1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SSAUpdater class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/SSAUpdater.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/TinyPtrVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugLoc.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/Use.h" 27 #include "llvm/IR/Value.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "ssaupdater" 39 40 using AvailableValsTy = DenseMap<BasicBlock *, Value *>; 41 42 static AvailableValsTy &getAvailableVals(void *AV) { 43 return *static_cast<AvailableValsTy*>(AV); 44 } 45 46 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) 47 : InsertedPHIs(NewPHI) {} 48 49 SSAUpdater::~SSAUpdater() { 50 delete static_cast<AvailableValsTy*>(AV); 51 } 52 53 void SSAUpdater::Initialize(Type *Ty, StringRef Name) { 54 if (!AV) 55 AV = new AvailableValsTy(); 56 else 57 getAvailableVals(AV).clear(); 58 ProtoType = Ty; 59 ProtoName = std::string(Name); 60 } 61 62 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { 63 return getAvailableVals(AV).count(BB); 64 } 65 66 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const { 67 return getAvailableVals(AV).lookup(BB); 68 } 69 70 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { 71 assert(ProtoType && "Need to initialize SSAUpdater"); 72 assert(ProtoType == V->getType() && 73 "All rewritten values must have the same type"); 74 getAvailableVals(AV)[BB] = V; 75 } 76 77 static bool IsEquivalentPHI(PHINode *PHI, 78 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { 79 unsigned PHINumValues = PHI->getNumIncomingValues(); 80 if (PHINumValues != ValueMapping.size()) 81 return false; 82 83 // Scan the phi to see if it matches. 84 for (unsigned i = 0, e = PHINumValues; i != e; ++i) 85 if (ValueMapping[PHI->getIncomingBlock(i)] != 86 PHI->getIncomingValue(i)) { 87 return false; 88 } 89 90 return true; 91 } 92 93 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { 94 Value *Res = GetValueAtEndOfBlockInternal(BB); 95 return Res; 96 } 97 98 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { 99 // If there is no definition of the renamed variable in this block, just use 100 // GetValueAtEndOfBlock to do our work. 101 if (!HasValueForBlock(BB)) 102 return GetValueAtEndOfBlock(BB); 103 104 // Otherwise, we have the hard case. Get the live-in values for each 105 // predecessor. 106 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; 107 Value *SingularValue = nullptr; 108 109 // We can get our predecessor info by walking the pred_iterator list, but it 110 // is relatively slow. If we already have PHI nodes in this block, walk one 111 // of them to get the predecessor list instead. 112 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 113 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { 114 BasicBlock *PredBB = SomePhi->getIncomingBlock(i); 115 Value *PredVal = GetValueAtEndOfBlock(PredBB); 116 PredValues.push_back(std::make_pair(PredBB, PredVal)); 117 118 // Compute SingularValue. 119 if (i == 0) 120 SingularValue = PredVal; 121 else if (PredVal != SingularValue) 122 SingularValue = nullptr; 123 } 124 } else { 125 bool isFirstPred = true; 126 for (BasicBlock *PredBB : predecessors(BB)) { 127 Value *PredVal = GetValueAtEndOfBlock(PredBB); 128 PredValues.push_back(std::make_pair(PredBB, PredVal)); 129 130 // Compute SingularValue. 131 if (isFirstPred) { 132 SingularValue = PredVal; 133 isFirstPred = false; 134 } else if (PredVal != SingularValue) 135 SingularValue = nullptr; 136 } 137 } 138 139 // If there are no predecessors, just return undef. 140 if (PredValues.empty()) 141 return UndefValue::get(ProtoType); 142 143 // Otherwise, if all the merged values are the same, just use it. 144 if (SingularValue) 145 return SingularValue; 146 147 // Otherwise, we do need a PHI: check to see if we already have one available 148 // in this block that produces the right value. 149 if (isa<PHINode>(BB->begin())) { 150 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), 151 PredValues.end()); 152 for (PHINode &SomePHI : BB->phis()) { 153 if (IsEquivalentPHI(&SomePHI, ValueMapping)) 154 return &SomePHI; 155 } 156 } 157 158 // Ok, we have no way out, insert a new one now. 159 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), 160 ProtoName, &BB->front()); 161 162 // Fill in all the predecessors of the PHI. 163 for (const auto &PredValue : PredValues) 164 InsertedPHI->addIncoming(PredValue.second, PredValue.first); 165 166 // See if the PHI node can be merged to a single value. This can happen in 167 // loop cases when we get a PHI of itself and one other value. 168 if (Value *V = 169 SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) { 170 InsertedPHI->eraseFromParent(); 171 return V; 172 } 173 174 // Set the DebugLoc of the inserted PHI, if available. 175 DebugLoc DL; 176 if (const Instruction *I = BB->getFirstNonPHI()) 177 DL = I->getDebugLoc(); 178 InsertedPHI->setDebugLoc(DL); 179 180 // If the client wants to know about all new instructions, tell it. 181 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 182 183 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); 184 return InsertedPHI; 185 } 186 187 void SSAUpdater::RewriteUse(Use &U) { 188 Instruction *User = cast<Instruction>(U.getUser()); 189 190 Value *V; 191 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 192 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 193 else 194 V = GetValueInMiddleOfBlock(User->getParent()); 195 196 U.set(V); 197 } 198 199 void SSAUpdater::RewriteUseAfterInsertions(Use &U) { 200 Instruction *User = cast<Instruction>(U.getUser()); 201 202 Value *V; 203 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 204 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 205 else 206 V = GetValueAtEndOfBlock(User->getParent()); 207 208 U.set(V); 209 } 210 211 namespace llvm { 212 213 template<> 214 class SSAUpdaterTraits<SSAUpdater> { 215 public: 216 using BlkT = BasicBlock; 217 using ValT = Value *; 218 using PhiT = PHINode; 219 using BlkSucc_iterator = succ_iterator; 220 221 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } 222 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } 223 224 class PHI_iterator { 225 private: 226 PHINode *PHI; 227 unsigned idx; 228 229 public: 230 explicit PHI_iterator(PHINode *P) // begin iterator 231 : PHI(P), idx(0) {} 232 PHI_iterator(PHINode *P, bool) // end iterator 233 : PHI(P), idx(PHI->getNumIncomingValues()) {} 234 235 PHI_iterator &operator++() { ++idx; return *this; } 236 bool operator==(const PHI_iterator& x) const { return idx == x.idx; } 237 bool operator!=(const PHI_iterator& x) const { return !operator==(x); } 238 239 Value *getIncomingValue() { return PHI->getIncomingValue(idx); } 240 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } 241 }; 242 243 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 244 static PHI_iterator PHI_end(PhiT *PHI) { 245 return PHI_iterator(PHI, true); 246 } 247 248 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds 249 /// vector, set Info->NumPreds, and allocate space in Info->Preds. 250 static void FindPredecessorBlocks(BasicBlock *BB, 251 SmallVectorImpl<BasicBlock *> *Preds) { 252 // We can get our predecessor info by walking the pred_iterator list, 253 // but it is relatively slow. If we already have PHI nodes in this 254 // block, walk one of them to get the predecessor list instead. 255 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) 256 append_range(*Preds, SomePhi->blocks()); 257 else 258 append_range(*Preds, predecessors(BB)); 259 } 260 261 /// GetUndefVal - Get an undefined value of the same type as the value 262 /// being handled. 263 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { 264 return UndefValue::get(Updater->ProtoType); 265 } 266 267 /// CreateEmptyPHI - Create a new PHI instruction in the specified block. 268 /// Reserve space for the operands but do not fill them in yet. 269 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, 270 SSAUpdater *Updater) { 271 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, 272 Updater->ProtoName, &BB->front()); 273 return PHI; 274 } 275 276 /// AddPHIOperand - Add the specified value as an operand of the PHI for 277 /// the specified predecessor block. 278 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { 279 PHI->addIncoming(Val, Pred); 280 } 281 282 /// ValueIsPHI - Check if a value is a PHI. 283 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { 284 return dyn_cast<PHINode>(Val); 285 } 286 287 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 288 /// operands, i.e., it was just added. 289 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { 290 PHINode *PHI = ValueIsPHI(Val, Updater); 291 if (PHI && PHI->getNumIncomingValues() == 0) 292 return PHI; 293 return nullptr; 294 } 295 296 /// GetPHIValue - For the specified PHI instruction, return the value 297 /// that it defines. 298 static Value *GetPHIValue(PHINode *PHI) { 299 return PHI; 300 } 301 }; 302 303 } // end namespace llvm 304 305 /// Check to see if AvailableVals has an entry for the specified BB and if so, 306 /// return it. If not, construct SSA form by first calculating the required 307 /// placement of PHIs and then inserting new PHIs where needed. 308 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { 309 AvailableValsTy &AvailableVals = getAvailableVals(AV); 310 if (Value *V = AvailableVals[BB]) 311 return V; 312 313 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); 314 return Impl.GetValue(BB); 315 } 316 317 //===----------------------------------------------------------------------===// 318 // LoadAndStorePromoter Implementation 319 //===----------------------------------------------------------------------===// 320 321 LoadAndStorePromoter:: 322 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, 323 SSAUpdater &S, StringRef BaseName) : SSA(S) { 324 if (Insts.empty()) return; 325 326 const Value *SomeVal; 327 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) 328 SomeVal = LI; 329 else 330 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); 331 332 if (BaseName.empty()) 333 BaseName = SomeVal->getName(); 334 SSA.Initialize(SomeVal->getType(), BaseName); 335 } 336 337 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) { 338 // First step: bucket up uses of the alloca by the block they occur in. 339 // This is important because we have to handle multiple defs/uses in a block 340 // ourselves: SSAUpdater is purely for cross-block references. 341 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; 342 343 for (Instruction *User : Insts) 344 UsesByBlock[User->getParent()].push_back(User); 345 346 // Okay, now we can iterate over all the blocks in the function with uses, 347 // processing them. Keep track of which loads are loading a live-in value. 348 // Walk the uses in the use-list order to be determinstic. 349 SmallVector<LoadInst *, 32> LiveInLoads; 350 DenseMap<Value *, Value *> ReplacedLoads; 351 352 for (Instruction *User : Insts) { 353 BasicBlock *BB = User->getParent(); 354 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; 355 356 // If this block has already been processed, ignore this repeat use. 357 if (BlockUses.empty()) continue; 358 359 // Okay, this is the first use in the block. If this block just has a 360 // single user in it, we can rewrite it trivially. 361 if (BlockUses.size() == 1) { 362 // If it is a store, it is a trivial def of the value in the block. 363 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 364 updateDebugInfo(SI); 365 SSA.AddAvailableValue(BB, SI->getOperand(0)); 366 } else 367 // Otherwise it is a load, queue it to rewrite as a live-in load. 368 LiveInLoads.push_back(cast<LoadInst>(User)); 369 BlockUses.clear(); 370 continue; 371 } 372 373 // Otherwise, check to see if this block is all loads. 374 bool HasStore = false; 375 for (Instruction *I : BlockUses) { 376 if (isa<StoreInst>(I)) { 377 HasStore = true; 378 break; 379 } 380 } 381 382 // If so, we can queue them all as live in loads. We don't have an 383 // efficient way to tell which on is first in the block and don't want to 384 // scan large blocks, so just add all loads as live ins. 385 if (!HasStore) { 386 for (Instruction *I : BlockUses) 387 LiveInLoads.push_back(cast<LoadInst>(I)); 388 BlockUses.clear(); 389 continue; 390 } 391 392 // Otherwise, we have mixed loads and stores (or just a bunch of stores). 393 // Since SSAUpdater is purely for cross-block values, we need to determine 394 // the order of these instructions in the block. If the first use in the 395 // block is a load, then it uses the live in value. The last store defines 396 // the live out value. We handle this by doing a linear scan of the block. 397 Value *StoredValue = nullptr; 398 for (Instruction &I : *BB) { 399 if (LoadInst *L = dyn_cast<LoadInst>(&I)) { 400 // If this is a load from an unrelated pointer, ignore it. 401 if (!isInstInList(L, Insts)) continue; 402 403 // If we haven't seen a store yet, this is a live in use, otherwise 404 // use the stored value. 405 if (StoredValue) { 406 replaceLoadWithValue(L, StoredValue); 407 L->replaceAllUsesWith(StoredValue); 408 ReplacedLoads[L] = StoredValue; 409 } else { 410 LiveInLoads.push_back(L); 411 } 412 continue; 413 } 414 415 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 416 // If this is a store to an unrelated pointer, ignore it. 417 if (!isInstInList(SI, Insts)) continue; 418 updateDebugInfo(SI); 419 420 // Remember that this is the active value in the block. 421 StoredValue = SI->getOperand(0); 422 } 423 } 424 425 // The last stored value that happened is the live-out for the block. 426 assert(StoredValue && "Already checked that there is a store in block"); 427 SSA.AddAvailableValue(BB, StoredValue); 428 BlockUses.clear(); 429 } 430 431 // Okay, now we rewrite all loads that use live-in values in the loop, 432 // inserting PHI nodes as necessary. 433 for (LoadInst *ALoad : LiveInLoads) { 434 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); 435 replaceLoadWithValue(ALoad, NewVal); 436 437 // Avoid assertions in unreachable code. 438 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); 439 ALoad->replaceAllUsesWith(NewVal); 440 ReplacedLoads[ALoad] = NewVal; 441 } 442 443 // Allow the client to do stuff before we start nuking things. 444 doExtraRewritesBeforeFinalDeletion(); 445 446 // Now that everything is rewritten, delete the old instructions from the 447 // function. They should all be dead now. 448 for (Instruction *User : Insts) { 449 if (!shouldDelete(User)) 450 continue; 451 452 // If this is a load that still has uses, then the load must have been added 453 // as a live value in the SSAUpdate data structure for a block (e.g. because 454 // the loaded value was stored later). In this case, we need to recursively 455 // propagate the updates until we get to the real value. 456 if (!User->use_empty()) { 457 Value *NewVal = ReplacedLoads[User]; 458 assert(NewVal && "not a replaced load?"); 459 460 // Propagate down to the ultimate replacee. The intermediately loads 461 // could theoretically already have been deleted, so we don't want to 462 // dereference the Value*'s. 463 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); 464 while (RLI != ReplacedLoads.end()) { 465 NewVal = RLI->second; 466 RLI = ReplacedLoads.find(NewVal); 467 } 468 469 replaceLoadWithValue(cast<LoadInst>(User), NewVal); 470 User->replaceAllUsesWith(NewVal); 471 } 472 473 instructionDeleted(User); 474 User->eraseFromParent(); 475 } 476 } 477 478 bool 479 LoadAndStorePromoter::isInstInList(Instruction *I, 480 const SmallVectorImpl<Instruction *> &Insts) 481 const { 482 return is_contained(Insts, I); 483 } 484