1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SSAUpdater class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/SSAUpdater.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/TinyPtrVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugLoc.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/Use.h" 27 #include "llvm/IR/Value.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 32 #include <cassert> 33 #include <utility> 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "ssaupdater" 38 39 using AvailableValsTy = DenseMap<BasicBlock *, Value *>; 40 41 static AvailableValsTy &getAvailableVals(void *AV) { 42 return *static_cast<AvailableValsTy*>(AV); 43 } 44 45 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) 46 : InsertedPHIs(NewPHI) {} 47 48 SSAUpdater::~SSAUpdater() { 49 delete static_cast<AvailableValsTy*>(AV); 50 } 51 52 void SSAUpdater::Initialize(Type *Ty, StringRef Name) { 53 if (!AV) 54 AV = new AvailableValsTy(); 55 else 56 getAvailableVals(AV).clear(); 57 ProtoType = Ty; 58 ProtoName = std::string(Name); 59 } 60 61 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { 62 return getAvailableVals(AV).count(BB); 63 } 64 65 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const { 66 return getAvailableVals(AV).lookup(BB); 67 } 68 69 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { 70 assert(ProtoType && "Need to initialize SSAUpdater"); 71 assert(ProtoType == V->getType() && 72 "All rewritten values must have the same type"); 73 getAvailableVals(AV)[BB] = V; 74 } 75 76 static bool IsEquivalentPHI(PHINode *PHI, 77 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { 78 unsigned PHINumValues = PHI->getNumIncomingValues(); 79 if (PHINumValues != ValueMapping.size()) 80 return false; 81 82 // Scan the phi to see if it matches. 83 for (unsigned i = 0, e = PHINumValues; i != e; ++i) 84 if (ValueMapping[PHI->getIncomingBlock(i)] != 85 PHI->getIncomingValue(i)) { 86 return false; 87 } 88 89 return true; 90 } 91 92 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { 93 Value *Res = GetValueAtEndOfBlockInternal(BB); 94 return Res; 95 } 96 97 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { 98 // If there is no definition of the renamed variable in this block, just use 99 // GetValueAtEndOfBlock to do our work. 100 if (!HasValueForBlock(BB)) 101 return GetValueAtEndOfBlock(BB); 102 103 // Otherwise, we have the hard case. Get the live-in values for each 104 // predecessor. 105 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; 106 Value *SingularValue = nullptr; 107 108 // We can get our predecessor info by walking the pred_iterator list, but it 109 // is relatively slow. If we already have PHI nodes in this block, walk one 110 // of them to get the predecessor list instead. 111 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 112 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { 113 BasicBlock *PredBB = SomePhi->getIncomingBlock(i); 114 Value *PredVal = GetValueAtEndOfBlock(PredBB); 115 PredValues.push_back(std::make_pair(PredBB, PredVal)); 116 117 // Compute SingularValue. 118 if (i == 0) 119 SingularValue = PredVal; 120 else if (PredVal != SingularValue) 121 SingularValue = nullptr; 122 } 123 } else { 124 bool isFirstPred = true; 125 for (BasicBlock *PredBB : predecessors(BB)) { 126 Value *PredVal = GetValueAtEndOfBlock(PredBB); 127 PredValues.push_back(std::make_pair(PredBB, PredVal)); 128 129 // Compute SingularValue. 130 if (isFirstPred) { 131 SingularValue = PredVal; 132 isFirstPred = false; 133 } else if (PredVal != SingularValue) 134 SingularValue = nullptr; 135 } 136 } 137 138 // If there are no predecessors, just return undef. 139 if (PredValues.empty()) 140 return UndefValue::get(ProtoType); 141 142 // Otherwise, if all the merged values are the same, just use it. 143 if (SingularValue) 144 return SingularValue; 145 146 // Otherwise, we do need a PHI: check to see if we already have one available 147 // in this block that produces the right value. 148 if (isa<PHINode>(BB->begin())) { 149 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), 150 PredValues.end()); 151 for (PHINode &SomePHI : BB->phis()) { 152 if (IsEquivalentPHI(&SomePHI, ValueMapping)) 153 return &SomePHI; 154 } 155 } 156 157 // Ok, we have no way out, insert a new one now. 158 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), 159 ProtoName, &BB->front()); 160 161 // Fill in all the predecessors of the PHI. 162 for (const auto &PredValue : PredValues) 163 InsertedPHI->addIncoming(PredValue.second, PredValue.first); 164 165 // See if the PHI node can be merged to a single value. This can happen in 166 // loop cases when we get a PHI of itself and one other value. 167 if (Value *V = 168 simplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) { 169 InsertedPHI->eraseFromParent(); 170 return V; 171 } 172 173 // Set the DebugLoc of the inserted PHI, if available. 174 DebugLoc DL; 175 if (const Instruction *I = BB->getFirstNonPHI()) 176 DL = I->getDebugLoc(); 177 InsertedPHI->setDebugLoc(DL); 178 179 // If the client wants to know about all new instructions, tell it. 180 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 181 182 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); 183 return InsertedPHI; 184 } 185 186 void SSAUpdater::RewriteUse(Use &U) { 187 Instruction *User = cast<Instruction>(U.getUser()); 188 189 Value *V; 190 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 191 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 192 else 193 V = GetValueInMiddleOfBlock(User->getParent()); 194 195 U.set(V); 196 } 197 198 void SSAUpdater::RewriteUseAfterInsertions(Use &U) { 199 Instruction *User = cast<Instruction>(U.getUser()); 200 201 Value *V; 202 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 203 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 204 else 205 V = GetValueAtEndOfBlock(User->getParent()); 206 207 U.set(V); 208 } 209 210 namespace llvm { 211 212 template<> 213 class SSAUpdaterTraits<SSAUpdater> { 214 public: 215 using BlkT = BasicBlock; 216 using ValT = Value *; 217 using PhiT = PHINode; 218 using BlkSucc_iterator = succ_iterator; 219 220 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } 221 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } 222 223 class PHI_iterator { 224 private: 225 PHINode *PHI; 226 unsigned idx; 227 228 public: 229 explicit PHI_iterator(PHINode *P) // begin iterator 230 : PHI(P), idx(0) {} 231 PHI_iterator(PHINode *P, bool) // end iterator 232 : PHI(P), idx(PHI->getNumIncomingValues()) {} 233 234 PHI_iterator &operator++() { ++idx; return *this; } 235 bool operator==(const PHI_iterator& x) const { return idx == x.idx; } 236 bool operator!=(const PHI_iterator& x) const { return !operator==(x); } 237 238 Value *getIncomingValue() { return PHI->getIncomingValue(idx); } 239 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } 240 }; 241 242 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 243 static PHI_iterator PHI_end(PhiT *PHI) { 244 return PHI_iterator(PHI, true); 245 } 246 247 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds 248 /// vector, set Info->NumPreds, and allocate space in Info->Preds. 249 static void FindPredecessorBlocks(BasicBlock *BB, 250 SmallVectorImpl<BasicBlock *> *Preds) { 251 // We can get our predecessor info by walking the pred_iterator list, 252 // but it is relatively slow. If we already have PHI nodes in this 253 // block, walk one of them to get the predecessor list instead. 254 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) 255 append_range(*Preds, SomePhi->blocks()); 256 else 257 append_range(*Preds, predecessors(BB)); 258 } 259 260 /// GetUndefVal - Get an undefined value of the same type as the value 261 /// being handled. 262 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { 263 return UndefValue::get(Updater->ProtoType); 264 } 265 266 /// CreateEmptyPHI - Create a new PHI instruction in the specified block. 267 /// Reserve space for the operands but do not fill them in yet. 268 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, 269 SSAUpdater *Updater) { 270 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, 271 Updater->ProtoName, &BB->front()); 272 return PHI; 273 } 274 275 /// AddPHIOperand - Add the specified value as an operand of the PHI for 276 /// the specified predecessor block. 277 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { 278 PHI->addIncoming(Val, Pred); 279 } 280 281 /// ValueIsPHI - Check if a value is a PHI. 282 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { 283 return dyn_cast<PHINode>(Val); 284 } 285 286 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 287 /// operands, i.e., it was just added. 288 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { 289 PHINode *PHI = ValueIsPHI(Val, Updater); 290 if (PHI && PHI->getNumIncomingValues() == 0) 291 return PHI; 292 return nullptr; 293 } 294 295 /// GetPHIValue - For the specified PHI instruction, return the value 296 /// that it defines. 297 static Value *GetPHIValue(PHINode *PHI) { 298 return PHI; 299 } 300 }; 301 302 } // end namespace llvm 303 304 /// Check to see if AvailableVals has an entry for the specified BB and if so, 305 /// return it. If not, construct SSA form by first calculating the required 306 /// placement of PHIs and then inserting new PHIs where needed. 307 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { 308 AvailableValsTy &AvailableVals = getAvailableVals(AV); 309 if (Value *V = AvailableVals[BB]) 310 return V; 311 312 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); 313 return Impl.GetValue(BB); 314 } 315 316 //===----------------------------------------------------------------------===// 317 // LoadAndStorePromoter Implementation 318 //===----------------------------------------------------------------------===// 319 320 LoadAndStorePromoter:: 321 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, 322 SSAUpdater &S, StringRef BaseName) : SSA(S) { 323 if (Insts.empty()) return; 324 325 const Value *SomeVal; 326 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) 327 SomeVal = LI; 328 else 329 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); 330 331 if (BaseName.empty()) 332 BaseName = SomeVal->getName(); 333 SSA.Initialize(SomeVal->getType(), BaseName); 334 } 335 336 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) { 337 // First step: bucket up uses of the alloca by the block they occur in. 338 // This is important because we have to handle multiple defs/uses in a block 339 // ourselves: SSAUpdater is purely for cross-block references. 340 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; 341 342 for (Instruction *User : Insts) 343 UsesByBlock[User->getParent()].push_back(User); 344 345 // Okay, now we can iterate over all the blocks in the function with uses, 346 // processing them. Keep track of which loads are loading a live-in value. 347 // Walk the uses in the use-list order to be determinstic. 348 SmallVector<LoadInst *, 32> LiveInLoads; 349 DenseMap<Value *, Value *> ReplacedLoads; 350 351 for (Instruction *User : Insts) { 352 BasicBlock *BB = User->getParent(); 353 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; 354 355 // If this block has already been processed, ignore this repeat use. 356 if (BlockUses.empty()) continue; 357 358 // Okay, this is the first use in the block. If this block just has a 359 // single user in it, we can rewrite it trivially. 360 if (BlockUses.size() == 1) { 361 // If it is a store, it is a trivial def of the value in the block. 362 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 363 updateDebugInfo(SI); 364 SSA.AddAvailableValue(BB, SI->getOperand(0)); 365 } else 366 // Otherwise it is a load, queue it to rewrite as a live-in load. 367 LiveInLoads.push_back(cast<LoadInst>(User)); 368 BlockUses.clear(); 369 continue; 370 } 371 372 // Otherwise, check to see if this block is all loads. 373 bool HasStore = false; 374 for (Instruction *I : BlockUses) { 375 if (isa<StoreInst>(I)) { 376 HasStore = true; 377 break; 378 } 379 } 380 381 // If so, we can queue them all as live in loads. We don't have an 382 // efficient way to tell which on is first in the block and don't want to 383 // scan large blocks, so just add all loads as live ins. 384 if (!HasStore) { 385 for (Instruction *I : BlockUses) 386 LiveInLoads.push_back(cast<LoadInst>(I)); 387 BlockUses.clear(); 388 continue; 389 } 390 391 // Otherwise, we have mixed loads and stores (or just a bunch of stores). 392 // Since SSAUpdater is purely for cross-block values, we need to determine 393 // the order of these instructions in the block. If the first use in the 394 // block is a load, then it uses the live in value. The last store defines 395 // the live out value. We handle this by doing a linear scan of the block. 396 Value *StoredValue = nullptr; 397 for (Instruction &I : *BB) { 398 if (LoadInst *L = dyn_cast<LoadInst>(&I)) { 399 // If this is a load from an unrelated pointer, ignore it. 400 if (!isInstInList(L, Insts)) continue; 401 402 // If we haven't seen a store yet, this is a live in use, otherwise 403 // use the stored value. 404 if (StoredValue) { 405 replaceLoadWithValue(L, StoredValue); 406 L->replaceAllUsesWith(StoredValue); 407 ReplacedLoads[L] = StoredValue; 408 } else { 409 LiveInLoads.push_back(L); 410 } 411 continue; 412 } 413 414 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 415 // If this is a store to an unrelated pointer, ignore it. 416 if (!isInstInList(SI, Insts)) continue; 417 updateDebugInfo(SI); 418 419 // Remember that this is the active value in the block. 420 StoredValue = SI->getOperand(0); 421 } 422 } 423 424 // The last stored value that happened is the live-out for the block. 425 assert(StoredValue && "Already checked that there is a store in block"); 426 SSA.AddAvailableValue(BB, StoredValue); 427 BlockUses.clear(); 428 } 429 430 // Okay, now we rewrite all loads that use live-in values in the loop, 431 // inserting PHI nodes as necessary. 432 for (LoadInst *ALoad : LiveInLoads) { 433 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); 434 replaceLoadWithValue(ALoad, NewVal); 435 436 // Avoid assertions in unreachable code. 437 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); 438 ALoad->replaceAllUsesWith(NewVal); 439 ReplacedLoads[ALoad] = NewVal; 440 } 441 442 // Allow the client to do stuff before we start nuking things. 443 doExtraRewritesBeforeFinalDeletion(); 444 445 // Now that everything is rewritten, delete the old instructions from the 446 // function. They should all be dead now. 447 for (Instruction *User : Insts) { 448 if (!shouldDelete(User)) 449 continue; 450 451 // If this is a load that still has uses, then the load must have been added 452 // as a live value in the SSAUpdate data structure for a block (e.g. because 453 // the loaded value was stored later). In this case, we need to recursively 454 // propagate the updates until we get to the real value. 455 if (!User->use_empty()) { 456 Value *NewVal = ReplacedLoads[User]; 457 assert(NewVal && "not a replaced load?"); 458 459 // Propagate down to the ultimate replacee. The intermediately loads 460 // could theoretically already have been deleted, so we don't want to 461 // dereference the Value*'s. 462 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); 463 while (RLI != ReplacedLoads.end()) { 464 NewVal = RLI->second; 465 RLI = ReplacedLoads.find(NewVal); 466 } 467 468 replaceLoadWithValue(cast<LoadInst>(User), NewVal); 469 User->replaceAllUsesWith(NewVal); 470 } 471 472 instructionDeleted(User); 473 User->eraseFromParent(); 474 } 475 } 476 477 bool 478 LoadAndStorePromoter::isInstInList(Instruction *I, 479 const SmallVectorImpl<Instruction *> &Insts) 480 const { 481 return is_contained(Insts, I); 482 } 483