xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SCCPSolver.cpp (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements the Sparse Conditional Constant Propagation (SCCP)
11 // utility.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SCCPSolver.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/InitializePasses.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include <cassert>
27 #include <utility>
28 #include <vector>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "sccp"
33 
34 // The maximum number of range extensions allowed for operations requiring
35 // widening.
36 static const unsigned MaxNumRangeExtensions = 10;
37 
38 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
39 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
40   return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
41       MaxNumRangeExtensions);
42 }
43 
44 namespace {
45 
46 // Helper to check if \p LV is either a constant or a constant
47 // range with a single element. This should cover exactly the same cases as the
48 // old ValueLatticeElement::isConstant() and is intended to be used in the
49 // transition to ValueLatticeElement.
50 bool isConstant(const ValueLatticeElement &LV) {
51   return LV.isConstant() ||
52          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
53 }
54 
55 // Helper to check if \p LV is either overdefined or a constant range with more
56 // than a single element. This should cover exactly the same cases as the old
57 // ValueLatticeElement::isOverdefined() and is intended to be used in the
58 // transition to ValueLatticeElement.
59 bool isOverdefined(const ValueLatticeElement &LV) {
60   return !LV.isUnknownOrUndef() && !isConstant(LV);
61 }
62 
63 } // namespace
64 
65 namespace llvm {
66 
67 /// Helper class for SCCPSolver. This implements the instruction visitor and
68 /// holds all the state.
69 class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
70   const DataLayout &DL;
71   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
72   SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
73   DenseMap<Value *, ValueLatticeElement>
74       ValueState; // The state each value is in.
75 
76   /// StructValueState - This maintains ValueState for values that have
77   /// StructType, for example for formal arguments, calls, insertelement, etc.
78   DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
79 
80   /// GlobalValue - If we are tracking any values for the contents of a global
81   /// variable, we keep a mapping from the constant accessor to the element of
82   /// the global, to the currently known value.  If the value becomes
83   /// overdefined, it's entry is simply removed from this map.
84   DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
85 
86   /// TrackedRetVals - If we are tracking arguments into and the return
87   /// value out of a function, it will have an entry in this map, indicating
88   /// what the known return value for the function is.
89   MapVector<Function *, ValueLatticeElement> TrackedRetVals;
90 
91   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
92   /// that return multiple values.
93   MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
94       TrackedMultipleRetVals;
95 
96   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
97   /// represented here for efficient lookup.
98   SmallPtrSet<Function *, 16> MRVFunctionsTracked;
99 
100   /// A list of functions whose return cannot be modified.
101   SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
102 
103   /// TrackingIncomingArguments - This is the set of functions for whose
104   /// arguments we make optimistic assumptions about and try to prove as
105   /// constants.
106   SmallPtrSet<Function *, 16> TrackingIncomingArguments;
107 
108   /// The reason for two worklists is that overdefined is the lowest state
109   /// on the lattice, and moving things to overdefined as fast as possible
110   /// makes SCCP converge much faster.
111   ///
112   /// By having a separate worklist, we accomplish this because everything
113   /// possibly overdefined will become overdefined at the soonest possible
114   /// point.
115   SmallVector<Value *, 64> OverdefinedInstWorkList;
116   SmallVector<Value *, 64> InstWorkList;
117 
118   // The BasicBlock work list
119   SmallVector<BasicBlock *, 64> BBWorkList;
120 
121   /// KnownFeasibleEdges - Entries in this set are edges which have already had
122   /// PHI nodes retriggered.
123   using Edge = std::pair<BasicBlock *, BasicBlock *>;
124   DenseSet<Edge> KnownFeasibleEdges;
125 
126   DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
127   DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
128 
129   LLVMContext &Ctx;
130 
131 private:
132   ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
133     return dyn_cast_or_null<ConstantInt>(getConstant(IV));
134   }
135 
136   // pushToWorkList - Helper for markConstant/markOverdefined
137   void pushToWorkList(ValueLatticeElement &IV, Value *V);
138 
139   // Helper to push \p V to the worklist, after updating it to \p IV. Also
140   // prints a debug message with the updated value.
141   void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
142 
143   // markConstant - Make a value be marked as "constant".  If the value
144   // is not already a constant, add it to the instruction work list so that
145   // the users of the instruction are updated later.
146   bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
147                     bool MayIncludeUndef = false);
148 
149   bool markConstant(Value *V, Constant *C) {
150     assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
151     return markConstant(ValueState[V], V, C);
152   }
153 
154   // markOverdefined - Make a value be marked as "overdefined". If the
155   // value is not already overdefined, add it to the overdefined instruction
156   // work list so that the users of the instruction are updated later.
157   bool markOverdefined(ValueLatticeElement &IV, Value *V);
158 
159   /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
160   /// changes.
161   bool mergeInValue(ValueLatticeElement &IV, Value *V,
162                     ValueLatticeElement MergeWithV,
163                     ValueLatticeElement::MergeOptions Opts = {
164                         /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
165 
166   bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
167                     ValueLatticeElement::MergeOptions Opts = {
168                         /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
169     assert(!V->getType()->isStructTy() &&
170            "non-structs should use markConstant");
171     return mergeInValue(ValueState[V], V, MergeWithV, Opts);
172   }
173 
174   /// getValueState - Return the ValueLatticeElement object that corresponds to
175   /// the value.  This function handles the case when the value hasn't been seen
176   /// yet by properly seeding constants etc.
177   ValueLatticeElement &getValueState(Value *V) {
178     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
179 
180     auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
181     ValueLatticeElement &LV = I.first->second;
182 
183     if (!I.second)
184       return LV; // Common case, already in the map.
185 
186     if (auto *C = dyn_cast<Constant>(V))
187       LV.markConstant(C); // Constants are constant
188 
189     // All others are unknown by default.
190     return LV;
191   }
192 
193   /// getStructValueState - Return the ValueLatticeElement object that
194   /// corresponds to the value/field pair.  This function handles the case when
195   /// the value hasn't been seen yet by properly seeding constants etc.
196   ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
197     assert(V->getType()->isStructTy() && "Should use getValueState");
198     assert(i < cast<StructType>(V->getType())->getNumElements() &&
199            "Invalid element #");
200 
201     auto I = StructValueState.insert(
202         std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
203     ValueLatticeElement &LV = I.first->second;
204 
205     if (!I.second)
206       return LV; // Common case, already in the map.
207 
208     if (auto *C = dyn_cast<Constant>(V)) {
209       Constant *Elt = C->getAggregateElement(i);
210 
211       if (!Elt)
212         LV.markOverdefined(); // Unknown sort of constant.
213       else if (isa<UndefValue>(Elt))
214         ; // Undef values remain unknown.
215       else
216         LV.markConstant(Elt); // Constants are constant.
217     }
218 
219     // All others are underdefined by default.
220     return LV;
221   }
222 
223   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
224   /// work list if it is not already executable.
225   bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
226 
227   // getFeasibleSuccessors - Return a vector of booleans to indicate which
228   // successors are reachable from a given terminator instruction.
229   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
230 
231   // OperandChangedState - This method is invoked on all of the users of an
232   // instruction that was just changed state somehow.  Based on this
233   // information, we need to update the specified user of this instruction.
234   void operandChangedState(Instruction *I) {
235     if (BBExecutable.count(I->getParent())) // Inst is executable?
236       visit(*I);
237   }
238 
239   // Add U as additional user of V.
240   void addAdditionalUser(Value *V, User *U) {
241     auto Iter = AdditionalUsers.insert({V, {}});
242     Iter.first->second.insert(U);
243   }
244 
245   // Mark I's users as changed, including AdditionalUsers.
246   void markUsersAsChanged(Value *I) {
247     // Functions include their arguments in the use-list. Changed function
248     // values mean that the result of the function changed. We only need to
249     // update the call sites with the new function result and do not have to
250     // propagate the call arguments.
251     if (isa<Function>(I)) {
252       for (User *U : I->users()) {
253         if (auto *CB = dyn_cast<CallBase>(U))
254           handleCallResult(*CB);
255       }
256     } else {
257       for (User *U : I->users())
258         if (auto *UI = dyn_cast<Instruction>(U))
259           operandChangedState(UI);
260     }
261 
262     auto Iter = AdditionalUsers.find(I);
263     if (Iter != AdditionalUsers.end()) {
264       // Copy additional users before notifying them of changes, because new
265       // users may be added, potentially invalidating the iterator.
266       SmallVector<Instruction *, 2> ToNotify;
267       for (User *U : Iter->second)
268         if (auto *UI = dyn_cast<Instruction>(U))
269           ToNotify.push_back(UI);
270       for (Instruction *UI : ToNotify)
271         operandChangedState(UI);
272     }
273   }
274   void handleCallOverdefined(CallBase &CB);
275   void handleCallResult(CallBase &CB);
276   void handleCallArguments(CallBase &CB);
277 
278 private:
279   friend class InstVisitor<SCCPInstVisitor>;
280 
281   // visit implementations - Something changed in this instruction.  Either an
282   // operand made a transition, or the instruction is newly executable.  Change
283   // the value type of I to reflect these changes if appropriate.
284   void visitPHINode(PHINode &I);
285 
286   // Terminators
287 
288   void visitReturnInst(ReturnInst &I);
289   void visitTerminator(Instruction &TI);
290 
291   void visitCastInst(CastInst &I);
292   void visitSelectInst(SelectInst &I);
293   void visitUnaryOperator(Instruction &I);
294   void visitBinaryOperator(Instruction &I);
295   void visitCmpInst(CmpInst &I);
296   void visitExtractValueInst(ExtractValueInst &EVI);
297   void visitInsertValueInst(InsertValueInst &IVI);
298 
299   void visitCatchSwitchInst(CatchSwitchInst &CPI) {
300     markOverdefined(&CPI);
301     visitTerminator(CPI);
302   }
303 
304   // Instructions that cannot be folded away.
305 
306   void visitStoreInst(StoreInst &I);
307   void visitLoadInst(LoadInst &I);
308   void visitGetElementPtrInst(GetElementPtrInst &I);
309 
310   void visitInvokeInst(InvokeInst &II) {
311     visitCallBase(II);
312     visitTerminator(II);
313   }
314 
315   void visitCallBrInst(CallBrInst &CBI) {
316     visitCallBase(CBI);
317     visitTerminator(CBI);
318   }
319 
320   void visitCallBase(CallBase &CB);
321   void visitResumeInst(ResumeInst &I) { /*returns void*/
322   }
323   void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
324   }
325   void visitFenceInst(FenceInst &I) { /*returns void*/
326   }
327 
328   void visitInstruction(Instruction &I);
329 
330 public:
331   void addAnalysis(Function &F, AnalysisResultsForFn A) {
332     AnalysisResults.insert({&F, std::move(A)});
333   }
334 
335   void visitCallInst(CallInst &I) { visitCallBase(I); }
336 
337   bool markBlockExecutable(BasicBlock *BB);
338 
339   const PredicateBase *getPredicateInfoFor(Instruction *I) {
340     auto A = AnalysisResults.find(I->getParent()->getParent());
341     if (A == AnalysisResults.end())
342       return nullptr;
343     return A->second.PredInfo->getPredicateInfoFor(I);
344   }
345 
346   DomTreeUpdater getDTU(Function &F) {
347     auto A = AnalysisResults.find(&F);
348     assert(A != AnalysisResults.end() && "Need analysis results for function.");
349     return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
350   }
351 
352   SCCPInstVisitor(const DataLayout &DL,
353                   std::function<const TargetLibraryInfo &(Function &)> GetTLI,
354                   LLVMContext &Ctx)
355       : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
356 
357   void trackValueOfGlobalVariable(GlobalVariable *GV) {
358     // We only track the contents of scalar globals.
359     if (GV->getValueType()->isSingleValueType()) {
360       ValueLatticeElement &IV = TrackedGlobals[GV];
361       if (!isa<UndefValue>(GV->getInitializer()))
362         IV.markConstant(GV->getInitializer());
363     }
364   }
365 
366   void addTrackedFunction(Function *F) {
367     // Add an entry, F -> undef.
368     if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
369       MRVFunctionsTracked.insert(F);
370       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
371         TrackedMultipleRetVals.insert(
372             std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
373     } else if (!F->getReturnType()->isVoidTy())
374       TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
375   }
376 
377   void addToMustPreserveReturnsInFunctions(Function *F) {
378     MustPreserveReturnsInFunctions.insert(F);
379   }
380 
381   bool mustPreserveReturn(Function *F) {
382     return MustPreserveReturnsInFunctions.count(F);
383   }
384 
385   void addArgumentTrackedFunction(Function *F) {
386     TrackingIncomingArguments.insert(F);
387   }
388 
389   bool isArgumentTrackedFunction(Function *F) {
390     return TrackingIncomingArguments.count(F);
391   }
392 
393   void solve();
394 
395   bool resolvedUndefsIn(Function &F);
396 
397   bool isBlockExecutable(BasicBlock *BB) const {
398     return BBExecutable.count(BB);
399   }
400 
401   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
402 
403   std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
404     std::vector<ValueLatticeElement> StructValues;
405     auto *STy = dyn_cast<StructType>(V->getType());
406     assert(STy && "getStructLatticeValueFor() can be called only on structs");
407     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
408       auto I = StructValueState.find(std::make_pair(V, i));
409       assert(I != StructValueState.end() && "Value not in valuemap!");
410       StructValues.push_back(I->second);
411     }
412     return StructValues;
413   }
414 
415   void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
416 
417   const ValueLatticeElement &getLatticeValueFor(Value *V) const {
418     assert(!V->getType()->isStructTy() &&
419            "Should use getStructLatticeValueFor");
420     DenseMap<Value *, ValueLatticeElement>::const_iterator I =
421         ValueState.find(V);
422     assert(I != ValueState.end() &&
423            "V not found in ValueState nor Paramstate map!");
424     return I->second;
425   }
426 
427   const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
428     return TrackedRetVals;
429   }
430 
431   const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
432     return TrackedGlobals;
433   }
434 
435   const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
436     return MRVFunctionsTracked;
437   }
438 
439   void markOverdefined(Value *V) {
440     if (auto *STy = dyn_cast<StructType>(V->getType()))
441       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
442         markOverdefined(getStructValueState(V, i), V);
443     else
444       markOverdefined(ValueState[V], V);
445   }
446 
447   bool isStructLatticeConstant(Function *F, StructType *STy);
448 
449   Constant *getConstant(const ValueLatticeElement &LV) const;
450 
451   SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() {
452     return TrackingIncomingArguments;
453   }
454 
455   void markArgInFuncSpecialization(Function *F, Argument *A, Constant *C);
456 
457   void markFunctionUnreachable(Function *F) {
458     for (auto &BB : *F)
459       BBExecutable.erase(&BB);
460   }
461 };
462 
463 } // namespace llvm
464 
465 bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
466   if (!BBExecutable.insert(BB).second)
467     return false;
468   LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
469   BBWorkList.push_back(BB); // Add the block to the work list!
470   return true;
471 }
472 
473 void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
474   if (IV.isOverdefined())
475     return OverdefinedInstWorkList.push_back(V);
476   InstWorkList.push_back(V);
477 }
478 
479 void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
480   LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
481   pushToWorkList(IV, V);
482 }
483 
484 bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
485                                    Constant *C, bool MayIncludeUndef) {
486   if (!IV.markConstant(C, MayIncludeUndef))
487     return false;
488   LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
489   pushToWorkList(IV, V);
490   return true;
491 }
492 
493 bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
494   if (!IV.markOverdefined())
495     return false;
496 
497   LLVM_DEBUG(dbgs() << "markOverdefined: ";
498              if (auto *F = dyn_cast<Function>(V)) dbgs()
499              << "Function '" << F->getName() << "'\n";
500              else dbgs() << *V << '\n');
501   // Only instructions go on the work list
502   pushToWorkList(IV, V);
503   return true;
504 }
505 
506 bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
507   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
508     const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
509     assert(It != TrackedMultipleRetVals.end());
510     ValueLatticeElement LV = It->second;
511     if (!isConstant(LV))
512       return false;
513   }
514   return true;
515 }
516 
517 Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const {
518   if (LV.isConstant())
519     return LV.getConstant();
520 
521   if (LV.isConstantRange()) {
522     const auto &CR = LV.getConstantRange();
523     if (CR.getSingleElement())
524       return ConstantInt::get(Ctx, *CR.getSingleElement());
525   }
526   return nullptr;
527 }
528 
529 void SCCPInstVisitor::markArgInFuncSpecialization(Function *F, Argument *A,
530                                                   Constant *C) {
531   assert(F->arg_size() == A->getParent()->arg_size() &&
532          "Functions should have the same number of arguments");
533 
534   // Mark the argument constant in the new function.
535   markConstant(A, C);
536 
537   // For the remaining arguments in the new function, copy the lattice state
538   // over from the old function.
539   for (auto I = F->arg_begin(), J = A->getParent()->arg_begin(),
540             E = F->arg_end();
541        I != E; ++I, ++J)
542     if (J != A && ValueState.count(I)) {
543       // Note: This previously looked like this:
544       // ValueState[J] = ValueState[I];
545       // This is incorrect because the DenseMap class may resize the underlying
546       // memory when inserting `J`, which will invalidate the reference to `I`.
547       // Instead, we make sure `J` exists, then set it to `I` afterwards.
548       auto &NewValue = ValueState[J];
549       NewValue = ValueState[I];
550       pushToWorkList(NewValue, J);
551     }
552 }
553 
554 void SCCPInstVisitor::visitInstruction(Instruction &I) {
555   // All the instructions we don't do any special handling for just
556   // go to overdefined.
557   LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
558   markOverdefined(&I);
559 }
560 
561 bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
562                                    ValueLatticeElement MergeWithV,
563                                    ValueLatticeElement::MergeOptions Opts) {
564   if (IV.mergeIn(MergeWithV, Opts)) {
565     pushToWorkList(IV, V);
566     LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
567                       << IV << "\n");
568     return true;
569   }
570   return false;
571 }
572 
573 bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
574   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
575     return false; // This edge is already known to be executable!
576 
577   if (!markBlockExecutable(Dest)) {
578     // If the destination is already executable, we just made an *edge*
579     // feasible that wasn't before.  Revisit the PHI nodes in the block
580     // because they have potentially new operands.
581     LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
582                       << " -> " << Dest->getName() << '\n');
583 
584     for (PHINode &PN : Dest->phis())
585       visitPHINode(PN);
586   }
587   return true;
588 }
589 
590 // getFeasibleSuccessors - Return a vector of booleans to indicate which
591 // successors are reachable from a given terminator instruction.
592 void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
593                                             SmallVectorImpl<bool> &Succs) {
594   Succs.resize(TI.getNumSuccessors());
595   if (auto *BI = dyn_cast<BranchInst>(&TI)) {
596     if (BI->isUnconditional()) {
597       Succs[0] = true;
598       return;
599     }
600 
601     ValueLatticeElement BCValue = getValueState(BI->getCondition());
602     ConstantInt *CI = getConstantInt(BCValue);
603     if (!CI) {
604       // Overdefined condition variables, and branches on unfoldable constant
605       // conditions, mean the branch could go either way.
606       if (!BCValue.isUnknownOrUndef())
607         Succs[0] = Succs[1] = true;
608       return;
609     }
610 
611     // Constant condition variables mean the branch can only go a single way.
612     Succs[CI->isZero()] = true;
613     return;
614   }
615 
616   // Unwinding instructions successors are always executable.
617   if (TI.isExceptionalTerminator()) {
618     Succs.assign(TI.getNumSuccessors(), true);
619     return;
620   }
621 
622   if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
623     if (!SI->getNumCases()) {
624       Succs[0] = true;
625       return;
626     }
627     const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
628     if (ConstantInt *CI = getConstantInt(SCValue)) {
629       Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
630       return;
631     }
632 
633     // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
634     // is ready.
635     if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
636       const ConstantRange &Range = SCValue.getConstantRange();
637       for (const auto &Case : SI->cases()) {
638         const APInt &CaseValue = Case.getCaseValue()->getValue();
639         if (Range.contains(CaseValue))
640           Succs[Case.getSuccessorIndex()] = true;
641       }
642 
643       // TODO: Determine whether default case is reachable.
644       Succs[SI->case_default()->getSuccessorIndex()] = true;
645       return;
646     }
647 
648     // Overdefined or unknown condition? All destinations are executable!
649     if (!SCValue.isUnknownOrUndef())
650       Succs.assign(TI.getNumSuccessors(), true);
651     return;
652   }
653 
654   // In case of indirect branch and its address is a blockaddress, we mark
655   // the target as executable.
656   if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
657     // Casts are folded by visitCastInst.
658     ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
659     BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
660     if (!Addr) { // Overdefined or unknown condition?
661       // All destinations are executable!
662       if (!IBRValue.isUnknownOrUndef())
663         Succs.assign(TI.getNumSuccessors(), true);
664       return;
665     }
666 
667     BasicBlock *T = Addr->getBasicBlock();
668     assert(Addr->getFunction() == T->getParent() &&
669            "Block address of a different function ?");
670     for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
671       // This is the target.
672       if (IBR->getDestination(i) == T) {
673         Succs[i] = true;
674         return;
675       }
676     }
677 
678     // If we didn't find our destination in the IBR successor list, then we
679     // have undefined behavior. Its ok to assume no successor is executable.
680     return;
681   }
682 
683   // In case of callbr, we pessimistically assume that all successors are
684   // feasible.
685   if (isa<CallBrInst>(&TI)) {
686     Succs.assign(TI.getNumSuccessors(), true);
687     return;
688   }
689 
690   LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
691   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
692 }
693 
694 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
695 // block to the 'To' basic block is currently feasible.
696 bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
697   // Check if we've called markEdgeExecutable on the edge yet. (We could
698   // be more aggressive and try to consider edges which haven't been marked
699   // yet, but there isn't any need.)
700   return KnownFeasibleEdges.count(Edge(From, To));
701 }
702 
703 // visit Implementations - Something changed in this instruction, either an
704 // operand made a transition, or the instruction is newly executable.  Change
705 // the value type of I to reflect these changes if appropriate.  This method
706 // makes sure to do the following actions:
707 //
708 // 1. If a phi node merges two constants in, and has conflicting value coming
709 //    from different branches, or if the PHI node merges in an overdefined
710 //    value, then the PHI node becomes overdefined.
711 // 2. If a phi node merges only constants in, and they all agree on value, the
712 //    PHI node becomes a constant value equal to that.
713 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
714 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
715 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
716 // 6. If a conditional branch has a value that is constant, make the selected
717 //    destination executable
718 // 7. If a conditional branch has a value that is overdefined, make all
719 //    successors executable.
720 void SCCPInstVisitor::visitPHINode(PHINode &PN) {
721   // If this PN returns a struct, just mark the result overdefined.
722   // TODO: We could do a lot better than this if code actually uses this.
723   if (PN.getType()->isStructTy())
724     return (void)markOverdefined(&PN);
725 
726   if (getValueState(&PN).isOverdefined())
727     return; // Quick exit
728 
729   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
730   // and slow us down a lot.  Just mark them overdefined.
731   if (PN.getNumIncomingValues() > 64)
732     return (void)markOverdefined(&PN);
733 
734   unsigned NumActiveIncoming = 0;
735 
736   // Look at all of the executable operands of the PHI node.  If any of them
737   // are overdefined, the PHI becomes overdefined as well.  If they are all
738   // constant, and they agree with each other, the PHI becomes the identical
739   // constant.  If they are constant and don't agree, the PHI is a constant
740   // range. If there are no executable operands, the PHI remains unknown.
741   ValueLatticeElement PhiState = getValueState(&PN);
742   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
743     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
744       continue;
745 
746     ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
747     PhiState.mergeIn(IV);
748     NumActiveIncoming++;
749     if (PhiState.isOverdefined())
750       break;
751   }
752 
753   // We allow up to 1 range extension per active incoming value and one
754   // additional extension. Note that we manually adjust the number of range
755   // extensions to match the number of active incoming values. This helps to
756   // limit multiple extensions caused by the same incoming value, if other
757   // incoming values are equal.
758   mergeInValue(&PN, PhiState,
759                ValueLatticeElement::MergeOptions().setMaxWidenSteps(
760                    NumActiveIncoming + 1));
761   ValueLatticeElement &PhiStateRef = getValueState(&PN);
762   PhiStateRef.setNumRangeExtensions(
763       std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
764 }
765 
766 void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
767   if (I.getNumOperands() == 0)
768     return; // ret void
769 
770   Function *F = I.getParent()->getParent();
771   Value *ResultOp = I.getOperand(0);
772 
773   // If we are tracking the return value of this function, merge it in.
774   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
775     auto TFRVI = TrackedRetVals.find(F);
776     if (TFRVI != TrackedRetVals.end()) {
777       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
778       return;
779     }
780   }
781 
782   // Handle functions that return multiple values.
783   if (!TrackedMultipleRetVals.empty()) {
784     if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
785       if (MRVFunctionsTracked.count(F))
786         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
787           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
788                        getStructValueState(ResultOp, i));
789   }
790 }
791 
792 void SCCPInstVisitor::visitTerminator(Instruction &TI) {
793   SmallVector<bool, 16> SuccFeasible;
794   getFeasibleSuccessors(TI, SuccFeasible);
795 
796   BasicBlock *BB = TI.getParent();
797 
798   // Mark all feasible successors executable.
799   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
800     if (SuccFeasible[i])
801       markEdgeExecutable(BB, TI.getSuccessor(i));
802 }
803 
804 void SCCPInstVisitor::visitCastInst(CastInst &I) {
805   // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
806   // discover a concrete value later.
807   if (ValueState[&I].isOverdefined())
808     return;
809 
810   ValueLatticeElement OpSt = getValueState(I.getOperand(0));
811   if (OpSt.isUnknownOrUndef())
812     return;
813 
814   if (Constant *OpC = getConstant(OpSt)) {
815     // Fold the constant as we build.
816     Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
817     if (isa<UndefValue>(C))
818       return;
819     // Propagate constant value
820     markConstant(&I, C);
821   } else if (I.getDestTy()->isIntegerTy()) {
822     auto &LV = getValueState(&I);
823     ConstantRange OpRange =
824         OpSt.isConstantRange()
825             ? OpSt.getConstantRange()
826             : ConstantRange::getFull(
827                   I.getOperand(0)->getType()->getScalarSizeInBits());
828 
829     Type *DestTy = I.getDestTy();
830     // Vectors where all elements have the same known constant range are treated
831     // as a single constant range in the lattice. When bitcasting such vectors,
832     // there is a mis-match between the width of the lattice value (single
833     // constant range) and the original operands (vector). Go to overdefined in
834     // that case.
835     if (I.getOpcode() == Instruction::BitCast &&
836         I.getOperand(0)->getType()->isVectorTy() &&
837         OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
838       return (void)markOverdefined(&I);
839 
840     ConstantRange Res =
841         OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
842     mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
843   } else
844     markOverdefined(&I);
845 }
846 
847 void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
848   // If this returns a struct, mark all elements over defined, we don't track
849   // structs in structs.
850   if (EVI.getType()->isStructTy())
851     return (void)markOverdefined(&EVI);
852 
853   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
854   // discover a concrete value later.
855   if (ValueState[&EVI].isOverdefined())
856     return (void)markOverdefined(&EVI);
857 
858   // If this is extracting from more than one level of struct, we don't know.
859   if (EVI.getNumIndices() != 1)
860     return (void)markOverdefined(&EVI);
861 
862   Value *AggVal = EVI.getAggregateOperand();
863   if (AggVal->getType()->isStructTy()) {
864     unsigned i = *EVI.idx_begin();
865     ValueLatticeElement EltVal = getStructValueState(AggVal, i);
866     mergeInValue(getValueState(&EVI), &EVI, EltVal);
867   } else {
868     // Otherwise, must be extracting from an array.
869     return (void)markOverdefined(&EVI);
870   }
871 }
872 
873 void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
874   auto *STy = dyn_cast<StructType>(IVI.getType());
875   if (!STy)
876     return (void)markOverdefined(&IVI);
877 
878   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
879   // discover a concrete value later.
880   if (isOverdefined(ValueState[&IVI]))
881     return (void)markOverdefined(&IVI);
882 
883   // If this has more than one index, we can't handle it, drive all results to
884   // undef.
885   if (IVI.getNumIndices() != 1)
886     return (void)markOverdefined(&IVI);
887 
888   Value *Aggr = IVI.getAggregateOperand();
889   unsigned Idx = *IVI.idx_begin();
890 
891   // Compute the result based on what we're inserting.
892   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
893     // This passes through all values that aren't the inserted element.
894     if (i != Idx) {
895       ValueLatticeElement EltVal = getStructValueState(Aggr, i);
896       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
897       continue;
898     }
899 
900     Value *Val = IVI.getInsertedValueOperand();
901     if (Val->getType()->isStructTy())
902       // We don't track structs in structs.
903       markOverdefined(getStructValueState(&IVI, i), &IVI);
904     else {
905       ValueLatticeElement InVal = getValueState(Val);
906       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
907     }
908   }
909 }
910 
911 void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
912   // If this select returns a struct, just mark the result overdefined.
913   // TODO: We could do a lot better than this if code actually uses this.
914   if (I.getType()->isStructTy())
915     return (void)markOverdefined(&I);
916 
917   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
918   // discover a concrete value later.
919   if (ValueState[&I].isOverdefined())
920     return (void)markOverdefined(&I);
921 
922   ValueLatticeElement CondValue = getValueState(I.getCondition());
923   if (CondValue.isUnknownOrUndef())
924     return;
925 
926   if (ConstantInt *CondCB = getConstantInt(CondValue)) {
927     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
928     mergeInValue(&I, getValueState(OpVal));
929     return;
930   }
931 
932   // Otherwise, the condition is overdefined or a constant we can't evaluate.
933   // See if we can produce something better than overdefined based on the T/F
934   // value.
935   ValueLatticeElement TVal = getValueState(I.getTrueValue());
936   ValueLatticeElement FVal = getValueState(I.getFalseValue());
937 
938   bool Changed = ValueState[&I].mergeIn(TVal);
939   Changed |= ValueState[&I].mergeIn(FVal);
940   if (Changed)
941     pushToWorkListMsg(ValueState[&I], &I);
942 }
943 
944 // Handle Unary Operators.
945 void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
946   ValueLatticeElement V0State = getValueState(I.getOperand(0));
947 
948   ValueLatticeElement &IV = ValueState[&I];
949   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
950   // discover a concrete value later.
951   if (isOverdefined(IV))
952     return (void)markOverdefined(&I);
953 
954   if (isConstant(V0State)) {
955     Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));
956 
957     // op Y -> undef.
958     if (isa<UndefValue>(C))
959       return;
960     return (void)markConstant(IV, &I, C);
961   }
962 
963   // If something is undef, wait for it to resolve.
964   if (!isOverdefined(V0State))
965     return;
966 
967   markOverdefined(&I);
968 }
969 
970 // Handle Binary Operators.
971 void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
972   ValueLatticeElement V1State = getValueState(I.getOperand(0));
973   ValueLatticeElement V2State = getValueState(I.getOperand(1));
974 
975   ValueLatticeElement &IV = ValueState[&I];
976   if (IV.isOverdefined())
977     return;
978 
979   // If something is undef, wait for it to resolve.
980   if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
981     return;
982 
983   if (V1State.isOverdefined() && V2State.isOverdefined())
984     return (void)markOverdefined(&I);
985 
986   // If either of the operands is a constant, try to fold it to a constant.
987   // TODO: Use information from notconstant better.
988   if ((V1State.isConstant() || V2State.isConstant())) {
989     Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
990     Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
991     Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
992     auto *C = dyn_cast_or_null<Constant>(R);
993     if (C) {
994       // X op Y -> undef.
995       if (isa<UndefValue>(C))
996         return;
997       // Conservatively assume that the result may be based on operands that may
998       // be undef. Note that we use mergeInValue to combine the constant with
999       // the existing lattice value for I, as different constants might be found
1000       // after one of the operands go to overdefined, e.g. due to one operand
1001       // being a special floating value.
1002       ValueLatticeElement NewV;
1003       NewV.markConstant(C, /*MayIncludeUndef=*/true);
1004       return (void)mergeInValue(&I, NewV);
1005     }
1006   }
1007 
1008   // Only use ranges for binary operators on integers.
1009   if (!I.getType()->isIntegerTy())
1010     return markOverdefined(&I);
1011 
1012   // Try to simplify to a constant range.
1013   ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
1014   ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
1015   if (V1State.isConstantRange())
1016     A = V1State.getConstantRange();
1017   if (V2State.isConstantRange())
1018     B = V2State.getConstantRange();
1019 
1020   ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
1021   mergeInValue(&I, ValueLatticeElement::getRange(R));
1022 
1023   // TODO: Currently we do not exploit special values that produce something
1024   // better than overdefined with an overdefined operand for vector or floating
1025   // point types, like and <4 x i32> overdefined, zeroinitializer.
1026 }
1027 
1028 // Handle ICmpInst instruction.
1029 void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1030   // Do not cache this lookup, getValueState calls later in the function might
1031   // invalidate the reference.
1032   if (isOverdefined(ValueState[&I]))
1033     return (void)markOverdefined(&I);
1034 
1035   Value *Op1 = I.getOperand(0);
1036   Value *Op2 = I.getOperand(1);
1037 
1038   // For parameters, use ParamState which includes constant range info if
1039   // available.
1040   auto V1State = getValueState(Op1);
1041   auto V2State = getValueState(Op2);
1042 
1043   Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
1044   if (C) {
1045     if (isa<UndefValue>(C))
1046       return;
1047     ValueLatticeElement CV;
1048     CV.markConstant(C);
1049     mergeInValue(&I, CV);
1050     return;
1051   }
1052 
1053   // If operands are still unknown, wait for it to resolve.
1054   if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1055       !isConstant(ValueState[&I]))
1056     return;
1057 
1058   markOverdefined(&I);
1059 }
1060 
1061 // Handle getelementptr instructions.  If all operands are constants then we
1062 // can turn this into a getelementptr ConstantExpr.
1063 void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1064   if (isOverdefined(ValueState[&I]))
1065     return (void)markOverdefined(&I);
1066 
1067   SmallVector<Constant *, 8> Operands;
1068   Operands.reserve(I.getNumOperands());
1069 
1070   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1071     ValueLatticeElement State = getValueState(I.getOperand(i));
1072     if (State.isUnknownOrUndef())
1073       return; // Operands are not resolved yet.
1074 
1075     if (isOverdefined(State))
1076       return (void)markOverdefined(&I);
1077 
1078     if (Constant *C = getConstant(State)) {
1079       Operands.push_back(C);
1080       continue;
1081     }
1082 
1083     return (void)markOverdefined(&I);
1084   }
1085 
1086   Constant *Ptr = Operands[0];
1087   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1088   Constant *C =
1089       ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1090   if (isa<UndefValue>(C))
1091     return;
1092   markConstant(&I, C);
1093 }
1094 
1095 void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1096   // If this store is of a struct, ignore it.
1097   if (SI.getOperand(0)->getType()->isStructTy())
1098     return;
1099 
1100   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1101     return;
1102 
1103   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1104   auto I = TrackedGlobals.find(GV);
1105   if (I == TrackedGlobals.end())
1106     return;
1107 
1108   // Get the value we are storing into the global, then merge it.
1109   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1110                ValueLatticeElement::MergeOptions().setCheckWiden(false));
1111   if (I->second.isOverdefined())
1112     TrackedGlobals.erase(I); // No need to keep tracking this!
1113 }
1114 
1115 static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
1116   if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1117     if (I->getType()->isIntegerTy())
1118       return ValueLatticeElement::getRange(
1119           getConstantRangeFromMetadata(*Ranges));
1120   if (I->hasMetadata(LLVMContext::MD_nonnull))
1121     return ValueLatticeElement::getNot(
1122         ConstantPointerNull::get(cast<PointerType>(I->getType())));
1123   return ValueLatticeElement::getOverdefined();
1124 }
1125 
1126 // Handle load instructions.  If the operand is a constant pointer to a constant
1127 // global, we can replace the load with the loaded constant value!
1128 void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1129   // If this load is of a struct or the load is volatile, just mark the result
1130   // as overdefined.
1131   if (I.getType()->isStructTy() || I.isVolatile())
1132     return (void)markOverdefined(&I);
1133 
1134   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1135   // discover a concrete value later.
1136   if (ValueState[&I].isOverdefined())
1137     return (void)markOverdefined(&I);
1138 
1139   ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1140   if (PtrVal.isUnknownOrUndef())
1141     return; // The pointer is not resolved yet!
1142 
1143   ValueLatticeElement &IV = ValueState[&I];
1144 
1145   if (isConstant(PtrVal)) {
1146     Constant *Ptr = getConstant(PtrVal);
1147 
1148     // load null is undefined.
1149     if (isa<ConstantPointerNull>(Ptr)) {
1150       if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1151         return (void)markOverdefined(IV, &I);
1152       else
1153         return;
1154     }
1155 
1156     // Transform load (constant global) into the value loaded.
1157     if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1158       if (!TrackedGlobals.empty()) {
1159         // If we are tracking this global, merge in the known value for it.
1160         auto It = TrackedGlobals.find(GV);
1161         if (It != TrackedGlobals.end()) {
1162           mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1163           return;
1164         }
1165       }
1166     }
1167 
1168     // Transform load from a constant into a constant if possible.
1169     if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1170       if (isa<UndefValue>(C))
1171         return;
1172       return (void)markConstant(IV, &I, C);
1173     }
1174   }
1175 
1176   // Fall back to metadata.
1177   mergeInValue(&I, getValueFromMetadata(&I));
1178 }
1179 
1180 void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1181   handleCallResult(CB);
1182   handleCallArguments(CB);
1183 }
1184 
1185 void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1186   Function *F = CB.getCalledFunction();
1187 
1188   // Void return and not tracking callee, just bail.
1189   if (CB.getType()->isVoidTy())
1190     return;
1191 
1192   // Always mark struct return as overdefined.
1193   if (CB.getType()->isStructTy())
1194     return (void)markOverdefined(&CB);
1195 
1196   // Otherwise, if we have a single return value case, and if the function is
1197   // a declaration, maybe we can constant fold it.
1198   if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1199     SmallVector<Constant *, 8> Operands;
1200     for (const Use &A : CB.args()) {
1201       if (A.get()->getType()->isStructTy())
1202         return markOverdefined(&CB); // Can't handle struct args.
1203       ValueLatticeElement State = getValueState(A);
1204 
1205       if (State.isUnknownOrUndef())
1206         return; // Operands are not resolved yet.
1207       if (isOverdefined(State))
1208         return (void)markOverdefined(&CB);
1209       assert(isConstant(State) && "Unknown state!");
1210       Operands.push_back(getConstant(State));
1211     }
1212 
1213     if (isOverdefined(getValueState(&CB)))
1214       return (void)markOverdefined(&CB);
1215 
1216     // If we can constant fold this, mark the result of the call as a
1217     // constant.
1218     if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
1219       // call -> undef.
1220       if (isa<UndefValue>(C))
1221         return;
1222       return (void)markConstant(&CB, C);
1223     }
1224   }
1225 
1226   // Fall back to metadata.
1227   mergeInValue(&CB, getValueFromMetadata(&CB));
1228 }
1229 
1230 void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1231   Function *F = CB.getCalledFunction();
1232   // If this is a local function that doesn't have its address taken, mark its
1233   // entry block executable and merge in the actual arguments to the call into
1234   // the formal arguments of the function.
1235   if (!TrackingIncomingArguments.empty() &&
1236       TrackingIncomingArguments.count(F)) {
1237     markBlockExecutable(&F->front());
1238 
1239     // Propagate information from this call site into the callee.
1240     auto CAI = CB.arg_begin();
1241     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1242          ++AI, ++CAI) {
1243       // If this argument is byval, and if the function is not readonly, there
1244       // will be an implicit copy formed of the input aggregate.
1245       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1246         markOverdefined(&*AI);
1247         continue;
1248       }
1249 
1250       if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1251         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1252           ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1253           mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1254                        getMaxWidenStepsOpts());
1255         }
1256       } else
1257         mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1258     }
1259   }
1260 }
1261 
1262 void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1263   Function *F = CB.getCalledFunction();
1264 
1265   if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1266     if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1267       if (ValueState[&CB].isOverdefined())
1268         return;
1269 
1270       Value *CopyOf = CB.getOperand(0);
1271       ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1272       const auto *PI = getPredicateInfoFor(&CB);
1273       assert(PI && "Missing predicate info for ssa.copy");
1274 
1275       const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1276       if (!Constraint) {
1277         mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1278         return;
1279       }
1280 
1281       CmpInst::Predicate Pred = Constraint->Predicate;
1282       Value *OtherOp = Constraint->OtherOp;
1283 
1284       // Wait until OtherOp is resolved.
1285       if (getValueState(OtherOp).isUnknown()) {
1286         addAdditionalUser(OtherOp, &CB);
1287         return;
1288       }
1289 
1290       // TODO: Actually filp MayIncludeUndef for the created range to false,
1291       // once most places in the optimizer respect the branches on
1292       // undef/poison are UB rule. The reason why the new range cannot be
1293       // undef is as follows below:
1294       // The new range is based on a branch condition. That guarantees that
1295       // neither of the compare operands can be undef in the branch targets,
1296       // unless we have conditions that are always true/false (e.g. icmp ule
1297       // i32, %a, i32_max). For the latter overdefined/empty range will be
1298       // inferred, but the branch will get folded accordingly anyways.
1299       bool MayIncludeUndef = !isa<PredicateAssume>(PI);
1300 
1301       ValueLatticeElement CondVal = getValueState(OtherOp);
1302       ValueLatticeElement &IV = ValueState[&CB];
1303       if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1304         auto ImposedCR =
1305             ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1306 
1307         // Get the range imposed by the condition.
1308         if (CondVal.isConstantRange())
1309           ImposedCR = ConstantRange::makeAllowedICmpRegion(
1310               Pred, CondVal.getConstantRange());
1311 
1312         // Combine range info for the original value with the new range from the
1313         // condition.
1314         auto CopyOfCR = CopyOfVal.isConstantRange()
1315                             ? CopyOfVal.getConstantRange()
1316                             : ConstantRange::getFull(
1317                                   DL.getTypeSizeInBits(CopyOf->getType()));
1318         auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1319         // If the existing information is != x, do not use the information from
1320         // a chained predicate, as the != x information is more likely to be
1321         // helpful in practice.
1322         if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1323           NewCR = CopyOfCR;
1324 
1325         addAdditionalUser(OtherOp, &CB);
1326         mergeInValue(IV, &CB,
1327                      ValueLatticeElement::getRange(NewCR, MayIncludeUndef));
1328         return;
1329       } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
1330         // For non-integer values or integer constant expressions, only
1331         // propagate equal constants.
1332         addAdditionalUser(OtherOp, &CB);
1333         mergeInValue(IV, &CB, CondVal);
1334         return;
1335       } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() &&
1336                  !MayIncludeUndef) {
1337         // Propagate inequalities.
1338         addAdditionalUser(OtherOp, &CB);
1339         mergeInValue(IV, &CB,
1340                      ValueLatticeElement::getNot(CondVal.getConstant()));
1341         return;
1342       }
1343 
1344       return (void)mergeInValue(IV, &CB, CopyOfVal);
1345     }
1346 
1347     if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1348       // Compute result range for intrinsics supported by ConstantRange.
1349       // Do this even if we don't know a range for all operands, as we may
1350       // still know something about the result range, e.g. of abs(x).
1351       SmallVector<ConstantRange, 2> OpRanges;
1352       for (Value *Op : II->args()) {
1353         const ValueLatticeElement &State = getValueState(Op);
1354         if (State.isConstantRange())
1355           OpRanges.push_back(State.getConstantRange());
1356         else
1357           OpRanges.push_back(
1358               ConstantRange::getFull(Op->getType()->getScalarSizeInBits()));
1359       }
1360 
1361       ConstantRange Result =
1362           ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1363       return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1364     }
1365   }
1366 
1367   // The common case is that we aren't tracking the callee, either because we
1368   // are not doing interprocedural analysis or the callee is indirect, or is
1369   // external.  Handle these cases first.
1370   if (!F || F->isDeclaration())
1371     return handleCallOverdefined(CB);
1372 
1373   // If this is a single/zero retval case, see if we're tracking the function.
1374   if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1375     if (!MRVFunctionsTracked.count(F))
1376       return handleCallOverdefined(CB); // Not tracking this callee.
1377 
1378     // If we are tracking this callee, propagate the result of the function
1379     // into this call site.
1380     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1381       mergeInValue(getStructValueState(&CB, i), &CB,
1382                    TrackedMultipleRetVals[std::make_pair(F, i)],
1383                    getMaxWidenStepsOpts());
1384   } else {
1385     auto TFRVI = TrackedRetVals.find(F);
1386     if (TFRVI == TrackedRetVals.end())
1387       return handleCallOverdefined(CB); // Not tracking this callee.
1388 
1389     // If so, propagate the return value of the callee into this call result.
1390     mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1391   }
1392 }
1393 
1394 void SCCPInstVisitor::solve() {
1395   // Process the work lists until they are empty!
1396   while (!BBWorkList.empty() || !InstWorkList.empty() ||
1397          !OverdefinedInstWorkList.empty()) {
1398     // Process the overdefined instruction's work list first, which drives other
1399     // things to overdefined more quickly.
1400     while (!OverdefinedInstWorkList.empty()) {
1401       Value *I = OverdefinedInstWorkList.pop_back_val();
1402 
1403       LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1404 
1405       // "I" got into the work list because it either made the transition from
1406       // bottom to constant, or to overdefined.
1407       //
1408       // Anything on this worklist that is overdefined need not be visited
1409       // since all of its users will have already been marked as overdefined
1410       // Update all of the users of this instruction's value.
1411       //
1412       markUsersAsChanged(I);
1413     }
1414 
1415     // Process the instruction work list.
1416     while (!InstWorkList.empty()) {
1417       Value *I = InstWorkList.pop_back_val();
1418 
1419       LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1420 
1421       // "I" got into the work list because it made the transition from undef to
1422       // constant.
1423       //
1424       // Anything on this worklist that is overdefined need not be visited
1425       // since all of its users will have already been marked as overdefined.
1426       // Update all of the users of this instruction's value.
1427       //
1428       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1429         markUsersAsChanged(I);
1430     }
1431 
1432     // Process the basic block work list.
1433     while (!BBWorkList.empty()) {
1434       BasicBlock *BB = BBWorkList.pop_back_val();
1435 
1436       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1437 
1438       // Notify all instructions in this basic block that they are newly
1439       // executable.
1440       visit(BB);
1441     }
1442   }
1443 }
1444 
1445 /// resolvedUndefsIn - While solving the dataflow for a function, we assume
1446 /// that branches on undef values cannot reach any of their successors.
1447 /// However, this is not a safe assumption.  After we solve dataflow, this
1448 /// method should be use to handle this.  If this returns true, the solver
1449 /// should be rerun.
1450 ///
1451 /// This method handles this by finding an unresolved branch and marking it one
1452 /// of the edges from the block as being feasible, even though the condition
1453 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1454 /// CFG and only slightly pessimizes the analysis results (by marking one,
1455 /// potentially infeasible, edge feasible).  This cannot usefully modify the
1456 /// constraints on the condition of the branch, as that would impact other users
1457 /// of the value.
1458 ///
1459 /// This scan also checks for values that use undefs. It conservatively marks
1460 /// them as overdefined.
1461 bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
1462   bool MadeChange = false;
1463   for (BasicBlock &BB : F) {
1464     if (!BBExecutable.count(&BB))
1465       continue;
1466 
1467     for (Instruction &I : BB) {
1468       // Look for instructions which produce undef values.
1469       if (I.getType()->isVoidTy())
1470         continue;
1471 
1472       if (auto *STy = dyn_cast<StructType>(I.getType())) {
1473         // Only a few things that can be structs matter for undef.
1474 
1475         // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1476         if (auto *CB = dyn_cast<CallBase>(&I))
1477           if (Function *F = CB->getCalledFunction())
1478             if (MRVFunctionsTracked.count(F))
1479               continue;
1480 
1481         // extractvalue and insertvalue don't need to be marked; they are
1482         // tracked as precisely as their operands.
1483         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1484           continue;
1485         // Send the results of everything else to overdefined.  We could be
1486         // more precise than this but it isn't worth bothering.
1487         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1488           ValueLatticeElement &LV = getStructValueState(&I, i);
1489           if (LV.isUnknownOrUndef()) {
1490             markOverdefined(LV, &I);
1491             MadeChange = true;
1492           }
1493         }
1494         continue;
1495       }
1496 
1497       ValueLatticeElement &LV = getValueState(&I);
1498       if (!LV.isUnknownOrUndef())
1499         continue;
1500 
1501       // There are two reasons a call can have an undef result
1502       // 1. It could be tracked.
1503       // 2. It could be constant-foldable.
1504       // Because of the way we solve return values, tracked calls must
1505       // never be marked overdefined in resolvedUndefsIn.
1506       if (auto *CB = dyn_cast<CallBase>(&I))
1507         if (Function *F = CB->getCalledFunction())
1508           if (TrackedRetVals.count(F))
1509             continue;
1510 
1511       if (isa<LoadInst>(I)) {
1512         // A load here means one of two things: a load of undef from a global,
1513         // a load from an unknown pointer.  Either way, having it return undef
1514         // is okay.
1515         continue;
1516       }
1517 
1518       markOverdefined(&I);
1519       MadeChange = true;
1520     }
1521 
1522     // Check to see if we have a branch or switch on an undefined value.  If so
1523     // we force the branch to go one way or the other to make the successor
1524     // values live.  It doesn't really matter which way we force it.
1525     Instruction *TI = BB.getTerminator();
1526     if (auto *BI = dyn_cast<BranchInst>(TI)) {
1527       if (!BI->isConditional())
1528         continue;
1529       if (!getValueState(BI->getCondition()).isUnknownOrUndef())
1530         continue;
1531 
1532       // If the input to SCCP is actually branch on undef, fix the undef to
1533       // false.
1534       if (isa<UndefValue>(BI->getCondition())) {
1535         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1536         markEdgeExecutable(&BB, TI->getSuccessor(1));
1537         MadeChange = true;
1538         continue;
1539       }
1540 
1541       // Otherwise, it is a branch on a symbolic value which is currently
1542       // considered to be undef.  Make sure some edge is executable, so a
1543       // branch on "undef" always flows somewhere.
1544       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1545       BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
1546       if (markEdgeExecutable(&BB, DefaultSuccessor))
1547         MadeChange = true;
1548 
1549       continue;
1550     }
1551 
1552     if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
1553       // Indirect branch with no successor ?. Its ok to assume it branches
1554       // to no target.
1555       if (IBR->getNumSuccessors() < 1)
1556         continue;
1557 
1558       if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
1559         continue;
1560 
1561       // If the input to SCCP is actually branch on undef, fix the undef to
1562       // the first successor of the indirect branch.
1563       if (isa<UndefValue>(IBR->getAddress())) {
1564         IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
1565         markEdgeExecutable(&BB, IBR->getSuccessor(0));
1566         MadeChange = true;
1567         continue;
1568       }
1569 
1570       // Otherwise, it is a branch on a symbolic value which is currently
1571       // considered to be undef.  Make sure some edge is executable, so a
1572       // branch on "undef" always flows somewhere.
1573       // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
1574       // we can assume the branch has undefined behavior instead.
1575       BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
1576       if (markEdgeExecutable(&BB, DefaultSuccessor))
1577         MadeChange = true;
1578 
1579       continue;
1580     }
1581 
1582     if (auto *SI = dyn_cast<SwitchInst>(TI)) {
1583       if (!SI->getNumCases() ||
1584           !getValueState(SI->getCondition()).isUnknownOrUndef())
1585         continue;
1586 
1587       // If the input to SCCP is actually switch on undef, fix the undef to
1588       // the first constant.
1589       if (isa<UndefValue>(SI->getCondition())) {
1590         SI->setCondition(SI->case_begin()->getCaseValue());
1591         markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
1592         MadeChange = true;
1593         continue;
1594       }
1595 
1596       // Otherwise, it is a branch on a symbolic value which is currently
1597       // considered to be undef.  Make sure some edge is executable, so a
1598       // branch on "undef" always flows somewhere.
1599       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1600       BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
1601       if (markEdgeExecutable(&BB, DefaultSuccessor))
1602         MadeChange = true;
1603 
1604       continue;
1605     }
1606   }
1607 
1608   return MadeChange;
1609 }
1610 
1611 //===----------------------------------------------------------------------===//
1612 //
1613 // SCCPSolver implementations
1614 //
1615 SCCPSolver::SCCPSolver(
1616     const DataLayout &DL,
1617     std::function<const TargetLibraryInfo &(Function &)> GetTLI,
1618     LLVMContext &Ctx)
1619     : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
1620 
1621 SCCPSolver::~SCCPSolver() {}
1622 
1623 void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) {
1624   return Visitor->addAnalysis(F, std::move(A));
1625 }
1626 
1627 bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
1628   return Visitor->markBlockExecutable(BB);
1629 }
1630 
1631 const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
1632   return Visitor->getPredicateInfoFor(I);
1633 }
1634 
1635 DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); }
1636 
1637 void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
1638   Visitor->trackValueOfGlobalVariable(GV);
1639 }
1640 
1641 void SCCPSolver::addTrackedFunction(Function *F) {
1642   Visitor->addTrackedFunction(F);
1643 }
1644 
1645 void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
1646   Visitor->addToMustPreserveReturnsInFunctions(F);
1647 }
1648 
1649 bool SCCPSolver::mustPreserveReturn(Function *F) {
1650   return Visitor->mustPreserveReturn(F);
1651 }
1652 
1653 void SCCPSolver::addArgumentTrackedFunction(Function *F) {
1654   Visitor->addArgumentTrackedFunction(F);
1655 }
1656 
1657 bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
1658   return Visitor->isArgumentTrackedFunction(F);
1659 }
1660 
1661 void SCCPSolver::solve() { Visitor->solve(); }
1662 
1663 bool SCCPSolver::resolvedUndefsIn(Function &F) {
1664   return Visitor->resolvedUndefsIn(F);
1665 }
1666 
1667 bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
1668   return Visitor->isBlockExecutable(BB);
1669 }
1670 
1671 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
1672   return Visitor->isEdgeFeasible(From, To);
1673 }
1674 
1675 std::vector<ValueLatticeElement>
1676 SCCPSolver::getStructLatticeValueFor(Value *V) const {
1677   return Visitor->getStructLatticeValueFor(V);
1678 }
1679 
1680 void SCCPSolver::removeLatticeValueFor(Value *V) {
1681   return Visitor->removeLatticeValueFor(V);
1682 }
1683 
1684 const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
1685   return Visitor->getLatticeValueFor(V);
1686 }
1687 
1688 const MapVector<Function *, ValueLatticeElement> &
1689 SCCPSolver::getTrackedRetVals() {
1690   return Visitor->getTrackedRetVals();
1691 }
1692 
1693 const DenseMap<GlobalVariable *, ValueLatticeElement> &
1694 SCCPSolver::getTrackedGlobals() {
1695   return Visitor->getTrackedGlobals();
1696 }
1697 
1698 const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
1699   return Visitor->getMRVFunctionsTracked();
1700 }
1701 
1702 void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
1703 
1704 bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
1705   return Visitor->isStructLatticeConstant(F, STy);
1706 }
1707 
1708 Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const {
1709   return Visitor->getConstant(LV);
1710 }
1711 
1712 SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() {
1713   return Visitor->getArgumentTrackedFunctions();
1714 }
1715 
1716 void SCCPSolver::markArgInFuncSpecialization(Function *F, Argument *A,
1717                                              Constant *C) {
1718   Visitor->markArgInFuncSpecialization(F, A, C);
1719 }
1720 
1721 void SCCPSolver::markFunctionUnreachable(Function *F) {
1722   Visitor->markFunctionUnreachable(F);
1723 }
1724 
1725 void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
1726 
1727 void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
1728