1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SSAUpdater class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/SSAUpdater.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/TinyPtrVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/DebugLoc.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Use.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "ssaupdater" 39 40 using AvailableValsTy = DenseMap<BasicBlock *, Value *>; 41 42 static AvailableValsTy &getAvailableVals(void *AV) { 43 return *static_cast<AvailableValsTy*>(AV); 44 } 45 46 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) 47 : InsertedPHIs(NewPHI) {} 48 49 SSAUpdater::~SSAUpdater() { 50 delete static_cast<AvailableValsTy*>(AV); 51 } 52 53 void SSAUpdater::Initialize(Type *Ty, StringRef Name) { 54 if (!AV) 55 AV = new AvailableValsTy(); 56 else 57 getAvailableVals(AV).clear(); 58 ProtoType = Ty; 59 ProtoName = std::string(Name); 60 } 61 62 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { 63 return getAvailableVals(AV).count(BB); 64 } 65 66 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const { 67 return getAvailableVals(AV).lookup(BB); 68 } 69 70 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { 71 assert(ProtoType && "Need to initialize SSAUpdater"); 72 assert(ProtoType == V->getType() && 73 "All rewritten values must have the same type"); 74 getAvailableVals(AV)[BB] = V; 75 } 76 77 static bool IsEquivalentPHI(PHINode *PHI, 78 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { 79 unsigned PHINumValues = PHI->getNumIncomingValues(); 80 if (PHINumValues != ValueMapping.size()) 81 return false; 82 83 // Scan the phi to see if it matches. 84 for (unsigned i = 0, e = PHINumValues; i != e; ++i) 85 if (ValueMapping[PHI->getIncomingBlock(i)] != 86 PHI->getIncomingValue(i)) { 87 return false; 88 } 89 90 return true; 91 } 92 93 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { 94 Value *Res = GetValueAtEndOfBlockInternal(BB); 95 return Res; 96 } 97 98 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { 99 // If there is no definition of the renamed variable in this block, just use 100 // GetValueAtEndOfBlock to do our work. 101 if (!HasValueForBlock(BB)) 102 return GetValueAtEndOfBlock(BB); 103 104 // Otherwise, we have the hard case. Get the live-in values for each 105 // predecessor. 106 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; 107 Value *SingularValue = nullptr; 108 109 // We can get our predecessor info by walking the pred_iterator list, but it 110 // is relatively slow. If we already have PHI nodes in this block, walk one 111 // of them to get the predecessor list instead. 112 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 113 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { 114 BasicBlock *PredBB = SomePhi->getIncomingBlock(i); 115 Value *PredVal = GetValueAtEndOfBlock(PredBB); 116 PredValues.push_back(std::make_pair(PredBB, PredVal)); 117 118 // Compute SingularValue. 119 if (i == 0) 120 SingularValue = PredVal; 121 else if (PredVal != SingularValue) 122 SingularValue = nullptr; 123 } 124 } else { 125 bool isFirstPred = true; 126 for (BasicBlock *PredBB : predecessors(BB)) { 127 Value *PredVal = GetValueAtEndOfBlock(PredBB); 128 PredValues.push_back(std::make_pair(PredBB, PredVal)); 129 130 // Compute SingularValue. 131 if (isFirstPred) { 132 SingularValue = PredVal; 133 isFirstPred = false; 134 } else if (PredVal != SingularValue) 135 SingularValue = nullptr; 136 } 137 } 138 139 // If there are no predecessors, just return undef. 140 if (PredValues.empty()) 141 return UndefValue::get(ProtoType); 142 143 // Otherwise, if all the merged values are the same, just use it. 144 if (SingularValue) 145 return SingularValue; 146 147 // Otherwise, we do need a PHI: check to see if we already have one available 148 // in this block that produces the right value. 149 if (isa<PHINode>(BB->begin())) { 150 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), 151 PredValues.end()); 152 for (PHINode &SomePHI : BB->phis()) { 153 if (IsEquivalentPHI(&SomePHI, ValueMapping)) 154 return &SomePHI; 155 } 156 } 157 158 // Ok, we have no way out, insert a new one now. 159 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), 160 ProtoName, &BB->front()); 161 162 // Fill in all the predecessors of the PHI. 163 for (const auto &PredValue : PredValues) 164 InsertedPHI->addIncoming(PredValue.second, PredValue.first); 165 166 // See if the PHI node can be merged to a single value. This can happen in 167 // loop cases when we get a PHI of itself and one other value. 168 if (Value *V = 169 simplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) { 170 InsertedPHI->eraseFromParent(); 171 return V; 172 } 173 174 // Set the DebugLoc of the inserted PHI, if available. 175 DebugLoc DL; 176 if (const Instruction *I = BB->getFirstNonPHI()) 177 DL = I->getDebugLoc(); 178 InsertedPHI->setDebugLoc(DL); 179 180 // If the client wants to know about all new instructions, tell it. 181 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 182 183 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); 184 return InsertedPHI; 185 } 186 187 void SSAUpdater::RewriteUse(Use &U) { 188 Instruction *User = cast<Instruction>(U.getUser()); 189 190 Value *V; 191 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 192 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 193 else 194 V = GetValueInMiddleOfBlock(User->getParent()); 195 196 U.set(V); 197 } 198 199 void SSAUpdater::UpdateDebugValues(Instruction *I) { 200 SmallVector<DbgValueInst *, 4> DbgValues; 201 llvm::findDbgValues(DbgValues, I); 202 for (auto &DbgValue : DbgValues) { 203 if (DbgValue->getParent() == I->getParent()) 204 continue; 205 UpdateDebugValue(I, DbgValue); 206 } 207 } 208 209 void SSAUpdater::UpdateDebugValues(Instruction *I, 210 SmallVectorImpl<DbgValueInst *> &DbgValues) { 211 for (auto &DbgValue : DbgValues) { 212 UpdateDebugValue(I, DbgValue); 213 } 214 } 215 216 void SSAUpdater::UpdateDebugValue(Instruction *I, DbgValueInst *DbgValue) { 217 BasicBlock *UserBB = DbgValue->getParent(); 218 if (HasValueForBlock(UserBB)) { 219 Value *NewVal = GetValueAtEndOfBlock(UserBB); 220 DbgValue->replaceVariableLocationOp(I, NewVal); 221 } 222 else 223 DbgValue->setKillLocation(); 224 } 225 226 void SSAUpdater::RewriteUseAfterInsertions(Use &U) { 227 Instruction *User = cast<Instruction>(U.getUser()); 228 229 Value *V; 230 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 231 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 232 else 233 V = GetValueAtEndOfBlock(User->getParent()); 234 235 U.set(V); 236 } 237 238 namespace llvm { 239 240 template<> 241 class SSAUpdaterTraits<SSAUpdater> { 242 public: 243 using BlkT = BasicBlock; 244 using ValT = Value *; 245 using PhiT = PHINode; 246 using BlkSucc_iterator = succ_iterator; 247 248 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } 249 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } 250 251 class PHI_iterator { 252 private: 253 PHINode *PHI; 254 unsigned idx; 255 256 public: 257 explicit PHI_iterator(PHINode *P) // begin iterator 258 : PHI(P), idx(0) {} 259 PHI_iterator(PHINode *P, bool) // end iterator 260 : PHI(P), idx(PHI->getNumIncomingValues()) {} 261 262 PHI_iterator &operator++() { ++idx; return *this; } 263 bool operator==(const PHI_iterator& x) const { return idx == x.idx; } 264 bool operator!=(const PHI_iterator& x) const { return !operator==(x); } 265 266 Value *getIncomingValue() { return PHI->getIncomingValue(idx); } 267 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } 268 }; 269 270 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 271 static PHI_iterator PHI_end(PhiT *PHI) { 272 return PHI_iterator(PHI, true); 273 } 274 275 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds 276 /// vector, set Info->NumPreds, and allocate space in Info->Preds. 277 static void FindPredecessorBlocks(BasicBlock *BB, 278 SmallVectorImpl<BasicBlock *> *Preds) { 279 // We can get our predecessor info by walking the pred_iterator list, 280 // but it is relatively slow. If we already have PHI nodes in this 281 // block, walk one of them to get the predecessor list instead. 282 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) 283 append_range(*Preds, SomePhi->blocks()); 284 else 285 append_range(*Preds, predecessors(BB)); 286 } 287 288 /// GetUndefVal - Get an undefined value of the same type as the value 289 /// being handled. 290 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { 291 return UndefValue::get(Updater->ProtoType); 292 } 293 294 /// CreateEmptyPHI - Create a new PHI instruction in the specified block. 295 /// Reserve space for the operands but do not fill them in yet. 296 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, 297 SSAUpdater *Updater) { 298 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, 299 Updater->ProtoName, &BB->front()); 300 return PHI; 301 } 302 303 /// AddPHIOperand - Add the specified value as an operand of the PHI for 304 /// the specified predecessor block. 305 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { 306 PHI->addIncoming(Val, Pred); 307 } 308 309 /// ValueIsPHI - Check if a value is a PHI. 310 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { 311 return dyn_cast<PHINode>(Val); 312 } 313 314 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 315 /// operands, i.e., it was just added. 316 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { 317 PHINode *PHI = ValueIsPHI(Val, Updater); 318 if (PHI && PHI->getNumIncomingValues() == 0) 319 return PHI; 320 return nullptr; 321 } 322 323 /// GetPHIValue - For the specified PHI instruction, return the value 324 /// that it defines. 325 static Value *GetPHIValue(PHINode *PHI) { 326 return PHI; 327 } 328 }; 329 330 } // end namespace llvm 331 332 /// Check to see if AvailableVals has an entry for the specified BB and if so, 333 /// return it. If not, construct SSA form by first calculating the required 334 /// placement of PHIs and then inserting new PHIs where needed. 335 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { 336 AvailableValsTy &AvailableVals = getAvailableVals(AV); 337 if (Value *V = AvailableVals[BB]) 338 return V; 339 340 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); 341 return Impl.GetValue(BB); 342 } 343 344 //===----------------------------------------------------------------------===// 345 // LoadAndStorePromoter Implementation 346 //===----------------------------------------------------------------------===// 347 348 LoadAndStorePromoter:: 349 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, 350 SSAUpdater &S, StringRef BaseName) : SSA(S) { 351 if (Insts.empty()) return; 352 353 const Value *SomeVal; 354 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) 355 SomeVal = LI; 356 else 357 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); 358 359 if (BaseName.empty()) 360 BaseName = SomeVal->getName(); 361 SSA.Initialize(SomeVal->getType(), BaseName); 362 } 363 364 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) { 365 // First step: bucket up uses of the alloca by the block they occur in. 366 // This is important because we have to handle multiple defs/uses in a block 367 // ourselves: SSAUpdater is purely for cross-block references. 368 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; 369 370 for (Instruction *User : Insts) 371 UsesByBlock[User->getParent()].push_back(User); 372 373 // Okay, now we can iterate over all the blocks in the function with uses, 374 // processing them. Keep track of which loads are loading a live-in value. 375 // Walk the uses in the use-list order to be determinstic. 376 SmallVector<LoadInst *, 32> LiveInLoads; 377 DenseMap<Value *, Value *> ReplacedLoads; 378 379 for (Instruction *User : Insts) { 380 BasicBlock *BB = User->getParent(); 381 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; 382 383 // If this block has already been processed, ignore this repeat use. 384 if (BlockUses.empty()) continue; 385 386 // Okay, this is the first use in the block. If this block just has a 387 // single user in it, we can rewrite it trivially. 388 if (BlockUses.size() == 1) { 389 // If it is a store, it is a trivial def of the value in the block. 390 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 391 updateDebugInfo(SI); 392 SSA.AddAvailableValue(BB, SI->getOperand(0)); 393 } else 394 // Otherwise it is a load, queue it to rewrite as a live-in load. 395 LiveInLoads.push_back(cast<LoadInst>(User)); 396 BlockUses.clear(); 397 continue; 398 } 399 400 // Otherwise, check to see if this block is all loads. 401 bool HasStore = false; 402 for (Instruction *I : BlockUses) { 403 if (isa<StoreInst>(I)) { 404 HasStore = true; 405 break; 406 } 407 } 408 409 // If so, we can queue them all as live in loads. We don't have an 410 // efficient way to tell which on is first in the block and don't want to 411 // scan large blocks, so just add all loads as live ins. 412 if (!HasStore) { 413 for (Instruction *I : BlockUses) 414 LiveInLoads.push_back(cast<LoadInst>(I)); 415 BlockUses.clear(); 416 continue; 417 } 418 419 // Otherwise, we have mixed loads and stores (or just a bunch of stores). 420 // Since SSAUpdater is purely for cross-block values, we need to determine 421 // the order of these instructions in the block. If the first use in the 422 // block is a load, then it uses the live in value. The last store defines 423 // the live out value. We handle this by doing a linear scan of the block. 424 Value *StoredValue = nullptr; 425 for (Instruction &I : *BB) { 426 if (LoadInst *L = dyn_cast<LoadInst>(&I)) { 427 // If this is a load from an unrelated pointer, ignore it. 428 if (!isInstInList(L, Insts)) continue; 429 430 // If we haven't seen a store yet, this is a live in use, otherwise 431 // use the stored value. 432 if (StoredValue) { 433 replaceLoadWithValue(L, StoredValue); 434 L->replaceAllUsesWith(StoredValue); 435 ReplacedLoads[L] = StoredValue; 436 } else { 437 LiveInLoads.push_back(L); 438 } 439 continue; 440 } 441 442 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 443 // If this is a store to an unrelated pointer, ignore it. 444 if (!isInstInList(SI, Insts)) continue; 445 updateDebugInfo(SI); 446 447 // Remember that this is the active value in the block. 448 StoredValue = SI->getOperand(0); 449 } 450 } 451 452 // The last stored value that happened is the live-out for the block. 453 assert(StoredValue && "Already checked that there is a store in block"); 454 SSA.AddAvailableValue(BB, StoredValue); 455 BlockUses.clear(); 456 } 457 458 // Okay, now we rewrite all loads that use live-in values in the loop, 459 // inserting PHI nodes as necessary. 460 for (LoadInst *ALoad : LiveInLoads) { 461 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); 462 replaceLoadWithValue(ALoad, NewVal); 463 464 // Avoid assertions in unreachable code. 465 if (NewVal == ALoad) NewVal = PoisonValue::get(NewVal->getType()); 466 ALoad->replaceAllUsesWith(NewVal); 467 ReplacedLoads[ALoad] = NewVal; 468 } 469 470 // Allow the client to do stuff before we start nuking things. 471 doExtraRewritesBeforeFinalDeletion(); 472 473 // Now that everything is rewritten, delete the old instructions from the 474 // function. They should all be dead now. 475 for (Instruction *User : Insts) { 476 if (!shouldDelete(User)) 477 continue; 478 479 // If this is a load that still has uses, then the load must have been added 480 // as a live value in the SSAUpdate data structure for a block (e.g. because 481 // the loaded value was stored later). In this case, we need to recursively 482 // propagate the updates until we get to the real value. 483 if (!User->use_empty()) { 484 Value *NewVal = ReplacedLoads[User]; 485 assert(NewVal && "not a replaced load?"); 486 487 // Propagate down to the ultimate replacee. The intermediately loads 488 // could theoretically already have been deleted, so we don't want to 489 // dereference the Value*'s. 490 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); 491 while (RLI != ReplacedLoads.end()) { 492 NewVal = RLI->second; 493 RLI = ReplacedLoads.find(NewVal); 494 } 495 496 replaceLoadWithValue(cast<LoadInst>(User), NewVal); 497 User->replaceAllUsesWith(NewVal); 498 } 499 500 instructionDeleted(User); 501 User->eraseFromParent(); 502 } 503 } 504 505 bool 506 LoadAndStorePromoter::isInstInList(Instruction *I, 507 const SmallVectorImpl<Instruction *> &Insts) 508 const { 509 return is_contained(Insts, I); 510 } 511