1 //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements the Sparse Conditional Constant Propagation (SCCP) 11 // utility. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SCCPSolver.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/ValueLattice.h" 19 #include "llvm/Analysis/ValueLatticeUtils.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/InstVisitor.h" 22 #include "llvm/Support/Casting.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include <cassert> 28 #include <utility> 29 #include <vector> 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "sccp" 34 35 // The maximum number of range extensions allowed for operations requiring 36 // widening. 37 static const unsigned MaxNumRangeExtensions = 10; 38 39 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions. 40 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() { 41 return ValueLatticeElement::MergeOptions().setMaxWidenSteps( 42 MaxNumRangeExtensions); 43 } 44 45 namespace llvm { 46 47 bool SCCPSolver::isConstant(const ValueLatticeElement &LV) { 48 return LV.isConstant() || 49 (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); 50 } 51 52 bool SCCPSolver::isOverdefined(const ValueLatticeElement &LV) { 53 return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV); 54 } 55 56 static bool canRemoveInstruction(Instruction *I) { 57 if (wouldInstructionBeTriviallyDead(I)) 58 return true; 59 60 // Some instructions can be handled but are rejected above. Catch 61 // those cases by falling through to here. 62 // TODO: Mark globals as being constant earlier, so 63 // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads 64 // TODO: are safe to remove. 65 return isa<LoadInst>(I); 66 } 67 68 bool SCCPSolver::tryToReplaceWithConstant(Value *V) { 69 Constant *Const = getConstantOrNull(V); 70 if (!Const) 71 return false; 72 // Replacing `musttail` instructions with constant breaks `musttail` invariant 73 // unless the call itself can be removed. 74 // Calls with "clang.arc.attachedcall" implicitly use the return value and 75 // those uses cannot be updated with a constant. 76 CallBase *CB = dyn_cast<CallBase>(V); 77 if (CB && ((CB->isMustTailCall() && 78 !canRemoveInstruction(CB)) || 79 CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) { 80 Function *F = CB->getCalledFunction(); 81 82 // Don't zap returns of the callee 83 if (F) 84 addToMustPreserveReturnsInFunctions(F); 85 86 LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB 87 << " as a constant\n"); 88 return false; 89 } 90 91 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); 92 93 // Replaces all of the uses of a variable with uses of the constant. 94 V->replaceAllUsesWith(Const); 95 return true; 96 } 97 98 /// Try to use \p Inst's value range from \p Solver to infer the NUW flag. 99 static bool refineInstruction(SCCPSolver &Solver, 100 const SmallPtrSetImpl<Value *> &InsertedValues, 101 Instruction &Inst) { 102 bool Changed = false; 103 auto GetRange = [&Solver, &InsertedValues](Value *Op) { 104 if (auto *Const = dyn_cast<Constant>(Op)) 105 return Const->toConstantRange(); 106 if (InsertedValues.contains(Op)) { 107 unsigned Bitwidth = Op->getType()->getScalarSizeInBits(); 108 return ConstantRange::getFull(Bitwidth); 109 } 110 return Solver.getLatticeValueFor(Op).asConstantRange( 111 Op->getType(), /*UndefAllowed=*/false); 112 }; 113 114 if (isa<OverflowingBinaryOperator>(Inst)) { 115 if (Inst.hasNoSignedWrap() && Inst.hasNoUnsignedWrap()) 116 return false; 117 118 auto RangeA = GetRange(Inst.getOperand(0)); 119 auto RangeB = GetRange(Inst.getOperand(1)); 120 if (!Inst.hasNoUnsignedWrap()) { 121 auto NUWRange = ConstantRange::makeGuaranteedNoWrapRegion( 122 Instruction::BinaryOps(Inst.getOpcode()), RangeB, 123 OverflowingBinaryOperator::NoUnsignedWrap); 124 if (NUWRange.contains(RangeA)) { 125 Inst.setHasNoUnsignedWrap(); 126 Changed = true; 127 } 128 } 129 if (!Inst.hasNoSignedWrap()) { 130 auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion( 131 Instruction::BinaryOps(Inst.getOpcode()), RangeB, 132 OverflowingBinaryOperator::NoSignedWrap); 133 if (NSWRange.contains(RangeA)) { 134 Inst.setHasNoSignedWrap(); 135 Changed = true; 136 } 137 } 138 } else if (isa<PossiblyNonNegInst>(Inst) && !Inst.hasNonNeg()) { 139 auto Range = GetRange(Inst.getOperand(0)); 140 if (Range.isAllNonNegative()) { 141 Inst.setNonNeg(); 142 Changed = true; 143 } 144 } else if (TruncInst *TI = dyn_cast<TruncInst>(&Inst)) { 145 if (TI->hasNoSignedWrap() && TI->hasNoUnsignedWrap()) 146 return false; 147 148 auto Range = GetRange(Inst.getOperand(0)); 149 uint64_t DestWidth = TI->getDestTy()->getScalarSizeInBits(); 150 if (!TI->hasNoUnsignedWrap()) { 151 if (Range.getActiveBits() <= DestWidth) { 152 TI->setHasNoUnsignedWrap(true); 153 Changed = true; 154 } 155 } 156 if (!TI->hasNoSignedWrap()) { 157 if (Range.getMinSignedBits() <= DestWidth) { 158 TI->setHasNoSignedWrap(true); 159 Changed = true; 160 } 161 } 162 } 163 164 return Changed; 165 } 166 167 /// Try to replace signed instructions with their unsigned equivalent. 168 static bool replaceSignedInst(SCCPSolver &Solver, 169 SmallPtrSetImpl<Value *> &InsertedValues, 170 Instruction &Inst) { 171 // Determine if a signed value is known to be >= 0. 172 auto isNonNegative = [&Solver](Value *V) { 173 // If this value was constant-folded, it may not have a solver entry. 174 // Handle integers. Otherwise, return false. 175 if (auto *C = dyn_cast<Constant>(V)) { 176 auto *CInt = dyn_cast<ConstantInt>(C); 177 return CInt && !CInt->isNegative(); 178 } 179 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); 180 return IV.isConstantRange(/*UndefAllowed=*/false) && 181 IV.getConstantRange().isAllNonNegative(); 182 }; 183 184 Instruction *NewInst = nullptr; 185 switch (Inst.getOpcode()) { 186 case Instruction::SIToFP: 187 case Instruction::SExt: { 188 // If the source value is not negative, this is a zext/uitofp. 189 Value *Op0 = Inst.getOperand(0); 190 if (InsertedValues.count(Op0) || !isNonNegative(Op0)) 191 return false; 192 NewInst = CastInst::Create(Inst.getOpcode() == Instruction::SExt 193 ? Instruction::ZExt 194 : Instruction::UIToFP, 195 Op0, Inst.getType(), "", Inst.getIterator()); 196 NewInst->setNonNeg(); 197 break; 198 } 199 case Instruction::AShr: { 200 // If the shifted value is not negative, this is a logical shift right. 201 Value *Op0 = Inst.getOperand(0); 202 if (InsertedValues.count(Op0) || !isNonNegative(Op0)) 203 return false; 204 NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", Inst.getIterator()); 205 NewInst->setIsExact(Inst.isExact()); 206 break; 207 } 208 case Instruction::SDiv: 209 case Instruction::SRem: { 210 // If both operands are not negative, this is the same as udiv/urem. 211 Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1); 212 if (InsertedValues.count(Op0) || InsertedValues.count(Op1) || 213 !isNonNegative(Op0) || !isNonNegative(Op1)) 214 return false; 215 auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv 216 : Instruction::URem; 217 NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", Inst.getIterator()); 218 if (Inst.getOpcode() == Instruction::SDiv) 219 NewInst->setIsExact(Inst.isExact()); 220 break; 221 } 222 default: 223 return false; 224 } 225 226 // Wire up the new instruction and update state. 227 assert(NewInst && "Expected replacement instruction"); 228 NewInst->takeName(&Inst); 229 InsertedValues.insert(NewInst); 230 Inst.replaceAllUsesWith(NewInst); 231 NewInst->setDebugLoc(Inst.getDebugLoc()); 232 Solver.removeLatticeValueFor(&Inst); 233 Inst.eraseFromParent(); 234 return true; 235 } 236 237 bool SCCPSolver::simplifyInstsInBlock(BasicBlock &BB, 238 SmallPtrSetImpl<Value *> &InsertedValues, 239 Statistic &InstRemovedStat, 240 Statistic &InstReplacedStat) { 241 bool MadeChanges = false; 242 for (Instruction &Inst : make_early_inc_range(BB)) { 243 if (Inst.getType()->isVoidTy()) 244 continue; 245 if (tryToReplaceWithConstant(&Inst)) { 246 if (canRemoveInstruction(&Inst)) 247 Inst.eraseFromParent(); 248 249 MadeChanges = true; 250 ++InstRemovedStat; 251 } else if (replaceSignedInst(*this, InsertedValues, Inst)) { 252 MadeChanges = true; 253 ++InstReplacedStat; 254 } else if (refineInstruction(*this, InsertedValues, Inst)) { 255 MadeChanges = true; 256 } 257 } 258 return MadeChanges; 259 } 260 261 bool SCCPSolver::removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU, 262 BasicBlock *&NewUnreachableBB) const { 263 SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors; 264 bool HasNonFeasibleEdges = false; 265 for (BasicBlock *Succ : successors(BB)) { 266 if (isEdgeFeasible(BB, Succ)) 267 FeasibleSuccessors.insert(Succ); 268 else 269 HasNonFeasibleEdges = true; 270 } 271 272 // All edges feasible, nothing to do. 273 if (!HasNonFeasibleEdges) 274 return false; 275 276 // SCCP can only determine non-feasible edges for br, switch and indirectbr. 277 Instruction *TI = BB->getTerminator(); 278 assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) || 279 isa<IndirectBrInst>(TI)) && 280 "Terminator must be a br, switch or indirectbr"); 281 282 if (FeasibleSuccessors.size() == 0) { 283 // Branch on undef/poison, replace with unreachable. 284 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 285 SmallVector<DominatorTree::UpdateType, 8> Updates; 286 for (BasicBlock *Succ : successors(BB)) { 287 Succ->removePredecessor(BB); 288 if (SeenSuccs.insert(Succ).second) 289 Updates.push_back({DominatorTree::Delete, BB, Succ}); 290 } 291 TI->eraseFromParent(); 292 new UnreachableInst(BB->getContext(), BB); 293 DTU.applyUpdatesPermissive(Updates); 294 } else if (FeasibleSuccessors.size() == 1) { 295 // Replace with an unconditional branch to the only feasible successor. 296 BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin(); 297 SmallVector<DominatorTree::UpdateType, 8> Updates; 298 bool HaveSeenOnlyFeasibleSuccessor = false; 299 for (BasicBlock *Succ : successors(BB)) { 300 if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) { 301 // Don't remove the edge to the only feasible successor the first time 302 // we see it. We still do need to remove any multi-edges to it though. 303 HaveSeenOnlyFeasibleSuccessor = true; 304 continue; 305 } 306 307 Succ->removePredecessor(BB); 308 Updates.push_back({DominatorTree::Delete, BB, Succ}); 309 } 310 311 Instruction *BI = BranchInst::Create(OnlyFeasibleSuccessor, BB); 312 BI->setDebugLoc(TI->getDebugLoc()); 313 TI->eraseFromParent(); 314 DTU.applyUpdatesPermissive(Updates); 315 } else if (FeasibleSuccessors.size() > 1) { 316 SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI)); 317 SmallVector<DominatorTree::UpdateType, 8> Updates; 318 319 // If the default destination is unfeasible it will never be taken. Replace 320 // it with a new block with a single Unreachable instruction. 321 BasicBlock *DefaultDest = SI->getDefaultDest(); 322 if (!FeasibleSuccessors.contains(DefaultDest)) { 323 if (!NewUnreachableBB) { 324 NewUnreachableBB = 325 BasicBlock::Create(DefaultDest->getContext(), "default.unreachable", 326 DefaultDest->getParent(), DefaultDest); 327 new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB); 328 } 329 330 DefaultDest->removePredecessor(BB); 331 SI->setDefaultDest(NewUnreachableBB); 332 Updates.push_back({DominatorTree::Delete, BB, DefaultDest}); 333 Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB}); 334 } 335 336 for (auto CI = SI->case_begin(); CI != SI->case_end();) { 337 if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) { 338 ++CI; 339 continue; 340 } 341 342 BasicBlock *Succ = CI->getCaseSuccessor(); 343 Succ->removePredecessor(BB); 344 Updates.push_back({DominatorTree::Delete, BB, Succ}); 345 SI.removeCase(CI); 346 // Don't increment CI, as we removed a case. 347 } 348 349 DTU.applyUpdatesPermissive(Updates); 350 } else { 351 llvm_unreachable("Must have at least one feasible successor"); 352 } 353 return true; 354 } 355 356 /// Helper class for SCCPSolver. This implements the instruction visitor and 357 /// holds all the state. 358 class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> { 359 const DataLayout &DL; 360 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 361 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. 362 DenseMap<Value *, ValueLatticeElement> 363 ValueState; // The state each value is in. 364 365 /// StructValueState - This maintains ValueState for values that have 366 /// StructType, for example for formal arguments, calls, insertelement, etc. 367 DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState; 368 369 /// GlobalValue - If we are tracking any values for the contents of a global 370 /// variable, we keep a mapping from the constant accessor to the element of 371 /// the global, to the currently known value. If the value becomes 372 /// overdefined, it's entry is simply removed from this map. 373 DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals; 374 375 /// TrackedRetVals - If we are tracking arguments into and the return 376 /// value out of a function, it will have an entry in this map, indicating 377 /// what the known return value for the function is. 378 MapVector<Function *, ValueLatticeElement> TrackedRetVals; 379 380 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 381 /// that return multiple values. 382 MapVector<std::pair<Function *, unsigned>, ValueLatticeElement> 383 TrackedMultipleRetVals; 384 385 /// The set of values whose lattice has been invalidated. 386 /// Populated by resetLatticeValueFor(), cleared after resolving undefs. 387 DenseSet<Value *> Invalidated; 388 389 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 390 /// represented here for efficient lookup. 391 SmallPtrSet<Function *, 16> MRVFunctionsTracked; 392 393 /// A list of functions whose return cannot be modified. 394 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions; 395 396 /// TrackingIncomingArguments - This is the set of functions for whose 397 /// arguments we make optimistic assumptions about and try to prove as 398 /// constants. 399 SmallPtrSet<Function *, 16> TrackingIncomingArguments; 400 401 /// The reason for two worklists is that overdefined is the lowest state 402 /// on the lattice, and moving things to overdefined as fast as possible 403 /// makes SCCP converge much faster. 404 /// 405 /// By having a separate worklist, we accomplish this because everything 406 /// possibly overdefined will become overdefined at the soonest possible 407 /// point. 408 SmallVector<Value *, 64> OverdefinedInstWorkList; 409 SmallVector<Value *, 64> InstWorkList; 410 411 // The BasicBlock work list 412 SmallVector<BasicBlock *, 64> BBWorkList; 413 414 /// KnownFeasibleEdges - Entries in this set are edges which have already had 415 /// PHI nodes retriggered. 416 using Edge = std::pair<BasicBlock *, BasicBlock *>; 417 DenseSet<Edge> KnownFeasibleEdges; 418 419 DenseMap<Function *, std::unique_ptr<PredicateInfo>> FnPredicateInfo; 420 421 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers; 422 423 LLVMContext &Ctx; 424 425 private: 426 ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const { 427 return dyn_cast_or_null<ConstantInt>(getConstant(IV, Ty)); 428 } 429 430 // pushToWorkList - Helper for markConstant/markOverdefined 431 void pushToWorkList(ValueLatticeElement &IV, Value *V); 432 433 // Helper to push \p V to the worklist, after updating it to \p IV. Also 434 // prints a debug message with the updated value. 435 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V); 436 437 // markConstant - Make a value be marked as "constant". If the value 438 // is not already a constant, add it to the instruction work list so that 439 // the users of the instruction are updated later. 440 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C, 441 bool MayIncludeUndef = false); 442 443 bool markConstant(Value *V, Constant *C) { 444 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 445 return markConstant(ValueState[V], V, C); 446 } 447 448 /// markConstantRange - Mark the object as constant range with \p CR. If the 449 /// object is not a constant range with the range \p CR, add it to the 450 /// instruction work list so that the users of the instruction are updated 451 /// later. 452 bool markConstantRange(ValueLatticeElement &IV, Value *V, 453 const ConstantRange &CR); 454 455 // markOverdefined - Make a value be marked as "overdefined". If the 456 // value is not already overdefined, add it to the overdefined instruction 457 // work list so that the users of the instruction are updated later. 458 bool markOverdefined(ValueLatticeElement &IV, Value *V); 459 460 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV 461 /// changes. 462 bool mergeInValue(ValueLatticeElement &IV, Value *V, 463 ValueLatticeElement MergeWithV, 464 ValueLatticeElement::MergeOptions Opts = { 465 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}); 466 467 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV, 468 ValueLatticeElement::MergeOptions Opts = { 469 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) { 470 assert(!V->getType()->isStructTy() && 471 "non-structs should use markConstant"); 472 return mergeInValue(ValueState[V], V, MergeWithV, Opts); 473 } 474 475 /// getValueState - Return the ValueLatticeElement object that corresponds to 476 /// the value. This function handles the case when the value hasn't been seen 477 /// yet by properly seeding constants etc. 478 ValueLatticeElement &getValueState(Value *V) { 479 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 480 481 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement())); 482 ValueLatticeElement &LV = I.first->second; 483 484 if (!I.second) 485 return LV; // Common case, already in the map. 486 487 if (auto *C = dyn_cast<Constant>(V)) 488 LV.markConstant(C); // Constants are constant 489 490 // All others are unknown by default. 491 return LV; 492 } 493 494 /// getStructValueState - Return the ValueLatticeElement object that 495 /// corresponds to the value/field pair. This function handles the case when 496 /// the value hasn't been seen yet by properly seeding constants etc. 497 ValueLatticeElement &getStructValueState(Value *V, unsigned i) { 498 assert(V->getType()->isStructTy() && "Should use getValueState"); 499 assert(i < cast<StructType>(V->getType())->getNumElements() && 500 "Invalid element #"); 501 502 auto I = StructValueState.insert( 503 std::make_pair(std::make_pair(V, i), ValueLatticeElement())); 504 ValueLatticeElement &LV = I.first->second; 505 506 if (!I.second) 507 return LV; // Common case, already in the map. 508 509 if (auto *C = dyn_cast<Constant>(V)) { 510 Constant *Elt = C->getAggregateElement(i); 511 512 if (!Elt) 513 LV.markOverdefined(); // Unknown sort of constant. 514 else 515 LV.markConstant(Elt); // Constants are constant. 516 } 517 518 // All others are underdefined by default. 519 return LV; 520 } 521 522 /// Traverse the use-def chain of \p Call, marking itself and its users as 523 /// "unknown" on the way. 524 void invalidate(CallBase *Call) { 525 SmallVector<Instruction *, 64> ToInvalidate; 526 ToInvalidate.push_back(Call); 527 528 while (!ToInvalidate.empty()) { 529 Instruction *Inst = ToInvalidate.pop_back_val(); 530 531 if (!Invalidated.insert(Inst).second) 532 continue; 533 534 if (!BBExecutable.count(Inst->getParent())) 535 continue; 536 537 Value *V = nullptr; 538 // For return instructions we need to invalidate the tracked returns map. 539 // Anything else has its lattice in the value map. 540 if (auto *RetInst = dyn_cast<ReturnInst>(Inst)) { 541 Function *F = RetInst->getParent()->getParent(); 542 if (auto It = TrackedRetVals.find(F); It != TrackedRetVals.end()) { 543 It->second = ValueLatticeElement(); 544 V = F; 545 } else if (MRVFunctionsTracked.count(F)) { 546 auto *STy = cast<StructType>(F->getReturnType()); 547 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 548 TrackedMultipleRetVals[{F, I}] = ValueLatticeElement(); 549 V = F; 550 } 551 } else if (auto *STy = dyn_cast<StructType>(Inst->getType())) { 552 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { 553 if (auto It = StructValueState.find({Inst, I}); 554 It != StructValueState.end()) { 555 It->second = ValueLatticeElement(); 556 V = Inst; 557 } 558 } 559 } else if (auto It = ValueState.find(Inst); It != ValueState.end()) { 560 It->second = ValueLatticeElement(); 561 V = Inst; 562 } 563 564 if (V) { 565 LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n"); 566 567 for (User *U : V->users()) 568 if (auto *UI = dyn_cast<Instruction>(U)) 569 ToInvalidate.push_back(UI); 570 571 auto It = AdditionalUsers.find(V); 572 if (It != AdditionalUsers.end()) 573 for (User *U : It->second) 574 if (auto *UI = dyn_cast<Instruction>(U)) 575 ToInvalidate.push_back(UI); 576 } 577 } 578 } 579 580 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 581 /// work list if it is not already executable. 582 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); 583 584 // getFeasibleSuccessors - Return a vector of booleans to indicate which 585 // successors are reachable from a given terminator instruction. 586 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); 587 588 // OperandChangedState - This method is invoked on all of the users of an 589 // instruction that was just changed state somehow. Based on this 590 // information, we need to update the specified user of this instruction. 591 void operandChangedState(Instruction *I) { 592 if (BBExecutable.count(I->getParent())) // Inst is executable? 593 visit(*I); 594 } 595 596 // Add U as additional user of V. 597 void addAdditionalUser(Value *V, User *U) { 598 auto Iter = AdditionalUsers.insert({V, {}}); 599 Iter.first->second.insert(U); 600 } 601 602 // Mark I's users as changed, including AdditionalUsers. 603 void markUsersAsChanged(Value *I) { 604 // Functions include their arguments in the use-list. Changed function 605 // values mean that the result of the function changed. We only need to 606 // update the call sites with the new function result and do not have to 607 // propagate the call arguments. 608 if (isa<Function>(I)) { 609 for (User *U : I->users()) { 610 if (auto *CB = dyn_cast<CallBase>(U)) 611 handleCallResult(*CB); 612 } 613 } else { 614 for (User *U : I->users()) 615 if (auto *UI = dyn_cast<Instruction>(U)) 616 operandChangedState(UI); 617 } 618 619 auto Iter = AdditionalUsers.find(I); 620 if (Iter != AdditionalUsers.end()) { 621 // Copy additional users before notifying them of changes, because new 622 // users may be added, potentially invalidating the iterator. 623 SmallVector<Instruction *, 2> ToNotify; 624 for (User *U : Iter->second) 625 if (auto *UI = dyn_cast<Instruction>(U)) 626 ToNotify.push_back(UI); 627 for (Instruction *UI : ToNotify) 628 operandChangedState(UI); 629 } 630 } 631 void handleCallOverdefined(CallBase &CB); 632 void handleCallResult(CallBase &CB); 633 void handleCallArguments(CallBase &CB); 634 void handleExtractOfWithOverflow(ExtractValueInst &EVI, 635 const WithOverflowInst *WO, unsigned Idx); 636 637 private: 638 friend class InstVisitor<SCCPInstVisitor>; 639 640 // visit implementations - Something changed in this instruction. Either an 641 // operand made a transition, or the instruction is newly executable. Change 642 // the value type of I to reflect these changes if appropriate. 643 void visitPHINode(PHINode &I); 644 645 // Terminators 646 647 void visitReturnInst(ReturnInst &I); 648 void visitTerminator(Instruction &TI); 649 650 void visitCastInst(CastInst &I); 651 void visitSelectInst(SelectInst &I); 652 void visitUnaryOperator(Instruction &I); 653 void visitFreezeInst(FreezeInst &I); 654 void visitBinaryOperator(Instruction &I); 655 void visitCmpInst(CmpInst &I); 656 void visitExtractValueInst(ExtractValueInst &EVI); 657 void visitInsertValueInst(InsertValueInst &IVI); 658 659 void visitCatchSwitchInst(CatchSwitchInst &CPI) { 660 markOverdefined(&CPI); 661 visitTerminator(CPI); 662 } 663 664 // Instructions that cannot be folded away. 665 666 void visitStoreInst(StoreInst &I); 667 void visitLoadInst(LoadInst &I); 668 void visitGetElementPtrInst(GetElementPtrInst &I); 669 670 void visitInvokeInst(InvokeInst &II) { 671 visitCallBase(II); 672 visitTerminator(II); 673 } 674 675 void visitCallBrInst(CallBrInst &CBI) { 676 visitCallBase(CBI); 677 visitTerminator(CBI); 678 } 679 680 void visitCallBase(CallBase &CB); 681 void visitResumeInst(ResumeInst &I) { /*returns void*/ 682 } 683 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ 684 } 685 void visitFenceInst(FenceInst &I) { /*returns void*/ 686 } 687 688 void visitInstruction(Instruction &I); 689 690 public: 691 void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC) { 692 FnPredicateInfo.insert({&F, std::make_unique<PredicateInfo>(F, DT, AC)}); 693 } 694 695 void visitCallInst(CallInst &I) { visitCallBase(I); } 696 697 bool markBlockExecutable(BasicBlock *BB); 698 699 const PredicateBase *getPredicateInfoFor(Instruction *I) { 700 auto It = FnPredicateInfo.find(I->getParent()->getParent()); 701 if (It == FnPredicateInfo.end()) 702 return nullptr; 703 return It->second->getPredicateInfoFor(I); 704 } 705 706 SCCPInstVisitor(const DataLayout &DL, 707 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 708 LLVMContext &Ctx) 709 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {} 710 711 void trackValueOfGlobalVariable(GlobalVariable *GV) { 712 // We only track the contents of scalar globals. 713 if (GV->getValueType()->isSingleValueType()) { 714 ValueLatticeElement &IV = TrackedGlobals[GV]; 715 IV.markConstant(GV->getInitializer()); 716 } 717 } 718 719 void addTrackedFunction(Function *F) { 720 // Add an entry, F -> undef. 721 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 722 MRVFunctionsTracked.insert(F); 723 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 724 TrackedMultipleRetVals.insert( 725 std::make_pair(std::make_pair(F, i), ValueLatticeElement())); 726 } else if (!F->getReturnType()->isVoidTy()) 727 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement())); 728 } 729 730 void addToMustPreserveReturnsInFunctions(Function *F) { 731 MustPreserveReturnsInFunctions.insert(F); 732 } 733 734 bool mustPreserveReturn(Function *F) { 735 return MustPreserveReturnsInFunctions.count(F); 736 } 737 738 void addArgumentTrackedFunction(Function *F) { 739 TrackingIncomingArguments.insert(F); 740 } 741 742 bool isArgumentTrackedFunction(Function *F) { 743 return TrackingIncomingArguments.count(F); 744 } 745 746 void solve(); 747 748 bool resolvedUndef(Instruction &I); 749 750 bool resolvedUndefsIn(Function &F); 751 752 bool isBlockExecutable(BasicBlock *BB) const { 753 return BBExecutable.count(BB); 754 } 755 756 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const; 757 758 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const { 759 std::vector<ValueLatticeElement> StructValues; 760 auto *STy = dyn_cast<StructType>(V->getType()); 761 assert(STy && "getStructLatticeValueFor() can be called only on structs"); 762 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 763 auto I = StructValueState.find(std::make_pair(V, i)); 764 assert(I != StructValueState.end() && "Value not in valuemap!"); 765 StructValues.push_back(I->second); 766 } 767 return StructValues; 768 } 769 770 void removeLatticeValueFor(Value *V) { ValueState.erase(V); } 771 772 /// Invalidate the Lattice Value of \p Call and its users after specializing 773 /// the call. Then recompute it. 774 void resetLatticeValueFor(CallBase *Call) { 775 // Calls to void returning functions do not need invalidation. 776 Function *F = Call->getCalledFunction(); 777 (void)F; 778 assert(!F->getReturnType()->isVoidTy() && 779 (TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) && 780 "All non void specializations should be tracked"); 781 invalidate(Call); 782 handleCallResult(*Call); 783 } 784 785 const ValueLatticeElement &getLatticeValueFor(Value *V) const { 786 assert(!V->getType()->isStructTy() && 787 "Should use getStructLatticeValueFor"); 788 DenseMap<Value *, ValueLatticeElement>::const_iterator I = 789 ValueState.find(V); 790 assert(I != ValueState.end() && 791 "V not found in ValueState nor Paramstate map!"); 792 return I->second; 793 } 794 795 const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() { 796 return TrackedRetVals; 797 } 798 799 const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() { 800 return TrackedGlobals; 801 } 802 803 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { 804 return MRVFunctionsTracked; 805 } 806 807 void markOverdefined(Value *V) { 808 if (auto *STy = dyn_cast<StructType>(V->getType())) 809 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 810 markOverdefined(getStructValueState(V, i), V); 811 else 812 markOverdefined(ValueState[V], V); 813 } 814 815 void trackValueOfArgument(Argument *A) { 816 if (A->getType()->isIntOrIntVectorTy()) { 817 if (std::optional<ConstantRange> Range = A->getRange()) { 818 markConstantRange(ValueState[A], A, *Range); 819 return; 820 } 821 } 822 // Assume nothing about the incoming arguments without range. 823 markOverdefined(A); 824 } 825 826 bool isStructLatticeConstant(Function *F, StructType *STy); 827 828 Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const; 829 830 Constant *getConstantOrNull(Value *V) const; 831 832 SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() { 833 return TrackingIncomingArguments; 834 } 835 836 void setLatticeValueForSpecializationArguments(Function *F, 837 const SmallVectorImpl<ArgInfo> &Args); 838 839 void markFunctionUnreachable(Function *F) { 840 for (auto &BB : *F) 841 BBExecutable.erase(&BB); 842 } 843 844 void solveWhileResolvedUndefsIn(Module &M) { 845 bool ResolvedUndefs = true; 846 while (ResolvedUndefs) { 847 solve(); 848 ResolvedUndefs = false; 849 for (Function &F : M) 850 ResolvedUndefs |= resolvedUndefsIn(F); 851 } 852 } 853 854 void solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) { 855 bool ResolvedUndefs = true; 856 while (ResolvedUndefs) { 857 solve(); 858 ResolvedUndefs = false; 859 for (Function *F : WorkList) 860 ResolvedUndefs |= resolvedUndefsIn(*F); 861 } 862 } 863 864 void solveWhileResolvedUndefs() { 865 bool ResolvedUndefs = true; 866 while (ResolvedUndefs) { 867 solve(); 868 ResolvedUndefs = false; 869 for (Value *V : Invalidated) 870 if (auto *I = dyn_cast<Instruction>(V)) 871 ResolvedUndefs |= resolvedUndef(*I); 872 } 873 Invalidated.clear(); 874 } 875 }; 876 877 } // namespace llvm 878 879 bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) { 880 if (!BBExecutable.insert(BB).second) 881 return false; 882 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 883 BBWorkList.push_back(BB); // Add the block to the work list! 884 return true; 885 } 886 887 void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) { 888 if (IV.isOverdefined()) { 889 if (OverdefinedInstWorkList.empty() || OverdefinedInstWorkList.back() != V) 890 OverdefinedInstWorkList.push_back(V); 891 return; 892 } 893 if (InstWorkList.empty() || InstWorkList.back() != V) 894 InstWorkList.push_back(V); 895 } 896 897 void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) { 898 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n'); 899 pushToWorkList(IV, V); 900 } 901 902 bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V, 903 Constant *C, bool MayIncludeUndef) { 904 if (!IV.markConstant(C, MayIncludeUndef)) 905 return false; 906 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 907 pushToWorkList(IV, V); 908 return true; 909 } 910 911 bool SCCPInstVisitor::markConstantRange(ValueLatticeElement &IV, Value *V, 912 const ConstantRange &CR) { 913 if (!IV.markConstantRange(CR)) 914 return false; 915 LLVM_DEBUG(dbgs() << "markConstantRange: " << CR << ": " << *V << '\n'); 916 pushToWorkList(IV, V); 917 return true; 918 } 919 920 bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) { 921 if (!IV.markOverdefined()) 922 return false; 923 924 LLVM_DEBUG(dbgs() << "markOverdefined: "; 925 if (auto *F = dyn_cast<Function>(V)) dbgs() 926 << "Function '" << F->getName() << "'\n"; 927 else dbgs() << *V << '\n'); 928 // Only instructions go on the work list 929 pushToWorkList(IV, V); 930 return true; 931 } 932 933 bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) { 934 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 935 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 936 assert(It != TrackedMultipleRetVals.end()); 937 ValueLatticeElement LV = It->second; 938 if (!SCCPSolver::isConstant(LV)) 939 return false; 940 } 941 return true; 942 } 943 944 Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV, 945 Type *Ty) const { 946 if (LV.isConstant()) { 947 Constant *C = LV.getConstant(); 948 assert(C->getType() == Ty && "Type mismatch"); 949 return C; 950 } 951 952 if (LV.isConstantRange()) { 953 const auto &CR = LV.getConstantRange(); 954 if (CR.getSingleElement()) 955 return ConstantInt::get(Ty, *CR.getSingleElement()); 956 } 957 return nullptr; 958 } 959 960 Constant *SCCPInstVisitor::getConstantOrNull(Value *V) const { 961 Constant *Const = nullptr; 962 if (V->getType()->isStructTy()) { 963 std::vector<ValueLatticeElement> LVs = getStructLatticeValueFor(V); 964 if (any_of(LVs, SCCPSolver::isOverdefined)) 965 return nullptr; 966 std::vector<Constant *> ConstVals; 967 auto *ST = cast<StructType>(V->getType()); 968 for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) { 969 ValueLatticeElement LV = LVs[I]; 970 ConstVals.push_back(SCCPSolver::isConstant(LV) 971 ? getConstant(LV, ST->getElementType(I)) 972 : UndefValue::get(ST->getElementType(I))); 973 } 974 Const = ConstantStruct::get(ST, ConstVals); 975 } else { 976 const ValueLatticeElement &LV = getLatticeValueFor(V); 977 if (SCCPSolver::isOverdefined(LV)) 978 return nullptr; 979 Const = SCCPSolver::isConstant(LV) ? getConstant(LV, V->getType()) 980 : UndefValue::get(V->getType()); 981 } 982 assert(Const && "Constant is nullptr here!"); 983 return Const; 984 } 985 986 void SCCPInstVisitor::setLatticeValueForSpecializationArguments(Function *F, 987 const SmallVectorImpl<ArgInfo> &Args) { 988 assert(!Args.empty() && "Specialization without arguments"); 989 assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() && 990 "Functions should have the same number of arguments"); 991 992 auto Iter = Args.begin(); 993 Function::arg_iterator NewArg = F->arg_begin(); 994 Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin(); 995 for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) { 996 997 LLVM_DEBUG(dbgs() << "SCCP: Marking argument " 998 << NewArg->getNameOrAsOperand() << "\n"); 999 1000 // Mark the argument constants in the new function 1001 // or copy the lattice state over from the old function. 1002 if (Iter != Args.end() && Iter->Formal == &*OldArg) { 1003 if (auto *STy = dyn_cast<StructType>(NewArg->getType())) { 1004 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { 1005 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}]; 1006 NewValue.markConstant(Iter->Actual->getAggregateElement(I)); 1007 } 1008 } else { 1009 ValueState[&*NewArg].markConstant(Iter->Actual); 1010 } 1011 ++Iter; 1012 } else { 1013 if (auto *STy = dyn_cast<StructType>(NewArg->getType())) { 1014 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { 1015 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}]; 1016 NewValue = StructValueState[{&*OldArg, I}]; 1017 } 1018 } else { 1019 ValueLatticeElement &NewValue = ValueState[&*NewArg]; 1020 NewValue = ValueState[&*OldArg]; 1021 } 1022 } 1023 } 1024 } 1025 1026 void SCCPInstVisitor::visitInstruction(Instruction &I) { 1027 // All the instructions we don't do any special handling for just 1028 // go to overdefined. 1029 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); 1030 markOverdefined(&I); 1031 } 1032 1033 bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V, 1034 ValueLatticeElement MergeWithV, 1035 ValueLatticeElement::MergeOptions Opts) { 1036 if (IV.mergeIn(MergeWithV, Opts)) { 1037 pushToWorkList(IV, V); 1038 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : " 1039 << IV << "\n"); 1040 return true; 1041 } 1042 return false; 1043 } 1044 1045 bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 1046 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 1047 return false; // This edge is already known to be executable! 1048 1049 if (!markBlockExecutable(Dest)) { 1050 // If the destination is already executable, we just made an *edge* 1051 // feasible that wasn't before. Revisit the PHI nodes in the block 1052 // because they have potentially new operands. 1053 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 1054 << " -> " << Dest->getName() << '\n'); 1055 1056 for (PHINode &PN : Dest->phis()) 1057 visitPHINode(PN); 1058 } 1059 return true; 1060 } 1061 1062 // getFeasibleSuccessors - Return a vector of booleans to indicate which 1063 // successors are reachable from a given terminator instruction. 1064 void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI, 1065 SmallVectorImpl<bool> &Succs) { 1066 Succs.resize(TI.getNumSuccessors()); 1067 if (auto *BI = dyn_cast<BranchInst>(&TI)) { 1068 if (BI->isUnconditional()) { 1069 Succs[0] = true; 1070 return; 1071 } 1072 1073 ValueLatticeElement BCValue = getValueState(BI->getCondition()); 1074 ConstantInt *CI = getConstantInt(BCValue, BI->getCondition()->getType()); 1075 if (!CI) { 1076 // Overdefined condition variables, and branches on unfoldable constant 1077 // conditions, mean the branch could go either way. 1078 if (!BCValue.isUnknownOrUndef()) 1079 Succs[0] = Succs[1] = true; 1080 return; 1081 } 1082 1083 // Constant condition variables mean the branch can only go a single way. 1084 Succs[CI->isZero()] = true; 1085 return; 1086 } 1087 1088 // We cannot analyze special terminators, so consider all successors 1089 // executable. 1090 if (TI.isSpecialTerminator()) { 1091 Succs.assign(TI.getNumSuccessors(), true); 1092 return; 1093 } 1094 1095 if (auto *SI = dyn_cast<SwitchInst>(&TI)) { 1096 if (!SI->getNumCases()) { 1097 Succs[0] = true; 1098 return; 1099 } 1100 const ValueLatticeElement &SCValue = getValueState(SI->getCondition()); 1101 if (ConstantInt *CI = 1102 getConstantInt(SCValue, SI->getCondition()->getType())) { 1103 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; 1104 return; 1105 } 1106 1107 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM 1108 // is ready. 1109 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) { 1110 const ConstantRange &Range = SCValue.getConstantRange(); 1111 unsigned ReachableCaseCount = 0; 1112 for (const auto &Case : SI->cases()) { 1113 const APInt &CaseValue = Case.getCaseValue()->getValue(); 1114 if (Range.contains(CaseValue)) { 1115 Succs[Case.getSuccessorIndex()] = true; 1116 ++ReachableCaseCount; 1117 } 1118 } 1119 1120 Succs[SI->case_default()->getSuccessorIndex()] = 1121 Range.isSizeLargerThan(ReachableCaseCount); 1122 return; 1123 } 1124 1125 // Overdefined or unknown condition? All destinations are executable! 1126 if (!SCValue.isUnknownOrUndef()) 1127 Succs.assign(TI.getNumSuccessors(), true); 1128 return; 1129 } 1130 1131 // In case of indirect branch and its address is a blockaddress, we mark 1132 // the target as executable. 1133 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { 1134 // Casts are folded by visitCastInst. 1135 ValueLatticeElement IBRValue = getValueState(IBR->getAddress()); 1136 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>( 1137 getConstant(IBRValue, IBR->getAddress()->getType())); 1138 if (!Addr) { // Overdefined or unknown condition? 1139 // All destinations are executable! 1140 if (!IBRValue.isUnknownOrUndef()) 1141 Succs.assign(TI.getNumSuccessors(), true); 1142 return; 1143 } 1144 1145 BasicBlock *T = Addr->getBasicBlock(); 1146 assert(Addr->getFunction() == T->getParent() && 1147 "Block address of a different function ?"); 1148 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { 1149 // This is the target. 1150 if (IBR->getDestination(i) == T) { 1151 Succs[i] = true; 1152 return; 1153 } 1154 } 1155 1156 // If we didn't find our destination in the IBR successor list, then we 1157 // have undefined behavior. Its ok to assume no successor is executable. 1158 return; 1159 } 1160 1161 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); 1162 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 1163 } 1164 1165 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 1166 // block to the 'To' basic block is currently feasible. 1167 bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 1168 // Check if we've called markEdgeExecutable on the edge yet. (We could 1169 // be more aggressive and try to consider edges which haven't been marked 1170 // yet, but there isn't any need.) 1171 return KnownFeasibleEdges.count(Edge(From, To)); 1172 } 1173 1174 // visit Implementations - Something changed in this instruction, either an 1175 // operand made a transition, or the instruction is newly executable. Change 1176 // the value type of I to reflect these changes if appropriate. This method 1177 // makes sure to do the following actions: 1178 // 1179 // 1. If a phi node merges two constants in, and has conflicting value coming 1180 // from different branches, or if the PHI node merges in an overdefined 1181 // value, then the PHI node becomes overdefined. 1182 // 2. If a phi node merges only constants in, and they all agree on value, the 1183 // PHI node becomes a constant value equal to that. 1184 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 1185 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 1186 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 1187 // 6. If a conditional branch has a value that is constant, make the selected 1188 // destination executable 1189 // 7. If a conditional branch has a value that is overdefined, make all 1190 // successors executable. 1191 void SCCPInstVisitor::visitPHINode(PHINode &PN) { 1192 // If this PN returns a struct, just mark the result overdefined. 1193 // TODO: We could do a lot better than this if code actually uses this. 1194 if (PN.getType()->isStructTy()) 1195 return (void)markOverdefined(&PN); 1196 1197 if (getValueState(&PN).isOverdefined()) 1198 return; // Quick exit 1199 1200 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 1201 // and slow us down a lot. Just mark them overdefined. 1202 if (PN.getNumIncomingValues() > 64) 1203 return (void)markOverdefined(&PN); 1204 1205 unsigned NumActiveIncoming = 0; 1206 1207 // Look at all of the executable operands of the PHI node. If any of them 1208 // are overdefined, the PHI becomes overdefined as well. If they are all 1209 // constant, and they agree with each other, the PHI becomes the identical 1210 // constant. If they are constant and don't agree, the PHI is a constant 1211 // range. If there are no executable operands, the PHI remains unknown. 1212 ValueLatticeElement PhiState = getValueState(&PN); 1213 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1214 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 1215 continue; 1216 1217 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i)); 1218 PhiState.mergeIn(IV); 1219 NumActiveIncoming++; 1220 if (PhiState.isOverdefined()) 1221 break; 1222 } 1223 1224 // We allow up to 1 range extension per active incoming value and one 1225 // additional extension. Note that we manually adjust the number of range 1226 // extensions to match the number of active incoming values. This helps to 1227 // limit multiple extensions caused by the same incoming value, if other 1228 // incoming values are equal. 1229 mergeInValue(&PN, PhiState, 1230 ValueLatticeElement::MergeOptions().setMaxWidenSteps( 1231 NumActiveIncoming + 1)); 1232 ValueLatticeElement &PhiStateRef = getValueState(&PN); 1233 PhiStateRef.setNumRangeExtensions( 1234 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions())); 1235 } 1236 1237 void SCCPInstVisitor::visitReturnInst(ReturnInst &I) { 1238 if (I.getNumOperands() == 0) 1239 return; // ret void 1240 1241 Function *F = I.getParent()->getParent(); 1242 Value *ResultOp = I.getOperand(0); 1243 1244 // If we are tracking the return value of this function, merge it in. 1245 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 1246 auto TFRVI = TrackedRetVals.find(F); 1247 if (TFRVI != TrackedRetVals.end()) { 1248 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 1249 return; 1250 } 1251 } 1252 1253 // Handle functions that return multiple values. 1254 if (!TrackedMultipleRetVals.empty()) { 1255 if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) 1256 if (MRVFunctionsTracked.count(F)) 1257 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1258 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 1259 getStructValueState(ResultOp, i)); 1260 } 1261 } 1262 1263 void SCCPInstVisitor::visitTerminator(Instruction &TI) { 1264 SmallVector<bool, 16> SuccFeasible; 1265 getFeasibleSuccessors(TI, SuccFeasible); 1266 1267 BasicBlock *BB = TI.getParent(); 1268 1269 // Mark all feasible successors executable. 1270 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 1271 if (SuccFeasible[i]) 1272 markEdgeExecutable(BB, TI.getSuccessor(i)); 1273 } 1274 1275 void SCCPInstVisitor::visitCastInst(CastInst &I) { 1276 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1277 // discover a concrete value later. 1278 if (ValueState[&I].isOverdefined()) 1279 return; 1280 1281 ValueLatticeElement OpSt = getValueState(I.getOperand(0)); 1282 if (OpSt.isUnknownOrUndef()) 1283 return; 1284 1285 if (Constant *OpC = getConstant(OpSt, I.getOperand(0)->getType())) { 1286 // Fold the constant as we build. 1287 if (Constant *C = 1288 ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL)) 1289 return (void)markConstant(&I, C); 1290 } 1291 1292 // Ignore bitcasts, as they may change the number of vector elements. 1293 if (I.getDestTy()->isIntOrIntVectorTy() && 1294 I.getSrcTy()->isIntOrIntVectorTy() && 1295 I.getOpcode() != Instruction::BitCast) { 1296 auto &LV = getValueState(&I); 1297 ConstantRange OpRange = 1298 OpSt.asConstantRange(I.getSrcTy(), /*UndefAllowed=*/false); 1299 1300 Type *DestTy = I.getDestTy(); 1301 ConstantRange Res = 1302 OpRange.castOp(I.getOpcode(), DestTy->getScalarSizeInBits()); 1303 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res)); 1304 } else 1305 markOverdefined(&I); 1306 } 1307 1308 void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI, 1309 const WithOverflowInst *WO, 1310 unsigned Idx) { 1311 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 1312 ValueLatticeElement L = getValueState(LHS); 1313 ValueLatticeElement R = getValueState(RHS); 1314 addAdditionalUser(LHS, &EVI); 1315 addAdditionalUser(RHS, &EVI); 1316 if (L.isUnknownOrUndef() || R.isUnknownOrUndef()) 1317 return; // Wait to resolve. 1318 1319 Type *Ty = LHS->getType(); 1320 ConstantRange LR = L.asConstantRange(Ty, /*UndefAllowed=*/false); 1321 ConstantRange RR = R.asConstantRange(Ty, /*UndefAllowed=*/false); 1322 if (Idx == 0) { 1323 ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR); 1324 mergeInValue(&EVI, ValueLatticeElement::getRange(Res)); 1325 } else { 1326 assert(Idx == 1 && "Index can only be 0 or 1"); 1327 ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 1328 WO->getBinaryOp(), RR, WO->getNoWrapKind()); 1329 if (NWRegion.contains(LR)) 1330 return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType())); 1331 markOverdefined(&EVI); 1332 } 1333 } 1334 1335 void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) { 1336 // If this returns a struct, mark all elements over defined, we don't track 1337 // structs in structs. 1338 if (EVI.getType()->isStructTy()) 1339 return (void)markOverdefined(&EVI); 1340 1341 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1342 // discover a concrete value later. 1343 if (ValueState[&EVI].isOverdefined()) 1344 return (void)markOverdefined(&EVI); 1345 1346 // If this is extracting from more than one level of struct, we don't know. 1347 if (EVI.getNumIndices() != 1) 1348 return (void)markOverdefined(&EVI); 1349 1350 Value *AggVal = EVI.getAggregateOperand(); 1351 if (AggVal->getType()->isStructTy()) { 1352 unsigned i = *EVI.idx_begin(); 1353 if (auto *WO = dyn_cast<WithOverflowInst>(AggVal)) 1354 return handleExtractOfWithOverflow(EVI, WO, i); 1355 ValueLatticeElement EltVal = getStructValueState(AggVal, i); 1356 mergeInValue(getValueState(&EVI), &EVI, EltVal); 1357 } else { 1358 // Otherwise, must be extracting from an array. 1359 return (void)markOverdefined(&EVI); 1360 } 1361 } 1362 1363 void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) { 1364 auto *STy = dyn_cast<StructType>(IVI.getType()); 1365 if (!STy) 1366 return (void)markOverdefined(&IVI); 1367 1368 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1369 // discover a concrete value later. 1370 if (SCCPSolver::isOverdefined(ValueState[&IVI])) 1371 return (void)markOverdefined(&IVI); 1372 1373 // If this has more than one index, we can't handle it, drive all results to 1374 // undef. 1375 if (IVI.getNumIndices() != 1) 1376 return (void)markOverdefined(&IVI); 1377 1378 Value *Aggr = IVI.getAggregateOperand(); 1379 unsigned Idx = *IVI.idx_begin(); 1380 1381 // Compute the result based on what we're inserting. 1382 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1383 // This passes through all values that aren't the inserted element. 1384 if (i != Idx) { 1385 ValueLatticeElement EltVal = getStructValueState(Aggr, i); 1386 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 1387 continue; 1388 } 1389 1390 Value *Val = IVI.getInsertedValueOperand(); 1391 if (Val->getType()->isStructTy()) 1392 // We don't track structs in structs. 1393 markOverdefined(getStructValueState(&IVI, i), &IVI); 1394 else { 1395 ValueLatticeElement InVal = getValueState(Val); 1396 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 1397 } 1398 } 1399 } 1400 1401 void SCCPInstVisitor::visitSelectInst(SelectInst &I) { 1402 // If this select returns a struct, just mark the result overdefined. 1403 // TODO: We could do a lot better than this if code actually uses this. 1404 if (I.getType()->isStructTy()) 1405 return (void)markOverdefined(&I); 1406 1407 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1408 // discover a concrete value later. 1409 if (ValueState[&I].isOverdefined()) 1410 return (void)markOverdefined(&I); 1411 1412 ValueLatticeElement CondValue = getValueState(I.getCondition()); 1413 if (CondValue.isUnknownOrUndef()) 1414 return; 1415 1416 if (ConstantInt *CondCB = 1417 getConstantInt(CondValue, I.getCondition()->getType())) { 1418 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 1419 mergeInValue(&I, getValueState(OpVal)); 1420 return; 1421 } 1422 1423 // Otherwise, the condition is overdefined or a constant we can't evaluate. 1424 // See if we can produce something better than overdefined based on the T/F 1425 // value. 1426 ValueLatticeElement TVal = getValueState(I.getTrueValue()); 1427 ValueLatticeElement FVal = getValueState(I.getFalseValue()); 1428 1429 bool Changed = ValueState[&I].mergeIn(TVal); 1430 Changed |= ValueState[&I].mergeIn(FVal); 1431 if (Changed) 1432 pushToWorkListMsg(ValueState[&I], &I); 1433 } 1434 1435 // Handle Unary Operators. 1436 void SCCPInstVisitor::visitUnaryOperator(Instruction &I) { 1437 ValueLatticeElement V0State = getValueState(I.getOperand(0)); 1438 1439 ValueLatticeElement &IV = ValueState[&I]; 1440 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1441 // discover a concrete value later. 1442 if (SCCPSolver::isOverdefined(IV)) 1443 return (void)markOverdefined(&I); 1444 1445 // If something is unknown/undef, wait for it to resolve. 1446 if (V0State.isUnknownOrUndef()) 1447 return; 1448 1449 if (SCCPSolver::isConstant(V0State)) 1450 if (Constant *C = ConstantFoldUnaryOpOperand( 1451 I.getOpcode(), getConstant(V0State, I.getType()), DL)) 1452 return (void)markConstant(IV, &I, C); 1453 1454 markOverdefined(&I); 1455 } 1456 1457 void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) { 1458 // If this freeze returns a struct, just mark the result overdefined. 1459 // TODO: We could do a lot better than this. 1460 if (I.getType()->isStructTy()) 1461 return (void)markOverdefined(&I); 1462 1463 ValueLatticeElement V0State = getValueState(I.getOperand(0)); 1464 ValueLatticeElement &IV = ValueState[&I]; 1465 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1466 // discover a concrete value later. 1467 if (SCCPSolver::isOverdefined(IV)) 1468 return (void)markOverdefined(&I); 1469 1470 // If something is unknown/undef, wait for it to resolve. 1471 if (V0State.isUnknownOrUndef()) 1472 return; 1473 1474 if (SCCPSolver::isConstant(V0State) && 1475 isGuaranteedNotToBeUndefOrPoison(getConstant(V0State, I.getType()))) 1476 return (void)markConstant(IV, &I, getConstant(V0State, I.getType())); 1477 1478 markOverdefined(&I); 1479 } 1480 1481 // Handle Binary Operators. 1482 void SCCPInstVisitor::visitBinaryOperator(Instruction &I) { 1483 ValueLatticeElement V1State = getValueState(I.getOperand(0)); 1484 ValueLatticeElement V2State = getValueState(I.getOperand(1)); 1485 1486 ValueLatticeElement &IV = ValueState[&I]; 1487 if (IV.isOverdefined()) 1488 return; 1489 1490 // If something is undef, wait for it to resolve. 1491 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) 1492 return; 1493 1494 if (V1State.isOverdefined() && V2State.isOverdefined()) 1495 return (void)markOverdefined(&I); 1496 1497 // If either of the operands is a constant, try to fold it to a constant. 1498 // TODO: Use information from notconstant better. 1499 if ((V1State.isConstant() || V2State.isConstant())) { 1500 Value *V1 = SCCPSolver::isConstant(V1State) 1501 ? getConstant(V1State, I.getOperand(0)->getType()) 1502 : I.getOperand(0); 1503 Value *V2 = SCCPSolver::isConstant(V2State) 1504 ? getConstant(V2State, I.getOperand(1)->getType()) 1505 : I.getOperand(1); 1506 Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL)); 1507 auto *C = dyn_cast_or_null<Constant>(R); 1508 if (C) { 1509 // Conservatively assume that the result may be based on operands that may 1510 // be undef. Note that we use mergeInValue to combine the constant with 1511 // the existing lattice value for I, as different constants might be found 1512 // after one of the operands go to overdefined, e.g. due to one operand 1513 // being a special floating value. 1514 ValueLatticeElement NewV; 1515 NewV.markConstant(C, /*MayIncludeUndef=*/true); 1516 return (void)mergeInValue(&I, NewV); 1517 } 1518 } 1519 1520 // Only use ranges for binary operators on integers. 1521 if (!I.getType()->isIntOrIntVectorTy()) 1522 return markOverdefined(&I); 1523 1524 // Try to simplify to a constant range. 1525 ConstantRange A = 1526 V1State.asConstantRange(I.getType(), /*UndefAllowed=*/false); 1527 ConstantRange B = 1528 V2State.asConstantRange(I.getType(), /*UndefAllowed=*/false); 1529 1530 auto *BO = cast<BinaryOperator>(&I); 1531 ConstantRange R = ConstantRange::getEmpty(I.getType()->getScalarSizeInBits()); 1532 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) 1533 R = A.overflowingBinaryOp(BO->getOpcode(), B, OBO->getNoWrapKind()); 1534 else 1535 R = A.binaryOp(BO->getOpcode(), B); 1536 mergeInValue(&I, ValueLatticeElement::getRange(R)); 1537 1538 // TODO: Currently we do not exploit special values that produce something 1539 // better than overdefined with an overdefined operand for vector or floating 1540 // point types, like and <4 x i32> overdefined, zeroinitializer. 1541 } 1542 1543 // Handle ICmpInst instruction. 1544 void SCCPInstVisitor::visitCmpInst(CmpInst &I) { 1545 // Do not cache this lookup, getValueState calls later in the function might 1546 // invalidate the reference. 1547 if (SCCPSolver::isOverdefined(ValueState[&I])) 1548 return (void)markOverdefined(&I); 1549 1550 Value *Op1 = I.getOperand(0); 1551 Value *Op2 = I.getOperand(1); 1552 1553 // For parameters, use ParamState which includes constant range info if 1554 // available. 1555 auto V1State = getValueState(Op1); 1556 auto V2State = getValueState(Op2); 1557 1558 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL); 1559 if (C) { 1560 ValueLatticeElement CV; 1561 CV.markConstant(C); 1562 mergeInValue(&I, CV); 1563 return; 1564 } 1565 1566 // If operands are still unknown, wait for it to resolve. 1567 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) && 1568 !SCCPSolver::isConstant(ValueState[&I])) 1569 return; 1570 1571 markOverdefined(&I); 1572 } 1573 1574 // Handle getelementptr instructions. If all operands are constants then we 1575 // can turn this into a getelementptr ConstantExpr. 1576 void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 1577 if (SCCPSolver::isOverdefined(ValueState[&I])) 1578 return (void)markOverdefined(&I); 1579 1580 SmallVector<Constant *, 8> Operands; 1581 Operands.reserve(I.getNumOperands()); 1582 1583 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1584 ValueLatticeElement State = getValueState(I.getOperand(i)); 1585 if (State.isUnknownOrUndef()) 1586 return; // Operands are not resolved yet. 1587 1588 if (SCCPSolver::isOverdefined(State)) 1589 return (void)markOverdefined(&I); 1590 1591 if (Constant *C = getConstant(State, I.getOperand(i)->getType())) { 1592 Operands.push_back(C); 1593 continue; 1594 } 1595 1596 return (void)markOverdefined(&I); 1597 } 1598 1599 if (Constant *C = ConstantFoldInstOperands(&I, Operands, DL)) 1600 markConstant(&I, C); 1601 } 1602 1603 void SCCPInstVisitor::visitStoreInst(StoreInst &SI) { 1604 // If this store is of a struct, ignore it. 1605 if (SI.getOperand(0)->getType()->isStructTy()) 1606 return; 1607 1608 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1609 return; 1610 1611 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1612 auto I = TrackedGlobals.find(GV); 1613 if (I == TrackedGlobals.end()) 1614 return; 1615 1616 // Get the value we are storing into the global, then merge it. 1617 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)), 1618 ValueLatticeElement::MergeOptions().setCheckWiden(false)); 1619 if (I->second.isOverdefined()) 1620 TrackedGlobals.erase(I); // No need to keep tracking this! 1621 } 1622 1623 static ValueLatticeElement getValueFromMetadata(const Instruction *I) { 1624 if (I->getType()->isIntOrIntVectorTy()) { 1625 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) 1626 return ValueLatticeElement::getRange( 1627 getConstantRangeFromMetadata(*Ranges)); 1628 1629 if (const auto *CB = dyn_cast<CallBase>(I)) 1630 if (std::optional<ConstantRange> Range = CB->getRange()) 1631 return ValueLatticeElement::getRange(*Range); 1632 } 1633 if (I->hasMetadata(LLVMContext::MD_nonnull)) 1634 return ValueLatticeElement::getNot( 1635 ConstantPointerNull::get(cast<PointerType>(I->getType()))); 1636 return ValueLatticeElement::getOverdefined(); 1637 } 1638 1639 // Handle load instructions. If the operand is a constant pointer to a constant 1640 // global, we can replace the load with the loaded constant value! 1641 void SCCPInstVisitor::visitLoadInst(LoadInst &I) { 1642 // If this load is of a struct or the load is volatile, just mark the result 1643 // as overdefined. 1644 if (I.getType()->isStructTy() || I.isVolatile()) 1645 return (void)markOverdefined(&I); 1646 1647 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1648 // discover a concrete value later. 1649 if (ValueState[&I].isOverdefined()) 1650 return (void)markOverdefined(&I); 1651 1652 ValueLatticeElement PtrVal = getValueState(I.getOperand(0)); 1653 if (PtrVal.isUnknownOrUndef()) 1654 return; // The pointer is not resolved yet! 1655 1656 ValueLatticeElement &IV = ValueState[&I]; 1657 1658 if (SCCPSolver::isConstant(PtrVal)) { 1659 Constant *Ptr = getConstant(PtrVal, I.getOperand(0)->getType()); 1660 1661 // load null is undefined. 1662 if (isa<ConstantPointerNull>(Ptr)) { 1663 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) 1664 return (void)markOverdefined(IV, &I); 1665 else 1666 return; 1667 } 1668 1669 // Transform load (constant global) into the value loaded. 1670 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { 1671 if (!TrackedGlobals.empty()) { 1672 // If we are tracking this global, merge in the known value for it. 1673 auto It = TrackedGlobals.find(GV); 1674 if (It != TrackedGlobals.end()) { 1675 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts()); 1676 return; 1677 } 1678 } 1679 } 1680 1681 // Transform load from a constant into a constant if possible. 1682 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) 1683 return (void)markConstant(IV, &I, C); 1684 } 1685 1686 // Fall back to metadata. 1687 mergeInValue(&I, getValueFromMetadata(&I)); 1688 } 1689 1690 void SCCPInstVisitor::visitCallBase(CallBase &CB) { 1691 handleCallResult(CB); 1692 handleCallArguments(CB); 1693 } 1694 1695 void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) { 1696 Function *F = CB.getCalledFunction(); 1697 1698 // Void return and not tracking callee, just bail. 1699 if (CB.getType()->isVoidTy()) 1700 return; 1701 1702 // Always mark struct return as overdefined. 1703 if (CB.getType()->isStructTy()) 1704 return (void)markOverdefined(&CB); 1705 1706 // Otherwise, if we have a single return value case, and if the function is 1707 // a declaration, maybe we can constant fold it. 1708 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) { 1709 SmallVector<Constant *, 8> Operands; 1710 for (const Use &A : CB.args()) { 1711 if (A.get()->getType()->isStructTy()) 1712 return markOverdefined(&CB); // Can't handle struct args. 1713 if (A.get()->getType()->isMetadataTy()) 1714 continue; // Carried in CB, not allowed in Operands. 1715 ValueLatticeElement State = getValueState(A); 1716 1717 if (State.isUnknownOrUndef()) 1718 return; // Operands are not resolved yet. 1719 if (SCCPSolver::isOverdefined(State)) 1720 return (void)markOverdefined(&CB); 1721 assert(SCCPSolver::isConstant(State) && "Unknown state!"); 1722 Operands.push_back(getConstant(State, A->getType())); 1723 } 1724 1725 if (SCCPSolver::isOverdefined(getValueState(&CB))) 1726 return (void)markOverdefined(&CB); 1727 1728 // If we can constant fold this, mark the result of the call as a 1729 // constant. 1730 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) 1731 return (void)markConstant(&CB, C); 1732 } 1733 1734 // Fall back to metadata. 1735 mergeInValue(&CB, getValueFromMetadata(&CB)); 1736 } 1737 1738 void SCCPInstVisitor::handleCallArguments(CallBase &CB) { 1739 Function *F = CB.getCalledFunction(); 1740 // If this is a local function that doesn't have its address taken, mark its 1741 // entry block executable and merge in the actual arguments to the call into 1742 // the formal arguments of the function. 1743 if (TrackingIncomingArguments.count(F)) { 1744 markBlockExecutable(&F->front()); 1745 1746 // Propagate information from this call site into the callee. 1747 auto CAI = CB.arg_begin(); 1748 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 1749 ++AI, ++CAI) { 1750 // If this argument is byval, and if the function is not readonly, there 1751 // will be an implicit copy formed of the input aggregate. 1752 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1753 markOverdefined(&*AI); 1754 continue; 1755 } 1756 1757 if (auto *STy = dyn_cast<StructType>(AI->getType())) { 1758 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1759 ValueLatticeElement CallArg = getStructValueState(*CAI, i); 1760 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg, 1761 getMaxWidenStepsOpts()); 1762 } 1763 } else 1764 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts()); 1765 } 1766 } 1767 } 1768 1769 void SCCPInstVisitor::handleCallResult(CallBase &CB) { 1770 Function *F = CB.getCalledFunction(); 1771 1772 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) { 1773 if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 1774 if (ValueState[&CB].isOverdefined()) 1775 return; 1776 1777 Value *CopyOf = CB.getOperand(0); 1778 ValueLatticeElement CopyOfVal = getValueState(CopyOf); 1779 const auto *PI = getPredicateInfoFor(&CB); 1780 assert(PI && "Missing predicate info for ssa.copy"); 1781 1782 const std::optional<PredicateConstraint> &Constraint = 1783 PI->getConstraint(); 1784 if (!Constraint) { 1785 mergeInValue(ValueState[&CB], &CB, CopyOfVal); 1786 return; 1787 } 1788 1789 CmpInst::Predicate Pred = Constraint->Predicate; 1790 Value *OtherOp = Constraint->OtherOp; 1791 1792 // Wait until OtherOp is resolved. 1793 if (getValueState(OtherOp).isUnknown()) { 1794 addAdditionalUser(OtherOp, &CB); 1795 return; 1796 } 1797 1798 ValueLatticeElement CondVal = getValueState(OtherOp); 1799 ValueLatticeElement &IV = ValueState[&CB]; 1800 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) { 1801 auto ImposedCR = 1802 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType())); 1803 1804 // Get the range imposed by the condition. 1805 if (CondVal.isConstantRange()) 1806 ImposedCR = ConstantRange::makeAllowedICmpRegion( 1807 Pred, CondVal.getConstantRange()); 1808 1809 // Combine range info for the original value with the new range from the 1810 // condition. 1811 auto CopyOfCR = CopyOfVal.asConstantRange(CopyOf->getType(), 1812 /*UndefAllowed=*/true); 1813 // Treat an unresolved input like a full range. 1814 if (CopyOfCR.isEmptySet()) 1815 CopyOfCR = ConstantRange::getFull(CopyOfCR.getBitWidth()); 1816 auto NewCR = ImposedCR.intersectWith(CopyOfCR); 1817 // If the existing information is != x, do not use the information from 1818 // a chained predicate, as the != x information is more likely to be 1819 // helpful in practice. 1820 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement()) 1821 NewCR = CopyOfCR; 1822 1823 // The new range is based on a branch condition. That guarantees that 1824 // neither of the compare operands can be undef in the branch targets, 1825 // unless we have conditions that are always true/false (e.g. icmp ule 1826 // i32, %a, i32_max). For the latter overdefined/empty range will be 1827 // inferred, but the branch will get folded accordingly anyways. 1828 addAdditionalUser(OtherOp, &CB); 1829 mergeInValue( 1830 IV, &CB, 1831 ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false)); 1832 return; 1833 } else if (Pred == CmpInst::ICMP_EQ && 1834 (CondVal.isConstant() || CondVal.isNotConstant())) { 1835 // For non-integer values or integer constant expressions, only 1836 // propagate equal constants or not-constants. 1837 addAdditionalUser(OtherOp, &CB); 1838 mergeInValue(IV, &CB, CondVal); 1839 return; 1840 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) { 1841 // Propagate inequalities. 1842 addAdditionalUser(OtherOp, &CB); 1843 mergeInValue(IV, &CB, 1844 ValueLatticeElement::getNot(CondVal.getConstant())); 1845 return; 1846 } 1847 1848 return (void)mergeInValue(IV, &CB, CopyOfVal); 1849 } 1850 1851 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 1852 // Compute result range for intrinsics supported by ConstantRange. 1853 // Do this even if we don't know a range for all operands, as we may 1854 // still know something about the result range, e.g. of abs(x). 1855 SmallVector<ConstantRange, 2> OpRanges; 1856 for (Value *Op : II->args()) { 1857 const ValueLatticeElement &State = getValueState(Op); 1858 if (State.isUnknownOrUndef()) 1859 return; 1860 OpRanges.push_back( 1861 State.asConstantRange(Op->getType(), /*UndefAllowed=*/false)); 1862 } 1863 1864 ConstantRange Result = 1865 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges); 1866 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result)); 1867 } 1868 } 1869 1870 // The common case is that we aren't tracking the callee, either because we 1871 // are not doing interprocedural analysis or the callee is indirect, or is 1872 // external. Handle these cases first. 1873 if (!F || F->isDeclaration()) 1874 return handleCallOverdefined(CB); 1875 1876 // If this is a single/zero retval case, see if we're tracking the function. 1877 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 1878 if (!MRVFunctionsTracked.count(F)) 1879 return handleCallOverdefined(CB); // Not tracking this callee. 1880 1881 // If we are tracking this callee, propagate the result of the function 1882 // into this call site. 1883 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1884 mergeInValue(getStructValueState(&CB, i), &CB, 1885 TrackedMultipleRetVals[std::make_pair(F, i)], 1886 getMaxWidenStepsOpts()); 1887 } else { 1888 auto TFRVI = TrackedRetVals.find(F); 1889 if (TFRVI == TrackedRetVals.end()) 1890 return handleCallOverdefined(CB); // Not tracking this callee. 1891 1892 // If so, propagate the return value of the callee into this call result. 1893 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts()); 1894 } 1895 } 1896 1897 void SCCPInstVisitor::solve() { 1898 // Process the work lists until they are empty! 1899 while (!BBWorkList.empty() || !InstWorkList.empty() || 1900 !OverdefinedInstWorkList.empty()) { 1901 // Process the overdefined instruction's work list first, which drives other 1902 // things to overdefined more quickly. 1903 while (!OverdefinedInstWorkList.empty()) { 1904 Value *I = OverdefinedInstWorkList.pop_back_val(); 1905 Invalidated.erase(I); 1906 1907 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1908 1909 // "I" got into the work list because it either made the transition from 1910 // bottom to constant, or to overdefined. 1911 // 1912 // Anything on this worklist that is overdefined need not be visited 1913 // since all of its users will have already been marked as overdefined 1914 // Update all of the users of this instruction's value. 1915 // 1916 markUsersAsChanged(I); 1917 } 1918 1919 // Process the instruction work list. 1920 while (!InstWorkList.empty()) { 1921 Value *I = InstWorkList.pop_back_val(); 1922 Invalidated.erase(I); 1923 1924 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1925 1926 // "I" got into the work list because it made the transition from undef to 1927 // constant. 1928 // 1929 // Anything on this worklist that is overdefined need not be visited 1930 // since all of its users will have already been marked as overdefined. 1931 // Update all of the users of this instruction's value. 1932 // 1933 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1934 markUsersAsChanged(I); 1935 } 1936 1937 // Process the basic block work list. 1938 while (!BBWorkList.empty()) { 1939 BasicBlock *BB = BBWorkList.pop_back_val(); 1940 1941 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1942 1943 // Notify all instructions in this basic block that they are newly 1944 // executable. 1945 visit(BB); 1946 } 1947 } 1948 } 1949 1950 bool SCCPInstVisitor::resolvedUndef(Instruction &I) { 1951 // Look for instructions which produce undef values. 1952 if (I.getType()->isVoidTy()) 1953 return false; 1954 1955 if (auto *STy = dyn_cast<StructType>(I.getType())) { 1956 // Only a few things that can be structs matter for undef. 1957 1958 // Tracked calls must never be marked overdefined in resolvedUndefsIn. 1959 if (auto *CB = dyn_cast<CallBase>(&I)) 1960 if (Function *F = CB->getCalledFunction()) 1961 if (MRVFunctionsTracked.count(F)) 1962 return false; 1963 1964 // extractvalue and insertvalue don't need to be marked; they are 1965 // tracked as precisely as their operands. 1966 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1967 return false; 1968 // Send the results of everything else to overdefined. We could be 1969 // more precise than this but it isn't worth bothering. 1970 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1971 ValueLatticeElement &LV = getStructValueState(&I, i); 1972 if (LV.isUnknown()) { 1973 markOverdefined(LV, &I); 1974 return true; 1975 } 1976 } 1977 return false; 1978 } 1979 1980 ValueLatticeElement &LV = getValueState(&I); 1981 if (!LV.isUnknown()) 1982 return false; 1983 1984 // There are two reasons a call can have an undef result 1985 // 1. It could be tracked. 1986 // 2. It could be constant-foldable. 1987 // Because of the way we solve return values, tracked calls must 1988 // never be marked overdefined in resolvedUndefsIn. 1989 if (auto *CB = dyn_cast<CallBase>(&I)) 1990 if (Function *F = CB->getCalledFunction()) 1991 if (TrackedRetVals.count(F)) 1992 return false; 1993 1994 if (isa<LoadInst>(I)) { 1995 // A load here means one of two things: a load of undef from a global, 1996 // a load from an unknown pointer. Either way, having it return undef 1997 // is okay. 1998 return false; 1999 } 2000 2001 markOverdefined(&I); 2002 return true; 2003 } 2004 2005 /// While solving the dataflow for a function, we don't compute a result for 2006 /// operations with an undef operand, to allow undef to be lowered to a 2007 /// constant later. For example, constant folding of "zext i8 undef to i16" 2008 /// would result in "i16 0", and if undef is later lowered to "i8 1", then the 2009 /// zext result would become "i16 1" and would result into an overdefined 2010 /// lattice value once merged with the previous result. Not computing the 2011 /// result of the zext (treating undef the same as unknown) allows us to handle 2012 /// a later undef->constant lowering more optimally. 2013 /// 2014 /// However, if the operand remains undef when the solver returns, we do need 2015 /// to assign some result to the instruction (otherwise we would treat it as 2016 /// unreachable). For simplicity, we mark any instructions that are still 2017 /// unknown as overdefined. 2018 bool SCCPInstVisitor::resolvedUndefsIn(Function &F) { 2019 bool MadeChange = false; 2020 for (BasicBlock &BB : F) { 2021 if (!BBExecutable.count(&BB)) 2022 continue; 2023 2024 for (Instruction &I : BB) 2025 MadeChange |= resolvedUndef(I); 2026 } 2027 2028 LLVM_DEBUG(if (MadeChange) dbgs() 2029 << "\nResolved undefs in " << F.getName() << '\n'); 2030 2031 return MadeChange; 2032 } 2033 2034 //===----------------------------------------------------------------------===// 2035 // 2036 // SCCPSolver implementations 2037 // 2038 SCCPSolver::SCCPSolver( 2039 const DataLayout &DL, 2040 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 2041 LLVMContext &Ctx) 2042 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {} 2043 2044 SCCPSolver::~SCCPSolver() = default; 2045 2046 void SCCPSolver::addPredicateInfo(Function &F, DominatorTree &DT, 2047 AssumptionCache &AC) { 2048 Visitor->addPredicateInfo(F, DT, AC); 2049 } 2050 2051 bool SCCPSolver::markBlockExecutable(BasicBlock *BB) { 2052 return Visitor->markBlockExecutable(BB); 2053 } 2054 2055 const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) { 2056 return Visitor->getPredicateInfoFor(I); 2057 } 2058 2059 void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) { 2060 Visitor->trackValueOfGlobalVariable(GV); 2061 } 2062 2063 void SCCPSolver::addTrackedFunction(Function *F) { 2064 Visitor->addTrackedFunction(F); 2065 } 2066 2067 void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) { 2068 Visitor->addToMustPreserveReturnsInFunctions(F); 2069 } 2070 2071 bool SCCPSolver::mustPreserveReturn(Function *F) { 2072 return Visitor->mustPreserveReturn(F); 2073 } 2074 2075 void SCCPSolver::addArgumentTrackedFunction(Function *F) { 2076 Visitor->addArgumentTrackedFunction(F); 2077 } 2078 2079 bool SCCPSolver::isArgumentTrackedFunction(Function *F) { 2080 return Visitor->isArgumentTrackedFunction(F); 2081 } 2082 2083 void SCCPSolver::solve() { Visitor->solve(); } 2084 2085 bool SCCPSolver::resolvedUndefsIn(Function &F) { 2086 return Visitor->resolvedUndefsIn(F); 2087 } 2088 2089 void SCCPSolver::solveWhileResolvedUndefsIn(Module &M) { 2090 Visitor->solveWhileResolvedUndefsIn(M); 2091 } 2092 2093 void 2094 SCCPSolver::solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) { 2095 Visitor->solveWhileResolvedUndefsIn(WorkList); 2096 } 2097 2098 void SCCPSolver::solveWhileResolvedUndefs() { 2099 Visitor->solveWhileResolvedUndefs(); 2100 } 2101 2102 bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const { 2103 return Visitor->isBlockExecutable(BB); 2104 } 2105 2106 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 2107 return Visitor->isEdgeFeasible(From, To); 2108 } 2109 2110 std::vector<ValueLatticeElement> 2111 SCCPSolver::getStructLatticeValueFor(Value *V) const { 2112 return Visitor->getStructLatticeValueFor(V); 2113 } 2114 2115 void SCCPSolver::removeLatticeValueFor(Value *V) { 2116 return Visitor->removeLatticeValueFor(V); 2117 } 2118 2119 void SCCPSolver::resetLatticeValueFor(CallBase *Call) { 2120 Visitor->resetLatticeValueFor(Call); 2121 } 2122 2123 const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const { 2124 return Visitor->getLatticeValueFor(V); 2125 } 2126 2127 const MapVector<Function *, ValueLatticeElement> & 2128 SCCPSolver::getTrackedRetVals() { 2129 return Visitor->getTrackedRetVals(); 2130 } 2131 2132 const DenseMap<GlobalVariable *, ValueLatticeElement> & 2133 SCCPSolver::getTrackedGlobals() { 2134 return Visitor->getTrackedGlobals(); 2135 } 2136 2137 const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() { 2138 return Visitor->getMRVFunctionsTracked(); 2139 } 2140 2141 void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); } 2142 2143 void SCCPSolver::trackValueOfArgument(Argument *V) { 2144 Visitor->trackValueOfArgument(V); 2145 } 2146 2147 bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) { 2148 return Visitor->isStructLatticeConstant(F, STy); 2149 } 2150 2151 Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV, 2152 Type *Ty) const { 2153 return Visitor->getConstant(LV, Ty); 2154 } 2155 2156 Constant *SCCPSolver::getConstantOrNull(Value *V) const { 2157 return Visitor->getConstantOrNull(V); 2158 } 2159 2160 SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() { 2161 return Visitor->getArgumentTrackedFunctions(); 2162 } 2163 2164 void SCCPSolver::setLatticeValueForSpecializationArguments(Function *F, 2165 const SmallVectorImpl<ArgInfo> &Args) { 2166 Visitor->setLatticeValueForSpecializationArguments(F, Args); 2167 } 2168 2169 void SCCPSolver::markFunctionUnreachable(Function *F) { 2170 Visitor->markFunctionUnreachable(F); 2171 } 2172 2173 void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); } 2174 2175 void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); } 2176