUpdater> { 217 public: 218 using BlkT = BasicBlock; 219 using ValT = Value *; 220 using PhiT = PHINode; 221 using BlkSucc_iterator = succ_iterator; 222 223 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } 224 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } 225 226 class PHI_iterator { 227 private: 228 PHINode *PHI; 229 unsigned idx; 230 231 public: 232 explicit PHI_iterator(PHINode *P) // begin iterator 233 : PHI(P), idx(0) {} 234 PHI_iterator(PHINode *P, bool) // end iterator 235 : PHI(P), idx(PHI->getNumIncomingValues()) {} 236 237 PHI_iterator &operator++() { ++idx; return *this; } 238 bool operator==(const PHI_iterator& x) const { return idx == x.idx; } 239 bool operator!=(const PHI_iterator& x) const { return !operator==(x); } 240 241 Value *getIncomingValue() { return PHI->getIncomingValue(idx); } 242 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } 243 }; 244 245 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 246 static PHI_iterator PHI_end(PhiT *PHI) { 247 return PHI_iterator(PHI, true); 248 } 249 250 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds 251 /// vector, set Info->NumPreds, and allocate space in Info->Preds. 252 static void FindPredecessorBlocks(BasicBlock *BB, 253 SmallVectorImpl<BasicBlock *> *Preds) { 254 // We can get our predecessor info by walking the pred_iterator list, 255 // but it is relatively slow. If we already have PHI nodes in this 256 // block, walk one of them to get the predecessor list instead. 257 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 258 Preds->append(SomePhi->block_begin(), SomePhi->block_end()); 259 } else { 260 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 261 Preds->push_back(*PI); 262 } 263 } 264 265 /// GetUndefVal - Get an undefined value of the same type as the value 266 /// being handled. 267 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { 268 return UndefValue::get(Updater->ProtoType); 269 } 270 271 /// CreateEmptyPHI - Create a new PHI instruction in the specified block. 272 /// Reserve space for the operands but do not fill them in yet. 273 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, 274 SSAUpdater *Updater) { 275 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, 276 Updater->ProtoName, &BB->front()); 277 return PHI; 278 } 279 280 /// AddPHIOperand - Add the specified value as an operand of the PHI for 281 /// the specified predecessor block. 282 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { 283 PHI->addIncoming(Val, Pred); 284 } 285 286 /// InstrIsPHI - Check if an instruction is a PHI. 287 /// 288 static PHINode *InstrIsPHI(Instruction *I) { 289 return dyn_cast<PHINode>(I); 290 } 291 292 /// ValueIsPHI - Check if a value is a PHI. 293 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { 294 return dyn_cast<PHINode>(Val); 295 } 296 297 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 298 /// operands, i.e., it was just added. 299 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { 300 PHINode *PHI = ValueIsPHI(Val, Updater); 301 if (PHI && PHI->getNumIncomingValues() == 0) 302 return PHI; 303 return nullptr; 304 } 305 306 /// GetPHIValue - For the specified PHI instruction, return the value 307 /// that it defines. 308 static Value *GetPHIValue(PHINode *PHI) { 309 return PHI; 310 } 311 }; 312 313 } // end namespace llvm 314 315 /// Check to see if AvailableVals has an entry for the specified BB and if so, 316 /// return it. If not, construct SSA form by first calculating the required 317 /// placement of PHIs and then inserting new PHIs where needed. 318 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { 319 AvailableValsTy &AvailableVals = getAvailableVals(AV); 320 if (Value *V = AvailableVals[BB]) 321 return V; 322 323 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); 324 return Impl.GetValue(BB); 325 } 326 327 //===----------------------------------------------------------------------===// 328 // LoadAndStorePromoter Implementation 329 //===----------------------------------------------------------------------===// 330 331 LoadAndStorePromoter:: 332 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, 333 SSAUpdater &S, StringRef BaseName) : SSA(S) { 334 if (Insts.empty()) return; 335 336 const Value *SomeVal; 337 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) 338 SomeVal = LI; 339 else 340 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); 341 342 if (BaseName.empty()) 343 BaseName = SomeVal->getName(); 344 SSA.Initialize(SomeVal->getType(), BaseName); 345 } 346 347 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) { 348 // First step: bucket up uses of the alloca by the block they occur in. 349 // This is important because we have to handle multiple defs/uses in a block 350 // ourselves: SSAUpdater is purely for cross-block references. 351 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; 352 353 for (Instruction *User : Insts) 354 UsesByBlock[User->getParent()].push_back(User); 355 356 // Okay, now we can iterate over all the blocks in the function with uses, 357 // processing them. Keep track of which loads are loading a live-in value. 358 // Walk the uses in the use-list order to be determinstic. 359 SmallVector<LoadInst *, 32> LiveInLoads; 360 DenseMap<Value *, Value *> ReplacedLoads; 361 362 for (Instruction *User : Insts) { 363 BasicBlock *BB = User->getParent(); 364 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; 365 366 // If this block has already been processed, ignore this repeat use. 367 if (BlockUses.empty()) continue; 368 369 // Okay, this is the first use in the block. If this block just has a 370 // single user in it, we can rewrite it trivially. 371 if (BlockUses.size() == 1) { 372 // If it is a store, it is a trivial def of the value in the block. 373 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 374 updateDebugInfo(SI); 375 SSA.AddAvailableValue(BB, SI->getOperand(0)); 376 } else 377 // Otherwise it is a load, queue it to rewrite as a live-in load. 378 LiveInLoads.push_back(cast<LoadInst>(User)); 379 BlockUses.clear(); 380 continue; 381 } 382 383 // Otherwise, check to see if this block is all loads. 384 bool HasStore = false; 385 for (Instruction *I : BlockUses) { 386 if (isa<StoreInst>(I)) { 387 HasStore = true; 388 break; 389 } 390 } 391 392 // If so, we can queue them all as live in loads. We don't have an 393 // efficient way to tell which on is first in the block and don't want to 394 // scan large blocks, so just add all loads as live ins. 395 if (!HasStore) { 396 for (Instruction *I : BlockUses) 397 LiveInLoads.push_back(cast<LoadInst>(I)); 398 BlockUses.clear(); 399 continue; 400 } 401 402 // Otherwise, we have mixed loads and stores (or just a bunch of stores). 403 // Since SSAUpdater is purely for cross-block values, we need to determine 404 // the order of these instructions in the block. If the first use in the 405 // block is a load, then it uses the live in value. The last store defines 406 // the live out value. We handle this by doing a linear scan of the block. 407 Value *StoredValue = nullptr; 408 for (Instruction &I : *BB) { 409 if (LoadInst *L = dyn_cast<LoadInst>(&I)) { 410 // If this is a load from an unrelated pointer, ignore it. 411 if (!isInstInList(L, Insts)) continue; 412 413 // If we haven't seen a store yet, this is a live in use, otherwise 414 // use the stored value. 415 if (StoredValue) { 416 replaceLoadWithValue(L, StoredValue); 417 L->replaceAllUsesWith(StoredValue); 418 ReplacedLoads[L] = StoredValue; 419 } else { 420 LiveInLoads.push_back(L); 421 } 422 continue; 423 } 424 425 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 426 // If this is a store to an unrelated pointer, ignore it. 427 if (!isInstInList(SI, Insts)) continue; 428 updateDebugInfo(SI); 429 430 // Remember that this is the active value in the block. 431 StoredValue = SI->getOperand(0); 432 } 433 } 434 435 // The last stored value that happened is the live-out for the block. 436 assert(StoredValue && "Already checked that there is a store in block"); 437 SSA.AddAvailableValue(BB, StoredValue); 438 BlockUses.clear(); 439 } 440 441 // Okay, now we rewrite all loads that use live-in values in the loop, 442 // inserting PHI nodes as necessary. 443 for (LoadInst *ALoad : LiveInLoads) { 444 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); 445 replaceLoadWithValue(ALoad, NewVal); 446 447 // Avoid assertions in unreachable code. 448 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); 449 ALoad->replaceAllUsesWith(NewVal); 450 ReplacedLoads[ALoad] = NewVal; 451 } 452 453 // Allow the client to do stuff before we start nuking things. 454 doExtraRewritesBeforeFinalDeletion(); 455 456 // Now that everything is rewritten, delete the old instructions from the 457 // function. They should all be dead now. 458 for (Instruction *User : Insts) { 459 // If this is a load that still has uses, then the load must have been added 460 // as a live value in the SSAUpdate data structure for a block (e.g. because 461 // the loaded value was stored later). In this case, we need to recursively 462 // propagate the updates until we get to the real value. 463 if (!User->use_empty()) { 464 Value *NewVal = ReplacedLoads[User]; 465 assert(NewVal && "not a replaced load?"); 466 467 // Propagate down to the ultimate replacee. The intermediately loads 468 // could theoretically already have been deleted, so we don't want to 469 // dereference the Value*'s. 470 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); 471 while (RLI != ReplacedLoads.end()) { 472 NewVal = RLI->second; 473 RLI = ReplacedLoads.find(NewVal); 474 } 475 476 replaceLoadWithValue(cast<LoadInst>(User), NewVal); 477 User->replaceAllUsesWith(NewVal); 478 } 479 480 instructionDeleted(User); 481 User->eraseFromParent(); 482 } 483 } 484 485 bool 486 LoadAndStorePromoter::isInstInList(Instruction *I, 487 const SmallVectorImpl<Instruction *> &Insts) 488 const { 489 return is_contained(Insts, I); 490 } 491