1 //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements the Sparse Conditional Constant Propagation (SCCP) 11 // utility. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SCCPSolver.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/ValueLattice.h" 19 #include "llvm/IR/InstVisitor.h" 20 #include "llvm/Support/Casting.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <cassert> 25 #include <utility> 26 #include <vector> 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "sccp" 31 32 // The maximum number of range extensions allowed for operations requiring 33 // widening. 34 static const unsigned MaxNumRangeExtensions = 10; 35 36 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions. 37 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() { 38 return ValueLatticeElement::MergeOptions().setMaxWidenSteps( 39 MaxNumRangeExtensions); 40 } 41 42 namespace { 43 44 // Helper to check if \p LV is either a constant or a constant 45 // range with a single element. This should cover exactly the same cases as the 46 // old ValueLatticeElement::isConstant() and is intended to be used in the 47 // transition to ValueLatticeElement. 48 bool isConstant(const ValueLatticeElement &LV) { 49 return LV.isConstant() || 50 (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); 51 } 52 53 // Helper to check if \p LV is either overdefined or a constant range with more 54 // than a single element. This should cover exactly the same cases as the old 55 // ValueLatticeElement::isOverdefined() and is intended to be used in the 56 // transition to ValueLatticeElement. 57 bool isOverdefined(const ValueLatticeElement &LV) { 58 return !LV.isUnknownOrUndef() && !isConstant(LV); 59 } 60 61 } // namespace 62 63 namespace llvm { 64 65 /// Helper class for SCCPSolver. This implements the instruction visitor and 66 /// holds all the state. 67 class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> { 68 const DataLayout &DL; 69 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 70 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. 71 DenseMap<Value *, ValueLatticeElement> 72 ValueState; // The state each value is in. 73 74 /// StructValueState - This maintains ValueState for values that have 75 /// StructType, for example for formal arguments, calls, insertelement, etc. 76 DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState; 77 78 /// GlobalValue - If we are tracking any values for the contents of a global 79 /// variable, we keep a mapping from the constant accessor to the element of 80 /// the global, to the currently known value. If the value becomes 81 /// overdefined, it's entry is simply removed from this map. 82 DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals; 83 84 /// TrackedRetVals - If we are tracking arguments into and the return 85 /// value out of a function, it will have an entry in this map, indicating 86 /// what the known return value for the function is. 87 MapVector<Function *, ValueLatticeElement> TrackedRetVals; 88 89 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 90 /// that return multiple values. 91 MapVector<std::pair<Function *, unsigned>, ValueLatticeElement> 92 TrackedMultipleRetVals; 93 94 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 95 /// represented here for efficient lookup. 96 SmallPtrSet<Function *, 16> MRVFunctionsTracked; 97 98 /// A list of functions whose return cannot be modified. 99 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions; 100 101 /// TrackingIncomingArguments - This is the set of functions for whose 102 /// arguments we make optimistic assumptions about and try to prove as 103 /// constants. 104 SmallPtrSet<Function *, 16> TrackingIncomingArguments; 105 106 /// The reason for two worklists is that overdefined is the lowest state 107 /// on the lattice, and moving things to overdefined as fast as possible 108 /// makes SCCP converge much faster. 109 /// 110 /// By having a separate worklist, we accomplish this because everything 111 /// possibly overdefined will become overdefined at the soonest possible 112 /// point. 113 SmallVector<Value *, 64> OverdefinedInstWorkList; 114 SmallVector<Value *, 64> InstWorkList; 115 116 // The BasicBlock work list 117 SmallVector<BasicBlock *, 64> BBWorkList; 118 119 /// KnownFeasibleEdges - Entries in this set are edges which have already had 120 /// PHI nodes retriggered. 121 using Edge = std::pair<BasicBlock *, BasicBlock *>; 122 DenseSet<Edge> KnownFeasibleEdges; 123 124 DenseMap<Function *, AnalysisResultsForFn> AnalysisResults; 125 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers; 126 127 LLVMContext &Ctx; 128 129 private: 130 ConstantInt *getConstantInt(const ValueLatticeElement &IV) const { 131 return dyn_cast_or_null<ConstantInt>(getConstant(IV)); 132 } 133 134 // pushToWorkList - Helper for markConstant/markOverdefined 135 void pushToWorkList(ValueLatticeElement &IV, Value *V); 136 137 // Helper to push \p V to the worklist, after updating it to \p IV. Also 138 // prints a debug message with the updated value. 139 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V); 140 141 // markConstant - Make a value be marked as "constant". If the value 142 // is not already a constant, add it to the instruction work list so that 143 // the users of the instruction are updated later. 144 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C, 145 bool MayIncludeUndef = false); 146 147 bool markConstant(Value *V, Constant *C) { 148 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 149 return markConstant(ValueState[V], V, C); 150 } 151 152 // markOverdefined - Make a value be marked as "overdefined". If the 153 // value is not already overdefined, add it to the overdefined instruction 154 // work list so that the users of the instruction are updated later. 155 bool markOverdefined(ValueLatticeElement &IV, Value *V); 156 157 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV 158 /// changes. 159 bool mergeInValue(ValueLatticeElement &IV, Value *V, 160 ValueLatticeElement MergeWithV, 161 ValueLatticeElement::MergeOptions Opts = { 162 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}); 163 164 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV, 165 ValueLatticeElement::MergeOptions Opts = { 166 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) { 167 assert(!V->getType()->isStructTy() && 168 "non-structs should use markConstant"); 169 return mergeInValue(ValueState[V], V, MergeWithV, Opts); 170 } 171 172 /// getValueState - Return the ValueLatticeElement object that corresponds to 173 /// the value. This function handles the case when the value hasn't been seen 174 /// yet by properly seeding constants etc. 175 ValueLatticeElement &getValueState(Value *V) { 176 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 177 178 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement())); 179 ValueLatticeElement &LV = I.first->second; 180 181 if (!I.second) 182 return LV; // Common case, already in the map. 183 184 if (auto *C = dyn_cast<Constant>(V)) 185 LV.markConstant(C); // Constants are constant 186 187 // All others are unknown by default. 188 return LV; 189 } 190 191 /// getStructValueState - Return the ValueLatticeElement object that 192 /// corresponds to the value/field pair. This function handles the case when 193 /// the value hasn't been seen yet by properly seeding constants etc. 194 ValueLatticeElement &getStructValueState(Value *V, unsigned i) { 195 assert(V->getType()->isStructTy() && "Should use getValueState"); 196 assert(i < cast<StructType>(V->getType())->getNumElements() && 197 "Invalid element #"); 198 199 auto I = StructValueState.insert( 200 std::make_pair(std::make_pair(V, i), ValueLatticeElement())); 201 ValueLatticeElement &LV = I.first->second; 202 203 if (!I.second) 204 return LV; // Common case, already in the map. 205 206 if (auto *C = dyn_cast<Constant>(V)) { 207 Constant *Elt = C->getAggregateElement(i); 208 209 if (!Elt) 210 LV.markOverdefined(); // Unknown sort of constant. 211 else 212 LV.markConstant(Elt); // Constants are constant. 213 } 214 215 // All others are underdefined by default. 216 return LV; 217 } 218 219 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 220 /// work list if it is not already executable. 221 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); 222 223 // getFeasibleSuccessors - Return a vector of booleans to indicate which 224 // successors are reachable from a given terminator instruction. 225 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); 226 227 // OperandChangedState - This method is invoked on all of the users of an 228 // instruction that was just changed state somehow. Based on this 229 // information, we need to update the specified user of this instruction. 230 void operandChangedState(Instruction *I) { 231 if (BBExecutable.count(I->getParent())) // Inst is executable? 232 visit(*I); 233 } 234 235 // Add U as additional user of V. 236 void addAdditionalUser(Value *V, User *U) { 237 auto Iter = AdditionalUsers.insert({V, {}}); 238 Iter.first->second.insert(U); 239 } 240 241 // Mark I's users as changed, including AdditionalUsers. 242 void markUsersAsChanged(Value *I) { 243 // Functions include their arguments in the use-list. Changed function 244 // values mean that the result of the function changed. We only need to 245 // update the call sites with the new function result and do not have to 246 // propagate the call arguments. 247 if (isa<Function>(I)) { 248 for (User *U : I->users()) { 249 if (auto *CB = dyn_cast<CallBase>(U)) 250 handleCallResult(*CB); 251 } 252 } else { 253 for (User *U : I->users()) 254 if (auto *UI = dyn_cast<Instruction>(U)) 255 operandChangedState(UI); 256 } 257 258 auto Iter = AdditionalUsers.find(I); 259 if (Iter != AdditionalUsers.end()) { 260 // Copy additional users before notifying them of changes, because new 261 // users may be added, potentially invalidating the iterator. 262 SmallVector<Instruction *, 2> ToNotify; 263 for (User *U : Iter->second) 264 if (auto *UI = dyn_cast<Instruction>(U)) 265 ToNotify.push_back(UI); 266 for (Instruction *UI : ToNotify) 267 operandChangedState(UI); 268 } 269 } 270 void handleCallOverdefined(CallBase &CB); 271 void handleCallResult(CallBase &CB); 272 void handleCallArguments(CallBase &CB); 273 274 private: 275 friend class InstVisitor<SCCPInstVisitor>; 276 277 // visit implementations - Something changed in this instruction. Either an 278 // operand made a transition, or the instruction is newly executable. Change 279 // the value type of I to reflect these changes if appropriate. 280 void visitPHINode(PHINode &I); 281 282 // Terminators 283 284 void visitReturnInst(ReturnInst &I); 285 void visitTerminator(Instruction &TI); 286 287 void visitCastInst(CastInst &I); 288 void visitSelectInst(SelectInst &I); 289 void visitUnaryOperator(Instruction &I); 290 void visitBinaryOperator(Instruction &I); 291 void visitCmpInst(CmpInst &I); 292 void visitExtractValueInst(ExtractValueInst &EVI); 293 void visitInsertValueInst(InsertValueInst &IVI); 294 295 void visitCatchSwitchInst(CatchSwitchInst &CPI) { 296 markOverdefined(&CPI); 297 visitTerminator(CPI); 298 } 299 300 // Instructions that cannot be folded away. 301 302 void visitStoreInst(StoreInst &I); 303 void visitLoadInst(LoadInst &I); 304 void visitGetElementPtrInst(GetElementPtrInst &I); 305 306 void visitInvokeInst(InvokeInst &II) { 307 visitCallBase(II); 308 visitTerminator(II); 309 } 310 311 void visitCallBrInst(CallBrInst &CBI) { 312 visitCallBase(CBI); 313 visitTerminator(CBI); 314 } 315 316 void visitCallBase(CallBase &CB); 317 void visitResumeInst(ResumeInst &I) { /*returns void*/ 318 } 319 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ 320 } 321 void visitFenceInst(FenceInst &I) { /*returns void*/ 322 } 323 324 void visitInstruction(Instruction &I); 325 326 public: 327 void addAnalysis(Function &F, AnalysisResultsForFn A) { 328 AnalysisResults.insert({&F, std::move(A)}); 329 } 330 331 void visitCallInst(CallInst &I) { visitCallBase(I); } 332 333 bool markBlockExecutable(BasicBlock *BB); 334 335 const PredicateBase *getPredicateInfoFor(Instruction *I) { 336 auto A = AnalysisResults.find(I->getParent()->getParent()); 337 if (A == AnalysisResults.end()) 338 return nullptr; 339 return A->second.PredInfo->getPredicateInfoFor(I); 340 } 341 342 DomTreeUpdater getDTU(Function &F) { 343 auto A = AnalysisResults.find(&F); 344 assert(A != AnalysisResults.end() && "Need analysis results for function."); 345 return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy}; 346 } 347 348 SCCPInstVisitor(const DataLayout &DL, 349 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 350 LLVMContext &Ctx) 351 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {} 352 353 void trackValueOfGlobalVariable(GlobalVariable *GV) { 354 // We only track the contents of scalar globals. 355 if (GV->getValueType()->isSingleValueType()) { 356 ValueLatticeElement &IV = TrackedGlobals[GV]; 357 IV.markConstant(GV->getInitializer()); 358 } 359 } 360 361 void addTrackedFunction(Function *F) { 362 // Add an entry, F -> undef. 363 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 364 MRVFunctionsTracked.insert(F); 365 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 366 TrackedMultipleRetVals.insert( 367 std::make_pair(std::make_pair(F, i), ValueLatticeElement())); 368 } else if (!F->getReturnType()->isVoidTy()) 369 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement())); 370 } 371 372 void addToMustPreserveReturnsInFunctions(Function *F) { 373 MustPreserveReturnsInFunctions.insert(F); 374 } 375 376 bool mustPreserveReturn(Function *F) { 377 return MustPreserveReturnsInFunctions.count(F); 378 } 379 380 void addArgumentTrackedFunction(Function *F) { 381 TrackingIncomingArguments.insert(F); 382 } 383 384 bool isArgumentTrackedFunction(Function *F) { 385 return TrackingIncomingArguments.count(F); 386 } 387 388 void solve(); 389 390 bool resolvedUndefsIn(Function &F); 391 392 bool isBlockExecutable(BasicBlock *BB) const { 393 return BBExecutable.count(BB); 394 } 395 396 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const; 397 398 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const { 399 std::vector<ValueLatticeElement> StructValues; 400 auto *STy = dyn_cast<StructType>(V->getType()); 401 assert(STy && "getStructLatticeValueFor() can be called only on structs"); 402 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 403 auto I = StructValueState.find(std::make_pair(V, i)); 404 assert(I != StructValueState.end() && "Value not in valuemap!"); 405 StructValues.push_back(I->second); 406 } 407 return StructValues; 408 } 409 410 void removeLatticeValueFor(Value *V) { ValueState.erase(V); } 411 412 const ValueLatticeElement &getLatticeValueFor(Value *V) const { 413 assert(!V->getType()->isStructTy() && 414 "Should use getStructLatticeValueFor"); 415 DenseMap<Value *, ValueLatticeElement>::const_iterator I = 416 ValueState.find(V); 417 assert(I != ValueState.end() && 418 "V not found in ValueState nor Paramstate map!"); 419 return I->second; 420 } 421 422 const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() { 423 return TrackedRetVals; 424 } 425 426 const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() { 427 return TrackedGlobals; 428 } 429 430 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { 431 return MRVFunctionsTracked; 432 } 433 434 void markOverdefined(Value *V) { 435 if (auto *STy = dyn_cast<StructType>(V->getType())) 436 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 437 markOverdefined(getStructValueState(V, i), V); 438 else 439 markOverdefined(ValueState[V], V); 440 } 441 442 bool isStructLatticeConstant(Function *F, StructType *STy); 443 444 Constant *getConstant(const ValueLatticeElement &LV) const; 445 446 SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() { 447 return TrackingIncomingArguments; 448 } 449 450 void markArgInFuncSpecialization(Function *F, 451 const SmallVectorImpl<ArgInfo> &Args); 452 453 void markFunctionUnreachable(Function *F) { 454 for (auto &BB : *F) 455 BBExecutable.erase(&BB); 456 } 457 }; 458 459 } // namespace llvm 460 461 bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) { 462 if (!BBExecutable.insert(BB).second) 463 return false; 464 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 465 BBWorkList.push_back(BB); // Add the block to the work list! 466 return true; 467 } 468 469 void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) { 470 if (IV.isOverdefined()) 471 return OverdefinedInstWorkList.push_back(V); 472 InstWorkList.push_back(V); 473 } 474 475 void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) { 476 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n'); 477 pushToWorkList(IV, V); 478 } 479 480 bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V, 481 Constant *C, bool MayIncludeUndef) { 482 if (!IV.markConstant(C, MayIncludeUndef)) 483 return false; 484 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 485 pushToWorkList(IV, V); 486 return true; 487 } 488 489 bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) { 490 if (!IV.markOverdefined()) 491 return false; 492 493 LLVM_DEBUG(dbgs() << "markOverdefined: "; 494 if (auto *F = dyn_cast<Function>(V)) dbgs() 495 << "Function '" << F->getName() << "'\n"; 496 else dbgs() << *V << '\n'); 497 // Only instructions go on the work list 498 pushToWorkList(IV, V); 499 return true; 500 } 501 502 bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) { 503 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 504 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 505 assert(It != TrackedMultipleRetVals.end()); 506 ValueLatticeElement LV = It->second; 507 if (!isConstant(LV)) 508 return false; 509 } 510 return true; 511 } 512 513 Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const { 514 if (LV.isConstant()) 515 return LV.getConstant(); 516 517 if (LV.isConstantRange()) { 518 const auto &CR = LV.getConstantRange(); 519 if (CR.getSingleElement()) 520 return ConstantInt::get(Ctx, *CR.getSingleElement()); 521 } 522 return nullptr; 523 } 524 525 void SCCPInstVisitor::markArgInFuncSpecialization( 526 Function *F, const SmallVectorImpl<ArgInfo> &Args) { 527 assert(!Args.empty() && "Specialization without arguments"); 528 assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() && 529 "Functions should have the same number of arguments"); 530 531 auto Iter = Args.begin(); 532 Argument *NewArg = F->arg_begin(); 533 Argument *OldArg = Args[0].Formal->getParent()->arg_begin(); 534 for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) { 535 536 LLVM_DEBUG(dbgs() << "SCCP: Marking argument " 537 << NewArg->getNameOrAsOperand() << "\n"); 538 539 if (Iter != Args.end() && OldArg == Iter->Formal) { 540 // Mark the argument constants in the new function. 541 markConstant(NewArg, Iter->Actual); 542 ++Iter; 543 } else if (ValueState.count(OldArg)) { 544 // For the remaining arguments in the new function, copy the lattice state 545 // over from the old function. 546 // 547 // Note: This previously looked like this: 548 // ValueState[NewArg] = ValueState[OldArg]; 549 // This is incorrect because the DenseMap class may resize the underlying 550 // memory when inserting `NewArg`, which will invalidate the reference to 551 // `OldArg`. Instead, we make sure `NewArg` exists before setting it. 552 auto &NewValue = ValueState[NewArg]; 553 NewValue = ValueState[OldArg]; 554 pushToWorkList(NewValue, NewArg); 555 } 556 } 557 } 558 559 void SCCPInstVisitor::visitInstruction(Instruction &I) { 560 // All the instructions we don't do any special handling for just 561 // go to overdefined. 562 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); 563 markOverdefined(&I); 564 } 565 566 bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V, 567 ValueLatticeElement MergeWithV, 568 ValueLatticeElement::MergeOptions Opts) { 569 if (IV.mergeIn(MergeWithV, Opts)) { 570 pushToWorkList(IV, V); 571 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : " 572 << IV << "\n"); 573 return true; 574 } 575 return false; 576 } 577 578 bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 579 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 580 return false; // This edge is already known to be executable! 581 582 if (!markBlockExecutable(Dest)) { 583 // If the destination is already executable, we just made an *edge* 584 // feasible that wasn't before. Revisit the PHI nodes in the block 585 // because they have potentially new operands. 586 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 587 << " -> " << Dest->getName() << '\n'); 588 589 for (PHINode &PN : Dest->phis()) 590 visitPHINode(PN); 591 } 592 return true; 593 } 594 595 // getFeasibleSuccessors - Return a vector of booleans to indicate which 596 // successors are reachable from a given terminator instruction. 597 void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI, 598 SmallVectorImpl<bool> &Succs) { 599 Succs.resize(TI.getNumSuccessors()); 600 if (auto *BI = dyn_cast<BranchInst>(&TI)) { 601 if (BI->isUnconditional()) { 602 Succs[0] = true; 603 return; 604 } 605 606 ValueLatticeElement BCValue = getValueState(BI->getCondition()); 607 ConstantInt *CI = getConstantInt(BCValue); 608 if (!CI) { 609 // Overdefined condition variables, and branches on unfoldable constant 610 // conditions, mean the branch could go either way. 611 if (!BCValue.isUnknownOrUndef()) 612 Succs[0] = Succs[1] = true; 613 return; 614 } 615 616 // Constant condition variables mean the branch can only go a single way. 617 Succs[CI->isZero()] = true; 618 return; 619 } 620 621 // Unwinding instructions successors are always executable. 622 if (TI.isExceptionalTerminator()) { 623 Succs.assign(TI.getNumSuccessors(), true); 624 return; 625 } 626 627 if (auto *SI = dyn_cast<SwitchInst>(&TI)) { 628 if (!SI->getNumCases()) { 629 Succs[0] = true; 630 return; 631 } 632 const ValueLatticeElement &SCValue = getValueState(SI->getCondition()); 633 if (ConstantInt *CI = getConstantInt(SCValue)) { 634 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; 635 return; 636 } 637 638 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM 639 // is ready. 640 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) { 641 const ConstantRange &Range = SCValue.getConstantRange(); 642 for (const auto &Case : SI->cases()) { 643 const APInt &CaseValue = Case.getCaseValue()->getValue(); 644 if (Range.contains(CaseValue)) 645 Succs[Case.getSuccessorIndex()] = true; 646 } 647 648 // TODO: Determine whether default case is reachable. 649 Succs[SI->case_default()->getSuccessorIndex()] = true; 650 return; 651 } 652 653 // Overdefined or unknown condition? All destinations are executable! 654 if (!SCValue.isUnknownOrUndef()) 655 Succs.assign(TI.getNumSuccessors(), true); 656 return; 657 } 658 659 // In case of indirect branch and its address is a blockaddress, we mark 660 // the target as executable. 661 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { 662 // Casts are folded by visitCastInst. 663 ValueLatticeElement IBRValue = getValueState(IBR->getAddress()); 664 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue)); 665 if (!Addr) { // Overdefined or unknown condition? 666 // All destinations are executable! 667 if (!IBRValue.isUnknownOrUndef()) 668 Succs.assign(TI.getNumSuccessors(), true); 669 return; 670 } 671 672 BasicBlock *T = Addr->getBasicBlock(); 673 assert(Addr->getFunction() == T->getParent() && 674 "Block address of a different function ?"); 675 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { 676 // This is the target. 677 if (IBR->getDestination(i) == T) { 678 Succs[i] = true; 679 return; 680 } 681 } 682 683 // If we didn't find our destination in the IBR successor list, then we 684 // have undefined behavior. Its ok to assume no successor is executable. 685 return; 686 } 687 688 // In case of callbr, we pessimistically assume that all successors are 689 // feasible. 690 if (isa<CallBrInst>(&TI)) { 691 Succs.assign(TI.getNumSuccessors(), true); 692 return; 693 } 694 695 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); 696 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 697 } 698 699 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 700 // block to the 'To' basic block is currently feasible. 701 bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 702 // Check if we've called markEdgeExecutable on the edge yet. (We could 703 // be more aggressive and try to consider edges which haven't been marked 704 // yet, but there isn't any need.) 705 return KnownFeasibleEdges.count(Edge(From, To)); 706 } 707 708 // visit Implementations - Something changed in this instruction, either an 709 // operand made a transition, or the instruction is newly executable. Change 710 // the value type of I to reflect these changes if appropriate. This method 711 // makes sure to do the following actions: 712 // 713 // 1. If a phi node merges two constants in, and has conflicting value coming 714 // from different branches, or if the PHI node merges in an overdefined 715 // value, then the PHI node becomes overdefined. 716 // 2. If a phi node merges only constants in, and they all agree on value, the 717 // PHI node becomes a constant value equal to that. 718 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 719 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 720 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 721 // 6. If a conditional branch has a value that is constant, make the selected 722 // destination executable 723 // 7. If a conditional branch has a value that is overdefined, make all 724 // successors executable. 725 void SCCPInstVisitor::visitPHINode(PHINode &PN) { 726 // If this PN returns a struct, just mark the result overdefined. 727 // TODO: We could do a lot better than this if code actually uses this. 728 if (PN.getType()->isStructTy()) 729 return (void)markOverdefined(&PN); 730 731 if (getValueState(&PN).isOverdefined()) 732 return; // Quick exit 733 734 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 735 // and slow us down a lot. Just mark them overdefined. 736 if (PN.getNumIncomingValues() > 64) 737 return (void)markOverdefined(&PN); 738 739 unsigned NumActiveIncoming = 0; 740 741 // Look at all of the executable operands of the PHI node. If any of them 742 // are overdefined, the PHI becomes overdefined as well. If they are all 743 // constant, and they agree with each other, the PHI becomes the identical 744 // constant. If they are constant and don't agree, the PHI is a constant 745 // range. If there are no executable operands, the PHI remains unknown. 746 ValueLatticeElement PhiState = getValueState(&PN); 747 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 748 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 749 continue; 750 751 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i)); 752 PhiState.mergeIn(IV); 753 NumActiveIncoming++; 754 if (PhiState.isOverdefined()) 755 break; 756 } 757 758 // We allow up to 1 range extension per active incoming value and one 759 // additional extension. Note that we manually adjust the number of range 760 // extensions to match the number of active incoming values. This helps to 761 // limit multiple extensions caused by the same incoming value, if other 762 // incoming values are equal. 763 mergeInValue(&PN, PhiState, 764 ValueLatticeElement::MergeOptions().setMaxWidenSteps( 765 NumActiveIncoming + 1)); 766 ValueLatticeElement &PhiStateRef = getValueState(&PN); 767 PhiStateRef.setNumRangeExtensions( 768 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions())); 769 } 770 771 void SCCPInstVisitor::visitReturnInst(ReturnInst &I) { 772 if (I.getNumOperands() == 0) 773 return; // ret void 774 775 Function *F = I.getParent()->getParent(); 776 Value *ResultOp = I.getOperand(0); 777 778 // If we are tracking the return value of this function, merge it in. 779 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 780 auto TFRVI = TrackedRetVals.find(F); 781 if (TFRVI != TrackedRetVals.end()) { 782 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 783 return; 784 } 785 } 786 787 // Handle functions that return multiple values. 788 if (!TrackedMultipleRetVals.empty()) { 789 if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) 790 if (MRVFunctionsTracked.count(F)) 791 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 792 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 793 getStructValueState(ResultOp, i)); 794 } 795 } 796 797 void SCCPInstVisitor::visitTerminator(Instruction &TI) { 798 SmallVector<bool, 16> SuccFeasible; 799 getFeasibleSuccessors(TI, SuccFeasible); 800 801 BasicBlock *BB = TI.getParent(); 802 803 // Mark all feasible successors executable. 804 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 805 if (SuccFeasible[i]) 806 markEdgeExecutable(BB, TI.getSuccessor(i)); 807 } 808 809 void SCCPInstVisitor::visitCastInst(CastInst &I) { 810 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 811 // discover a concrete value later. 812 if (ValueState[&I].isOverdefined()) 813 return; 814 815 ValueLatticeElement OpSt = getValueState(I.getOperand(0)); 816 if (OpSt.isUnknownOrUndef()) 817 return; 818 819 if (Constant *OpC = getConstant(OpSt)) { 820 // Fold the constant as we build. 821 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL); 822 markConstant(&I, C); 823 } else if (I.getDestTy()->isIntegerTy()) { 824 auto &LV = getValueState(&I); 825 ConstantRange OpRange = 826 OpSt.isConstantRange() 827 ? OpSt.getConstantRange() 828 : ConstantRange::getFull( 829 I.getOperand(0)->getType()->getScalarSizeInBits()); 830 831 Type *DestTy = I.getDestTy(); 832 // Vectors where all elements have the same known constant range are treated 833 // as a single constant range in the lattice. When bitcasting such vectors, 834 // there is a mis-match between the width of the lattice value (single 835 // constant range) and the original operands (vector). Go to overdefined in 836 // that case. 837 if (I.getOpcode() == Instruction::BitCast && 838 I.getOperand(0)->getType()->isVectorTy() && 839 OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy)) 840 return (void)markOverdefined(&I); 841 842 ConstantRange Res = 843 OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy)); 844 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res)); 845 } else 846 markOverdefined(&I); 847 } 848 849 void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) { 850 // If this returns a struct, mark all elements over defined, we don't track 851 // structs in structs. 852 if (EVI.getType()->isStructTy()) 853 return (void)markOverdefined(&EVI); 854 855 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 856 // discover a concrete value later. 857 if (ValueState[&EVI].isOverdefined()) 858 return (void)markOverdefined(&EVI); 859 860 // If this is extracting from more than one level of struct, we don't know. 861 if (EVI.getNumIndices() != 1) 862 return (void)markOverdefined(&EVI); 863 864 Value *AggVal = EVI.getAggregateOperand(); 865 if (AggVal->getType()->isStructTy()) { 866 unsigned i = *EVI.idx_begin(); 867 ValueLatticeElement EltVal = getStructValueState(AggVal, i); 868 mergeInValue(getValueState(&EVI), &EVI, EltVal); 869 } else { 870 // Otherwise, must be extracting from an array. 871 return (void)markOverdefined(&EVI); 872 } 873 } 874 875 void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) { 876 auto *STy = dyn_cast<StructType>(IVI.getType()); 877 if (!STy) 878 return (void)markOverdefined(&IVI); 879 880 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 881 // discover a concrete value later. 882 if (isOverdefined(ValueState[&IVI])) 883 return (void)markOverdefined(&IVI); 884 885 // If this has more than one index, we can't handle it, drive all results to 886 // undef. 887 if (IVI.getNumIndices() != 1) 888 return (void)markOverdefined(&IVI); 889 890 Value *Aggr = IVI.getAggregateOperand(); 891 unsigned Idx = *IVI.idx_begin(); 892 893 // Compute the result based on what we're inserting. 894 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 895 // This passes through all values that aren't the inserted element. 896 if (i != Idx) { 897 ValueLatticeElement EltVal = getStructValueState(Aggr, i); 898 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 899 continue; 900 } 901 902 Value *Val = IVI.getInsertedValueOperand(); 903 if (Val->getType()->isStructTy()) 904 // We don't track structs in structs. 905 markOverdefined(getStructValueState(&IVI, i), &IVI); 906 else { 907 ValueLatticeElement InVal = getValueState(Val); 908 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 909 } 910 } 911 } 912 913 void SCCPInstVisitor::visitSelectInst(SelectInst &I) { 914 // If this select returns a struct, just mark the result overdefined. 915 // TODO: We could do a lot better than this if code actually uses this. 916 if (I.getType()->isStructTy()) 917 return (void)markOverdefined(&I); 918 919 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 920 // discover a concrete value later. 921 if (ValueState[&I].isOverdefined()) 922 return (void)markOverdefined(&I); 923 924 ValueLatticeElement CondValue = getValueState(I.getCondition()); 925 if (CondValue.isUnknownOrUndef()) 926 return; 927 928 if (ConstantInt *CondCB = getConstantInt(CondValue)) { 929 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 930 mergeInValue(&I, getValueState(OpVal)); 931 return; 932 } 933 934 // Otherwise, the condition is overdefined or a constant we can't evaluate. 935 // See if we can produce something better than overdefined based on the T/F 936 // value. 937 ValueLatticeElement TVal = getValueState(I.getTrueValue()); 938 ValueLatticeElement FVal = getValueState(I.getFalseValue()); 939 940 bool Changed = ValueState[&I].mergeIn(TVal); 941 Changed |= ValueState[&I].mergeIn(FVal); 942 if (Changed) 943 pushToWorkListMsg(ValueState[&I], &I); 944 } 945 946 // Handle Unary Operators. 947 void SCCPInstVisitor::visitUnaryOperator(Instruction &I) { 948 ValueLatticeElement V0State = getValueState(I.getOperand(0)); 949 950 ValueLatticeElement &IV = ValueState[&I]; 951 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 952 // discover a concrete value later. 953 if (isOverdefined(IV)) 954 return (void)markOverdefined(&I); 955 956 // If something is unknown/undef, wait for it to resolve. 957 if (V0State.isUnknownOrUndef()) 958 return; 959 960 if (isConstant(V0State)) 961 if (Constant *C = ConstantFoldUnaryOpOperand(I.getOpcode(), 962 getConstant(V0State), DL)) 963 return (void)markConstant(IV, &I, C); 964 965 markOverdefined(&I); 966 } 967 968 // Handle Binary Operators. 969 void SCCPInstVisitor::visitBinaryOperator(Instruction &I) { 970 ValueLatticeElement V1State = getValueState(I.getOperand(0)); 971 ValueLatticeElement V2State = getValueState(I.getOperand(1)); 972 973 ValueLatticeElement &IV = ValueState[&I]; 974 if (IV.isOverdefined()) 975 return; 976 977 // If something is undef, wait for it to resolve. 978 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) 979 return; 980 981 if (V1State.isOverdefined() && V2State.isOverdefined()) 982 return (void)markOverdefined(&I); 983 984 // If either of the operands is a constant, try to fold it to a constant. 985 // TODO: Use information from notconstant better. 986 if ((V1State.isConstant() || V2State.isConstant())) { 987 Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0); 988 Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1); 989 Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL)); 990 auto *C = dyn_cast_or_null<Constant>(R); 991 if (C) { 992 // Conservatively assume that the result may be based on operands that may 993 // be undef. Note that we use mergeInValue to combine the constant with 994 // the existing lattice value for I, as different constants might be found 995 // after one of the operands go to overdefined, e.g. due to one operand 996 // being a special floating value. 997 ValueLatticeElement NewV; 998 NewV.markConstant(C, /*MayIncludeUndef=*/true); 999 return (void)mergeInValue(&I, NewV); 1000 } 1001 } 1002 1003 // Only use ranges for binary operators on integers. 1004 if (!I.getType()->isIntegerTy()) 1005 return markOverdefined(&I); 1006 1007 // Try to simplify to a constant range. 1008 ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits()); 1009 ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits()); 1010 if (V1State.isConstantRange()) 1011 A = V1State.getConstantRange(); 1012 if (V2State.isConstantRange()) 1013 B = V2State.getConstantRange(); 1014 1015 ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B); 1016 mergeInValue(&I, ValueLatticeElement::getRange(R)); 1017 1018 // TODO: Currently we do not exploit special values that produce something 1019 // better than overdefined with an overdefined operand for vector or floating 1020 // point types, like and <4 x i32> overdefined, zeroinitializer. 1021 } 1022 1023 // Handle ICmpInst instruction. 1024 void SCCPInstVisitor::visitCmpInst(CmpInst &I) { 1025 // Do not cache this lookup, getValueState calls later in the function might 1026 // invalidate the reference. 1027 if (isOverdefined(ValueState[&I])) 1028 return (void)markOverdefined(&I); 1029 1030 Value *Op1 = I.getOperand(0); 1031 Value *Op2 = I.getOperand(1); 1032 1033 // For parameters, use ParamState which includes constant range info if 1034 // available. 1035 auto V1State = getValueState(Op1); 1036 auto V2State = getValueState(Op2); 1037 1038 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State); 1039 if (C) { 1040 // TODO: getCompare() currently has incorrect handling for unknown/undef. 1041 if (isa<UndefValue>(C)) 1042 return; 1043 ValueLatticeElement CV; 1044 CV.markConstant(C); 1045 mergeInValue(&I, CV); 1046 return; 1047 } 1048 1049 // If operands are still unknown, wait for it to resolve. 1050 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) && 1051 !isConstant(ValueState[&I])) 1052 return; 1053 1054 markOverdefined(&I); 1055 } 1056 1057 // Handle getelementptr instructions. If all operands are constants then we 1058 // can turn this into a getelementptr ConstantExpr. 1059 void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 1060 if (isOverdefined(ValueState[&I])) 1061 return (void)markOverdefined(&I); 1062 1063 SmallVector<Constant *, 8> Operands; 1064 Operands.reserve(I.getNumOperands()); 1065 1066 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1067 ValueLatticeElement State = getValueState(I.getOperand(i)); 1068 if (State.isUnknownOrUndef()) 1069 return; // Operands are not resolved yet. 1070 1071 if (isOverdefined(State)) 1072 return (void)markOverdefined(&I); 1073 1074 if (Constant *C = getConstant(State)) { 1075 Operands.push_back(C); 1076 continue; 1077 } 1078 1079 return (void)markOverdefined(&I); 1080 } 1081 1082 Constant *Ptr = Operands[0]; 1083 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); 1084 Constant *C = 1085 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); 1086 markConstant(&I, C); 1087 } 1088 1089 void SCCPInstVisitor::visitStoreInst(StoreInst &SI) { 1090 // If this store is of a struct, ignore it. 1091 if (SI.getOperand(0)->getType()->isStructTy()) 1092 return; 1093 1094 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1095 return; 1096 1097 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1098 auto I = TrackedGlobals.find(GV); 1099 if (I == TrackedGlobals.end()) 1100 return; 1101 1102 // Get the value we are storing into the global, then merge it. 1103 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)), 1104 ValueLatticeElement::MergeOptions().setCheckWiden(false)); 1105 if (I->second.isOverdefined()) 1106 TrackedGlobals.erase(I); // No need to keep tracking this! 1107 } 1108 1109 static ValueLatticeElement getValueFromMetadata(const Instruction *I) { 1110 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) 1111 if (I->getType()->isIntegerTy()) 1112 return ValueLatticeElement::getRange( 1113 getConstantRangeFromMetadata(*Ranges)); 1114 if (I->hasMetadata(LLVMContext::MD_nonnull)) 1115 return ValueLatticeElement::getNot( 1116 ConstantPointerNull::get(cast<PointerType>(I->getType()))); 1117 return ValueLatticeElement::getOverdefined(); 1118 } 1119 1120 // Handle load instructions. If the operand is a constant pointer to a constant 1121 // global, we can replace the load with the loaded constant value! 1122 void SCCPInstVisitor::visitLoadInst(LoadInst &I) { 1123 // If this load is of a struct or the load is volatile, just mark the result 1124 // as overdefined. 1125 if (I.getType()->isStructTy() || I.isVolatile()) 1126 return (void)markOverdefined(&I); 1127 1128 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1129 // discover a concrete value later. 1130 if (ValueState[&I].isOverdefined()) 1131 return (void)markOverdefined(&I); 1132 1133 ValueLatticeElement PtrVal = getValueState(I.getOperand(0)); 1134 if (PtrVal.isUnknownOrUndef()) 1135 return; // The pointer is not resolved yet! 1136 1137 ValueLatticeElement &IV = ValueState[&I]; 1138 1139 if (isConstant(PtrVal)) { 1140 Constant *Ptr = getConstant(PtrVal); 1141 1142 // load null is undefined. 1143 if (isa<ConstantPointerNull>(Ptr)) { 1144 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) 1145 return (void)markOverdefined(IV, &I); 1146 else 1147 return; 1148 } 1149 1150 // Transform load (constant global) into the value loaded. 1151 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { 1152 if (!TrackedGlobals.empty()) { 1153 // If we are tracking this global, merge in the known value for it. 1154 auto It = TrackedGlobals.find(GV); 1155 if (It != TrackedGlobals.end()) { 1156 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts()); 1157 return; 1158 } 1159 } 1160 } 1161 1162 // Transform load from a constant into a constant if possible. 1163 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) 1164 return (void)markConstant(IV, &I, C); 1165 } 1166 1167 // Fall back to metadata. 1168 mergeInValue(&I, getValueFromMetadata(&I)); 1169 } 1170 1171 void SCCPInstVisitor::visitCallBase(CallBase &CB) { 1172 handleCallResult(CB); 1173 handleCallArguments(CB); 1174 } 1175 1176 void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) { 1177 Function *F = CB.getCalledFunction(); 1178 1179 // Void return and not tracking callee, just bail. 1180 if (CB.getType()->isVoidTy()) 1181 return; 1182 1183 // Always mark struct return as overdefined. 1184 if (CB.getType()->isStructTy()) 1185 return (void)markOverdefined(&CB); 1186 1187 // Otherwise, if we have a single return value case, and if the function is 1188 // a declaration, maybe we can constant fold it. 1189 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) { 1190 SmallVector<Constant *, 8> Operands; 1191 for (const Use &A : CB.args()) { 1192 if (A.get()->getType()->isStructTy()) 1193 return markOverdefined(&CB); // Can't handle struct args. 1194 ValueLatticeElement State = getValueState(A); 1195 1196 if (State.isUnknownOrUndef()) 1197 return; // Operands are not resolved yet. 1198 if (isOverdefined(State)) 1199 return (void)markOverdefined(&CB); 1200 assert(isConstant(State) && "Unknown state!"); 1201 Operands.push_back(getConstant(State)); 1202 } 1203 1204 if (isOverdefined(getValueState(&CB))) 1205 return (void)markOverdefined(&CB); 1206 1207 // If we can constant fold this, mark the result of the call as a 1208 // constant. 1209 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) 1210 return (void)markConstant(&CB, C); 1211 } 1212 1213 // Fall back to metadata. 1214 mergeInValue(&CB, getValueFromMetadata(&CB)); 1215 } 1216 1217 void SCCPInstVisitor::handleCallArguments(CallBase &CB) { 1218 Function *F = CB.getCalledFunction(); 1219 // If this is a local function that doesn't have its address taken, mark its 1220 // entry block executable and merge in the actual arguments to the call into 1221 // the formal arguments of the function. 1222 if (!TrackingIncomingArguments.empty() && 1223 TrackingIncomingArguments.count(F)) { 1224 markBlockExecutable(&F->front()); 1225 1226 // Propagate information from this call site into the callee. 1227 auto CAI = CB.arg_begin(); 1228 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 1229 ++AI, ++CAI) { 1230 // If this argument is byval, and if the function is not readonly, there 1231 // will be an implicit copy formed of the input aggregate. 1232 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1233 markOverdefined(&*AI); 1234 continue; 1235 } 1236 1237 if (auto *STy = dyn_cast<StructType>(AI->getType())) { 1238 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1239 ValueLatticeElement CallArg = getStructValueState(*CAI, i); 1240 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg, 1241 getMaxWidenStepsOpts()); 1242 } 1243 } else 1244 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts()); 1245 } 1246 } 1247 } 1248 1249 void SCCPInstVisitor::handleCallResult(CallBase &CB) { 1250 Function *F = CB.getCalledFunction(); 1251 1252 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) { 1253 if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 1254 if (ValueState[&CB].isOverdefined()) 1255 return; 1256 1257 Value *CopyOf = CB.getOperand(0); 1258 ValueLatticeElement CopyOfVal = getValueState(CopyOf); 1259 const auto *PI = getPredicateInfoFor(&CB); 1260 assert(PI && "Missing predicate info for ssa.copy"); 1261 1262 const Optional<PredicateConstraint> &Constraint = PI->getConstraint(); 1263 if (!Constraint) { 1264 mergeInValue(ValueState[&CB], &CB, CopyOfVal); 1265 return; 1266 } 1267 1268 CmpInst::Predicate Pred = Constraint->Predicate; 1269 Value *OtherOp = Constraint->OtherOp; 1270 1271 // Wait until OtherOp is resolved. 1272 if (getValueState(OtherOp).isUnknown()) { 1273 addAdditionalUser(OtherOp, &CB); 1274 return; 1275 } 1276 1277 ValueLatticeElement CondVal = getValueState(OtherOp); 1278 ValueLatticeElement &IV = ValueState[&CB]; 1279 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) { 1280 auto ImposedCR = 1281 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType())); 1282 1283 // Get the range imposed by the condition. 1284 if (CondVal.isConstantRange()) 1285 ImposedCR = ConstantRange::makeAllowedICmpRegion( 1286 Pred, CondVal.getConstantRange()); 1287 1288 // Combine range info for the original value with the new range from the 1289 // condition. 1290 auto CopyOfCR = CopyOfVal.isConstantRange() 1291 ? CopyOfVal.getConstantRange() 1292 : ConstantRange::getFull( 1293 DL.getTypeSizeInBits(CopyOf->getType())); 1294 auto NewCR = ImposedCR.intersectWith(CopyOfCR); 1295 // If the existing information is != x, do not use the information from 1296 // a chained predicate, as the != x information is more likely to be 1297 // helpful in practice. 1298 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement()) 1299 NewCR = CopyOfCR; 1300 1301 // The new range is based on a branch condition. That guarantees that 1302 // neither of the compare operands can be undef in the branch targets, 1303 // unless we have conditions that are always true/false (e.g. icmp ule 1304 // i32, %a, i32_max). For the latter overdefined/empty range will be 1305 // inferred, but the branch will get folded accordingly anyways. 1306 addAdditionalUser(OtherOp, &CB); 1307 mergeInValue( 1308 IV, &CB, 1309 ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false)); 1310 return; 1311 } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) { 1312 // For non-integer values or integer constant expressions, only 1313 // propagate equal constants. 1314 addAdditionalUser(OtherOp, &CB); 1315 mergeInValue(IV, &CB, CondVal); 1316 return; 1317 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) { 1318 // Propagate inequalities. 1319 addAdditionalUser(OtherOp, &CB); 1320 mergeInValue(IV, &CB, 1321 ValueLatticeElement::getNot(CondVal.getConstant())); 1322 return; 1323 } 1324 1325 return (void)mergeInValue(IV, &CB, CopyOfVal); 1326 } 1327 1328 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 1329 // Compute result range for intrinsics supported by ConstantRange. 1330 // Do this even if we don't know a range for all operands, as we may 1331 // still know something about the result range, e.g. of abs(x). 1332 SmallVector<ConstantRange, 2> OpRanges; 1333 for (Value *Op : II->args()) { 1334 const ValueLatticeElement &State = getValueState(Op); 1335 if (State.isConstantRange()) 1336 OpRanges.push_back(State.getConstantRange()); 1337 else 1338 OpRanges.push_back( 1339 ConstantRange::getFull(Op->getType()->getScalarSizeInBits())); 1340 } 1341 1342 ConstantRange Result = 1343 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges); 1344 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result)); 1345 } 1346 } 1347 1348 // The common case is that we aren't tracking the callee, either because we 1349 // are not doing interprocedural analysis or the callee is indirect, or is 1350 // external. Handle these cases first. 1351 if (!F || F->isDeclaration()) 1352 return handleCallOverdefined(CB); 1353 1354 // If this is a single/zero retval case, see if we're tracking the function. 1355 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 1356 if (!MRVFunctionsTracked.count(F)) 1357 return handleCallOverdefined(CB); // Not tracking this callee. 1358 1359 // If we are tracking this callee, propagate the result of the function 1360 // into this call site. 1361 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1362 mergeInValue(getStructValueState(&CB, i), &CB, 1363 TrackedMultipleRetVals[std::make_pair(F, i)], 1364 getMaxWidenStepsOpts()); 1365 } else { 1366 auto TFRVI = TrackedRetVals.find(F); 1367 if (TFRVI == TrackedRetVals.end()) 1368 return handleCallOverdefined(CB); // Not tracking this callee. 1369 1370 // If so, propagate the return value of the callee into this call result. 1371 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts()); 1372 } 1373 } 1374 1375 void SCCPInstVisitor::solve() { 1376 // Process the work lists until they are empty! 1377 while (!BBWorkList.empty() || !InstWorkList.empty() || 1378 !OverdefinedInstWorkList.empty()) { 1379 // Process the overdefined instruction's work list first, which drives other 1380 // things to overdefined more quickly. 1381 while (!OverdefinedInstWorkList.empty()) { 1382 Value *I = OverdefinedInstWorkList.pop_back_val(); 1383 1384 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1385 1386 // "I" got into the work list because it either made the transition from 1387 // bottom to constant, or to overdefined. 1388 // 1389 // Anything on this worklist that is overdefined need not be visited 1390 // since all of its users will have already been marked as overdefined 1391 // Update all of the users of this instruction's value. 1392 // 1393 markUsersAsChanged(I); 1394 } 1395 1396 // Process the instruction work list. 1397 while (!InstWorkList.empty()) { 1398 Value *I = InstWorkList.pop_back_val(); 1399 1400 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1401 1402 // "I" got into the work list because it made the transition from undef to 1403 // constant. 1404 // 1405 // Anything on this worklist that is overdefined need not be visited 1406 // since all of its users will have already been marked as overdefined. 1407 // Update all of the users of this instruction's value. 1408 // 1409 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1410 markUsersAsChanged(I); 1411 } 1412 1413 // Process the basic block work list. 1414 while (!BBWorkList.empty()) { 1415 BasicBlock *BB = BBWorkList.pop_back_val(); 1416 1417 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1418 1419 // Notify all instructions in this basic block that they are newly 1420 // executable. 1421 visit(BB); 1422 } 1423 } 1424 } 1425 1426 /// While solving the dataflow for a function, we don't compute a result for 1427 /// operations with an undef operand, to allow undef to be lowered to a 1428 /// constant later. For example, constant folding of "zext i8 undef to i16" 1429 /// would result in "i16 0", and if undef is later lowered to "i8 1", then the 1430 /// zext result would become "i16 1" and would result into an overdefined 1431 /// lattice value once merged with the previous result. Not computing the 1432 /// result of the zext (treating undef the same as unknown) allows us to handle 1433 /// a later undef->constant lowering more optimally. 1434 /// 1435 /// However, if the operand remains undef when the solver returns, we do need 1436 /// to assign some result to the instruction (otherwise we would treat it as 1437 /// unreachable). For simplicity, we mark any instructions that are still 1438 /// unknown as overdefined. 1439 bool SCCPInstVisitor::resolvedUndefsIn(Function &F) { 1440 bool MadeChange = false; 1441 for (BasicBlock &BB : F) { 1442 if (!BBExecutable.count(&BB)) 1443 continue; 1444 1445 for (Instruction &I : BB) { 1446 // Look for instructions which produce undef values. 1447 if (I.getType()->isVoidTy()) 1448 continue; 1449 1450 if (auto *STy = dyn_cast<StructType>(I.getType())) { 1451 // Only a few things that can be structs matter for undef. 1452 1453 // Tracked calls must never be marked overdefined in resolvedUndefsIn. 1454 if (auto *CB = dyn_cast<CallBase>(&I)) 1455 if (Function *F = CB->getCalledFunction()) 1456 if (MRVFunctionsTracked.count(F)) 1457 continue; 1458 1459 // extractvalue and insertvalue don't need to be marked; they are 1460 // tracked as precisely as their operands. 1461 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1462 continue; 1463 // Send the results of everything else to overdefined. We could be 1464 // more precise than this but it isn't worth bothering. 1465 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1466 ValueLatticeElement &LV = getStructValueState(&I, i); 1467 if (LV.isUnknown()) { 1468 markOverdefined(LV, &I); 1469 MadeChange = true; 1470 } 1471 } 1472 continue; 1473 } 1474 1475 ValueLatticeElement &LV = getValueState(&I); 1476 if (!LV.isUnknown()) 1477 continue; 1478 1479 // There are two reasons a call can have an undef result 1480 // 1. It could be tracked. 1481 // 2. It could be constant-foldable. 1482 // Because of the way we solve return values, tracked calls must 1483 // never be marked overdefined in resolvedUndefsIn. 1484 if (auto *CB = dyn_cast<CallBase>(&I)) 1485 if (Function *F = CB->getCalledFunction()) 1486 if (TrackedRetVals.count(F)) 1487 continue; 1488 1489 if (isa<LoadInst>(I)) { 1490 // A load here means one of two things: a load of undef from a global, 1491 // a load from an unknown pointer. Either way, having it return undef 1492 // is okay. 1493 continue; 1494 } 1495 1496 markOverdefined(&I); 1497 MadeChange = true; 1498 } 1499 } 1500 1501 return MadeChange; 1502 } 1503 1504 //===----------------------------------------------------------------------===// 1505 // 1506 // SCCPSolver implementations 1507 // 1508 SCCPSolver::SCCPSolver( 1509 const DataLayout &DL, 1510 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 1511 LLVMContext &Ctx) 1512 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {} 1513 1514 SCCPSolver::~SCCPSolver() = default; 1515 1516 void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) { 1517 return Visitor->addAnalysis(F, std::move(A)); 1518 } 1519 1520 bool SCCPSolver::markBlockExecutable(BasicBlock *BB) { 1521 return Visitor->markBlockExecutable(BB); 1522 } 1523 1524 const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) { 1525 return Visitor->getPredicateInfoFor(I); 1526 } 1527 1528 DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); } 1529 1530 void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) { 1531 Visitor->trackValueOfGlobalVariable(GV); 1532 } 1533 1534 void SCCPSolver::addTrackedFunction(Function *F) { 1535 Visitor->addTrackedFunction(F); 1536 } 1537 1538 void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) { 1539 Visitor->addToMustPreserveReturnsInFunctions(F); 1540 } 1541 1542 bool SCCPSolver::mustPreserveReturn(Function *F) { 1543 return Visitor->mustPreserveReturn(F); 1544 } 1545 1546 void SCCPSolver::addArgumentTrackedFunction(Function *F) { 1547 Visitor->addArgumentTrackedFunction(F); 1548 } 1549 1550 bool SCCPSolver::isArgumentTrackedFunction(Function *F) { 1551 return Visitor->isArgumentTrackedFunction(F); 1552 } 1553 1554 void SCCPSolver::solve() { Visitor->solve(); } 1555 1556 bool SCCPSolver::resolvedUndefsIn(Function &F) { 1557 return Visitor->resolvedUndefsIn(F); 1558 } 1559 1560 bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const { 1561 return Visitor->isBlockExecutable(BB); 1562 } 1563 1564 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 1565 return Visitor->isEdgeFeasible(From, To); 1566 } 1567 1568 std::vector<ValueLatticeElement> 1569 SCCPSolver::getStructLatticeValueFor(Value *V) const { 1570 return Visitor->getStructLatticeValueFor(V); 1571 } 1572 1573 void SCCPSolver::removeLatticeValueFor(Value *V) { 1574 return Visitor->removeLatticeValueFor(V); 1575 } 1576 1577 const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const { 1578 return Visitor->getLatticeValueFor(V); 1579 } 1580 1581 const MapVector<Function *, ValueLatticeElement> & 1582 SCCPSolver::getTrackedRetVals() { 1583 return Visitor->getTrackedRetVals(); 1584 } 1585 1586 const DenseMap<GlobalVariable *, ValueLatticeElement> & 1587 SCCPSolver::getTrackedGlobals() { 1588 return Visitor->getTrackedGlobals(); 1589 } 1590 1591 const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() { 1592 return Visitor->getMRVFunctionsTracked(); 1593 } 1594 1595 void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); } 1596 1597 bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) { 1598 return Visitor->isStructLatticeConstant(F, STy); 1599 } 1600 1601 Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const { 1602 return Visitor->getConstant(LV); 1603 } 1604 1605 SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() { 1606 return Visitor->getArgumentTrackedFunctions(); 1607 } 1608 1609 void SCCPSolver::markArgInFuncSpecialization( 1610 Function *F, const SmallVectorImpl<ArgInfo> &Args) { 1611 Visitor->markArgInFuncSpecialization(F, Args); 1612 } 1613 1614 void SCCPSolver::markFunctionUnreachable(Function *F) { 1615 Visitor->markFunctionUnreachable(F); 1616 } 1617 1618 void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); } 1619 1620 void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); } 1621