xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SCCPSolver.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements the Sparse Conditional Constant Propagation (SCCP)
11 // utility.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SCCPSolver.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueLattice.h"
19 #include "llvm/Analysis/ValueLatticeUtils.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/InstVisitor.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include <cassert>
28 #include <utility>
29 #include <vector>
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "sccp"
34 
35 // The maximum number of range extensions allowed for operations requiring
36 // widening.
37 static const unsigned MaxNumRangeExtensions = 10;
38 
39 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
40 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
41   return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
42       MaxNumRangeExtensions);
43 }
44 
45 static ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty,
46                                       bool UndefAllowed = true) {
47   assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector");
48   if (LV.isConstantRange(UndefAllowed))
49     return LV.getConstantRange();
50   return ConstantRange::getFull(Ty->getScalarSizeInBits());
51 }
52 
53 namespace llvm {
54 
55 bool SCCPSolver::isConstant(const ValueLatticeElement &LV) {
56   return LV.isConstant() ||
57          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
58 }
59 
60 bool SCCPSolver::isOverdefined(const ValueLatticeElement &LV) {
61   return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV);
62 }
63 
64 static bool canRemoveInstruction(Instruction *I) {
65   if (wouldInstructionBeTriviallyDead(I))
66     return true;
67 
68   // Some instructions can be handled but are rejected above. Catch
69   // those cases by falling through to here.
70   // TODO: Mark globals as being constant earlier, so
71   // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads
72   // TODO: are safe to remove.
73   return isa<LoadInst>(I);
74 }
75 
76 bool SCCPSolver::tryToReplaceWithConstant(Value *V) {
77   Constant *Const = getConstantOrNull(V);
78   if (!Const)
79     return false;
80   // Replacing `musttail` instructions with constant breaks `musttail` invariant
81   // unless the call itself can be removed.
82   // Calls with "clang.arc.attachedcall" implicitly use the return value and
83   // those uses cannot be updated with a constant.
84   CallBase *CB = dyn_cast<CallBase>(V);
85   if (CB && ((CB->isMustTailCall() &&
86               !canRemoveInstruction(CB)) ||
87              CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) {
88     Function *F = CB->getCalledFunction();
89 
90     // Don't zap returns of the callee
91     if (F)
92       addToMustPreserveReturnsInFunctions(F);
93 
94     LLVM_DEBUG(dbgs() << "  Can\'t treat the result of call " << *CB
95                       << " as a constant\n");
96     return false;
97   }
98 
99   LLVM_DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');
100 
101   // Replaces all of the uses of a variable with uses of the constant.
102   V->replaceAllUsesWith(Const);
103   return true;
104 }
105 
106 /// Try to use \p Inst's value range from \p Solver to infer the NUW flag.
107 static bool refineInstruction(SCCPSolver &Solver,
108                               const SmallPtrSetImpl<Value *> &InsertedValues,
109                               Instruction &Inst) {
110   bool Changed = false;
111   auto GetRange = [&Solver, &InsertedValues](Value *Op) {
112     if (auto *Const = dyn_cast<ConstantInt>(Op))
113       return ConstantRange(Const->getValue());
114     if (isa<Constant>(Op) || InsertedValues.contains(Op)) {
115       unsigned Bitwidth = Op->getType()->getScalarSizeInBits();
116       return ConstantRange::getFull(Bitwidth);
117     }
118     return getConstantRange(Solver.getLatticeValueFor(Op), Op->getType(),
119                             /*UndefAllowed=*/false);
120   };
121 
122   if (isa<OverflowingBinaryOperator>(Inst)) {
123     auto RangeA = GetRange(Inst.getOperand(0));
124     auto RangeB = GetRange(Inst.getOperand(1));
125     if (!Inst.hasNoUnsignedWrap()) {
126       auto NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
127           Instruction::BinaryOps(Inst.getOpcode()), RangeB,
128           OverflowingBinaryOperator::NoUnsignedWrap);
129       if (NUWRange.contains(RangeA)) {
130         Inst.setHasNoUnsignedWrap();
131         Changed = true;
132       }
133     }
134     if (!Inst.hasNoSignedWrap()) {
135       auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
136           Instruction::BinaryOps(Inst.getOpcode()), RangeB,
137           OverflowingBinaryOperator::NoSignedWrap);
138       if (NSWRange.contains(RangeA)) {
139         Inst.setHasNoSignedWrap();
140         Changed = true;
141       }
142     }
143   } else if (isa<ZExtInst>(Inst) && !Inst.hasNonNeg()) {
144     auto Range = GetRange(Inst.getOperand(0));
145     if (Range.isAllNonNegative()) {
146       Inst.setNonNeg();
147       Changed = true;
148     }
149   }
150 
151   return Changed;
152 }
153 
154 /// Try to replace signed instructions with their unsigned equivalent.
155 static bool replaceSignedInst(SCCPSolver &Solver,
156                               SmallPtrSetImpl<Value *> &InsertedValues,
157                               Instruction &Inst) {
158   // Determine if a signed value is known to be >= 0.
159   auto isNonNegative = [&Solver](Value *V) {
160     // If this value was constant-folded, it may not have a solver entry.
161     // Handle integers. Otherwise, return false.
162     if (auto *C = dyn_cast<Constant>(V)) {
163       auto *CInt = dyn_cast<ConstantInt>(C);
164       return CInt && !CInt->isNegative();
165     }
166     const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
167     return IV.isConstantRange(/*UndefAllowed=*/false) &&
168            IV.getConstantRange().isAllNonNegative();
169   };
170 
171   Instruction *NewInst = nullptr;
172   switch (Inst.getOpcode()) {
173   // Note: We do not fold sitofp -> uitofp here because that could be more
174   // expensive in codegen and may not be reversible in the backend.
175   case Instruction::SExt: {
176     // If the source value is not negative, this is a zext.
177     Value *Op0 = Inst.getOperand(0);
178     if (InsertedValues.count(Op0) || !isNonNegative(Op0))
179       return false;
180     NewInst = new ZExtInst(Op0, Inst.getType(), "", &Inst);
181     NewInst->setNonNeg();
182     break;
183   }
184   case Instruction::AShr: {
185     // If the shifted value is not negative, this is a logical shift right.
186     Value *Op0 = Inst.getOperand(0);
187     if (InsertedValues.count(Op0) || !isNonNegative(Op0))
188       return false;
189     NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", &Inst);
190     NewInst->setIsExact(Inst.isExact());
191     break;
192   }
193   case Instruction::SDiv:
194   case Instruction::SRem: {
195     // If both operands are not negative, this is the same as udiv/urem.
196     Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1);
197     if (InsertedValues.count(Op0) || InsertedValues.count(Op1) ||
198         !isNonNegative(Op0) || !isNonNegative(Op1))
199       return false;
200     auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv
201                                                            : Instruction::URem;
202     NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", &Inst);
203     if (Inst.getOpcode() == Instruction::SDiv)
204       NewInst->setIsExact(Inst.isExact());
205     break;
206   }
207   default:
208     return false;
209   }
210 
211   // Wire up the new instruction and update state.
212   assert(NewInst && "Expected replacement instruction");
213   NewInst->takeName(&Inst);
214   InsertedValues.insert(NewInst);
215   Inst.replaceAllUsesWith(NewInst);
216   Solver.removeLatticeValueFor(&Inst);
217   Inst.eraseFromParent();
218   return true;
219 }
220 
221 bool SCCPSolver::simplifyInstsInBlock(BasicBlock &BB,
222                                       SmallPtrSetImpl<Value *> &InsertedValues,
223                                       Statistic &InstRemovedStat,
224                                       Statistic &InstReplacedStat) {
225   bool MadeChanges = false;
226   for (Instruction &Inst : make_early_inc_range(BB)) {
227     if (Inst.getType()->isVoidTy())
228       continue;
229     if (tryToReplaceWithConstant(&Inst)) {
230       if (canRemoveInstruction(&Inst))
231         Inst.eraseFromParent();
232 
233       MadeChanges = true;
234       ++InstRemovedStat;
235     } else if (replaceSignedInst(*this, InsertedValues, Inst)) {
236       MadeChanges = true;
237       ++InstReplacedStat;
238     } else if (refineInstruction(*this, InsertedValues, Inst)) {
239       MadeChanges = true;
240     }
241   }
242   return MadeChanges;
243 }
244 
245 bool SCCPSolver::removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU,
246                                         BasicBlock *&NewUnreachableBB) const {
247   SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
248   bool HasNonFeasibleEdges = false;
249   for (BasicBlock *Succ : successors(BB)) {
250     if (isEdgeFeasible(BB, Succ))
251       FeasibleSuccessors.insert(Succ);
252     else
253       HasNonFeasibleEdges = true;
254   }
255 
256   // All edges feasible, nothing to do.
257   if (!HasNonFeasibleEdges)
258     return false;
259 
260   // SCCP can only determine non-feasible edges for br, switch and indirectbr.
261   Instruction *TI = BB->getTerminator();
262   assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
263           isa<IndirectBrInst>(TI)) &&
264          "Terminator must be a br, switch or indirectbr");
265 
266   if (FeasibleSuccessors.size() == 0) {
267     // Branch on undef/poison, replace with unreachable.
268     SmallPtrSet<BasicBlock *, 8> SeenSuccs;
269     SmallVector<DominatorTree::UpdateType, 8> Updates;
270     for (BasicBlock *Succ : successors(BB)) {
271       Succ->removePredecessor(BB);
272       if (SeenSuccs.insert(Succ).second)
273         Updates.push_back({DominatorTree::Delete, BB, Succ});
274     }
275     TI->eraseFromParent();
276     new UnreachableInst(BB->getContext(), BB);
277     DTU.applyUpdatesPermissive(Updates);
278   } else if (FeasibleSuccessors.size() == 1) {
279     // Replace with an unconditional branch to the only feasible successor.
280     BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
281     SmallVector<DominatorTree::UpdateType, 8> Updates;
282     bool HaveSeenOnlyFeasibleSuccessor = false;
283     for (BasicBlock *Succ : successors(BB)) {
284       if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
285         // Don't remove the edge to the only feasible successor the first time
286         // we see it. We still do need to remove any multi-edges to it though.
287         HaveSeenOnlyFeasibleSuccessor = true;
288         continue;
289       }
290 
291       Succ->removePredecessor(BB);
292       Updates.push_back({DominatorTree::Delete, BB, Succ});
293     }
294 
295     BranchInst::Create(OnlyFeasibleSuccessor, BB);
296     TI->eraseFromParent();
297     DTU.applyUpdatesPermissive(Updates);
298   } else if (FeasibleSuccessors.size() > 1) {
299     SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
300     SmallVector<DominatorTree::UpdateType, 8> Updates;
301 
302     // If the default destination is unfeasible it will never be taken. Replace
303     // it with a new block with a single Unreachable instruction.
304     BasicBlock *DefaultDest = SI->getDefaultDest();
305     if (!FeasibleSuccessors.contains(DefaultDest)) {
306       if (!NewUnreachableBB) {
307         NewUnreachableBB =
308             BasicBlock::Create(DefaultDest->getContext(), "default.unreachable",
309                                DefaultDest->getParent(), DefaultDest);
310         new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB);
311       }
312 
313       DefaultDest->removePredecessor(BB);
314       SI->setDefaultDest(NewUnreachableBB);
315       Updates.push_back({DominatorTree::Delete, BB, DefaultDest});
316       Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB});
317     }
318 
319     for (auto CI = SI->case_begin(); CI != SI->case_end();) {
320       if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
321         ++CI;
322         continue;
323       }
324 
325       BasicBlock *Succ = CI->getCaseSuccessor();
326       Succ->removePredecessor(BB);
327       Updates.push_back({DominatorTree::Delete, BB, Succ});
328       SI.removeCase(CI);
329       // Don't increment CI, as we removed a case.
330     }
331 
332     DTU.applyUpdatesPermissive(Updates);
333   } else {
334     llvm_unreachable("Must have at least one feasible successor");
335   }
336   return true;
337 }
338 
339 /// Helper class for SCCPSolver. This implements the instruction visitor and
340 /// holds all the state.
341 class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
342   const DataLayout &DL;
343   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
344   SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
345   DenseMap<Value *, ValueLatticeElement>
346       ValueState; // The state each value is in.
347 
348   /// StructValueState - This maintains ValueState for values that have
349   /// StructType, for example for formal arguments, calls, insertelement, etc.
350   DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
351 
352   /// GlobalValue - If we are tracking any values for the contents of a global
353   /// variable, we keep a mapping from the constant accessor to the element of
354   /// the global, to the currently known value.  If the value becomes
355   /// overdefined, it's entry is simply removed from this map.
356   DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
357 
358   /// TrackedRetVals - If we are tracking arguments into and the return
359   /// value out of a function, it will have an entry in this map, indicating
360   /// what the known return value for the function is.
361   MapVector<Function *, ValueLatticeElement> TrackedRetVals;
362 
363   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
364   /// that return multiple values.
365   MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
366       TrackedMultipleRetVals;
367 
368   /// The set of values whose lattice has been invalidated.
369   /// Populated by resetLatticeValueFor(), cleared after resolving undefs.
370   DenseSet<Value *> Invalidated;
371 
372   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
373   /// represented here for efficient lookup.
374   SmallPtrSet<Function *, 16> MRVFunctionsTracked;
375 
376   /// A list of functions whose return cannot be modified.
377   SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
378 
379   /// TrackingIncomingArguments - This is the set of functions for whose
380   /// arguments we make optimistic assumptions about and try to prove as
381   /// constants.
382   SmallPtrSet<Function *, 16> TrackingIncomingArguments;
383 
384   /// The reason for two worklists is that overdefined is the lowest state
385   /// on the lattice, and moving things to overdefined as fast as possible
386   /// makes SCCP converge much faster.
387   ///
388   /// By having a separate worklist, we accomplish this because everything
389   /// possibly overdefined will become overdefined at the soonest possible
390   /// point.
391   SmallVector<Value *, 64> OverdefinedInstWorkList;
392   SmallVector<Value *, 64> InstWorkList;
393 
394   // The BasicBlock work list
395   SmallVector<BasicBlock *, 64> BBWorkList;
396 
397   /// KnownFeasibleEdges - Entries in this set are edges which have already had
398   /// PHI nodes retriggered.
399   using Edge = std::pair<BasicBlock *, BasicBlock *>;
400   DenseSet<Edge> KnownFeasibleEdges;
401 
402   DenseMap<Function *, std::unique_ptr<PredicateInfo>> FnPredicateInfo;
403 
404   DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
405 
406   LLVMContext &Ctx;
407 
408 private:
409   ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const {
410     return dyn_cast_or_null<ConstantInt>(getConstant(IV, Ty));
411   }
412 
413   // pushToWorkList - Helper for markConstant/markOverdefined
414   void pushToWorkList(ValueLatticeElement &IV, Value *V);
415 
416   // Helper to push \p V to the worklist, after updating it to \p IV. Also
417   // prints a debug message with the updated value.
418   void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
419 
420   // markConstant - Make a value be marked as "constant".  If the value
421   // is not already a constant, add it to the instruction work list so that
422   // the users of the instruction are updated later.
423   bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
424                     bool MayIncludeUndef = false);
425 
426   bool markConstant(Value *V, Constant *C) {
427     assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
428     return markConstant(ValueState[V], V, C);
429   }
430 
431   // markOverdefined - Make a value be marked as "overdefined". If the
432   // value is not already overdefined, add it to the overdefined instruction
433   // work list so that the users of the instruction are updated later.
434   bool markOverdefined(ValueLatticeElement &IV, Value *V);
435 
436   /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
437   /// changes.
438   bool mergeInValue(ValueLatticeElement &IV, Value *V,
439                     ValueLatticeElement MergeWithV,
440                     ValueLatticeElement::MergeOptions Opts = {
441                         /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
442 
443   bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
444                     ValueLatticeElement::MergeOptions Opts = {
445                         /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
446     assert(!V->getType()->isStructTy() &&
447            "non-structs should use markConstant");
448     return mergeInValue(ValueState[V], V, MergeWithV, Opts);
449   }
450 
451   /// getValueState - Return the ValueLatticeElement object that corresponds to
452   /// the value.  This function handles the case when the value hasn't been seen
453   /// yet by properly seeding constants etc.
454   ValueLatticeElement &getValueState(Value *V) {
455     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
456 
457     auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
458     ValueLatticeElement &LV = I.first->second;
459 
460     if (!I.second)
461       return LV; // Common case, already in the map.
462 
463     if (auto *C = dyn_cast<Constant>(V))
464       LV.markConstant(C); // Constants are constant
465 
466     // All others are unknown by default.
467     return LV;
468   }
469 
470   /// getStructValueState - Return the ValueLatticeElement object that
471   /// corresponds to the value/field pair.  This function handles the case when
472   /// the value hasn't been seen yet by properly seeding constants etc.
473   ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
474     assert(V->getType()->isStructTy() && "Should use getValueState");
475     assert(i < cast<StructType>(V->getType())->getNumElements() &&
476            "Invalid element #");
477 
478     auto I = StructValueState.insert(
479         std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
480     ValueLatticeElement &LV = I.first->second;
481 
482     if (!I.second)
483       return LV; // Common case, already in the map.
484 
485     if (auto *C = dyn_cast<Constant>(V)) {
486       Constant *Elt = C->getAggregateElement(i);
487 
488       if (!Elt)
489         LV.markOverdefined(); // Unknown sort of constant.
490       else
491         LV.markConstant(Elt); // Constants are constant.
492     }
493 
494     // All others are underdefined by default.
495     return LV;
496   }
497 
498   /// Traverse the use-def chain of \p Call, marking itself and its users as
499   /// "unknown" on the way.
500   void invalidate(CallBase *Call) {
501     SmallVector<Instruction *, 64> ToInvalidate;
502     ToInvalidate.push_back(Call);
503 
504     while (!ToInvalidate.empty()) {
505       Instruction *Inst = ToInvalidate.pop_back_val();
506 
507       if (!Invalidated.insert(Inst).second)
508         continue;
509 
510       if (!BBExecutable.count(Inst->getParent()))
511         continue;
512 
513       Value *V = nullptr;
514       // For return instructions we need to invalidate the tracked returns map.
515       // Anything else has its lattice in the value map.
516       if (auto *RetInst = dyn_cast<ReturnInst>(Inst)) {
517         Function *F = RetInst->getParent()->getParent();
518         if (auto It = TrackedRetVals.find(F); It != TrackedRetVals.end()) {
519           It->second = ValueLatticeElement();
520           V = F;
521         } else if (MRVFunctionsTracked.count(F)) {
522           auto *STy = cast<StructType>(F->getReturnType());
523           for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
524             TrackedMultipleRetVals[{F, I}] = ValueLatticeElement();
525           V = F;
526         }
527       } else if (auto *STy = dyn_cast<StructType>(Inst->getType())) {
528         for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
529           if (auto It = StructValueState.find({Inst, I});
530               It != StructValueState.end()) {
531             It->second = ValueLatticeElement();
532             V = Inst;
533           }
534         }
535       } else if (auto It = ValueState.find(Inst); It != ValueState.end()) {
536         It->second = ValueLatticeElement();
537         V = Inst;
538       }
539 
540       if (V) {
541         LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n");
542 
543         for (User *U : V->users())
544           if (auto *UI = dyn_cast<Instruction>(U))
545             ToInvalidate.push_back(UI);
546 
547         auto It = AdditionalUsers.find(V);
548         if (It != AdditionalUsers.end())
549           for (User *U : It->second)
550             if (auto *UI = dyn_cast<Instruction>(U))
551               ToInvalidate.push_back(UI);
552       }
553     }
554   }
555 
556   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
557   /// work list if it is not already executable.
558   bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
559 
560   // getFeasibleSuccessors - Return a vector of booleans to indicate which
561   // successors are reachable from a given terminator instruction.
562   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
563 
564   // OperandChangedState - This method is invoked on all of the users of an
565   // instruction that was just changed state somehow.  Based on this
566   // information, we need to update the specified user of this instruction.
567   void operandChangedState(Instruction *I) {
568     if (BBExecutable.count(I->getParent())) // Inst is executable?
569       visit(*I);
570   }
571 
572   // Add U as additional user of V.
573   void addAdditionalUser(Value *V, User *U) {
574     auto Iter = AdditionalUsers.insert({V, {}});
575     Iter.first->second.insert(U);
576   }
577 
578   // Mark I's users as changed, including AdditionalUsers.
579   void markUsersAsChanged(Value *I) {
580     // Functions include their arguments in the use-list. Changed function
581     // values mean that the result of the function changed. We only need to
582     // update the call sites with the new function result and do not have to
583     // propagate the call arguments.
584     if (isa<Function>(I)) {
585       for (User *U : I->users()) {
586         if (auto *CB = dyn_cast<CallBase>(U))
587           handleCallResult(*CB);
588       }
589     } else {
590       for (User *U : I->users())
591         if (auto *UI = dyn_cast<Instruction>(U))
592           operandChangedState(UI);
593     }
594 
595     auto Iter = AdditionalUsers.find(I);
596     if (Iter != AdditionalUsers.end()) {
597       // Copy additional users before notifying them of changes, because new
598       // users may be added, potentially invalidating the iterator.
599       SmallVector<Instruction *, 2> ToNotify;
600       for (User *U : Iter->second)
601         if (auto *UI = dyn_cast<Instruction>(U))
602           ToNotify.push_back(UI);
603       for (Instruction *UI : ToNotify)
604         operandChangedState(UI);
605     }
606   }
607   void handleCallOverdefined(CallBase &CB);
608   void handleCallResult(CallBase &CB);
609   void handleCallArguments(CallBase &CB);
610   void handleExtractOfWithOverflow(ExtractValueInst &EVI,
611                                    const WithOverflowInst *WO, unsigned Idx);
612 
613 private:
614   friend class InstVisitor<SCCPInstVisitor>;
615 
616   // visit implementations - Something changed in this instruction.  Either an
617   // operand made a transition, or the instruction is newly executable.  Change
618   // the value type of I to reflect these changes if appropriate.
619   void visitPHINode(PHINode &I);
620 
621   // Terminators
622 
623   void visitReturnInst(ReturnInst &I);
624   void visitTerminator(Instruction &TI);
625 
626   void visitCastInst(CastInst &I);
627   void visitSelectInst(SelectInst &I);
628   void visitUnaryOperator(Instruction &I);
629   void visitFreezeInst(FreezeInst &I);
630   void visitBinaryOperator(Instruction &I);
631   void visitCmpInst(CmpInst &I);
632   void visitExtractValueInst(ExtractValueInst &EVI);
633   void visitInsertValueInst(InsertValueInst &IVI);
634 
635   void visitCatchSwitchInst(CatchSwitchInst &CPI) {
636     markOverdefined(&CPI);
637     visitTerminator(CPI);
638   }
639 
640   // Instructions that cannot be folded away.
641 
642   void visitStoreInst(StoreInst &I);
643   void visitLoadInst(LoadInst &I);
644   void visitGetElementPtrInst(GetElementPtrInst &I);
645 
646   void visitInvokeInst(InvokeInst &II) {
647     visitCallBase(II);
648     visitTerminator(II);
649   }
650 
651   void visitCallBrInst(CallBrInst &CBI) {
652     visitCallBase(CBI);
653     visitTerminator(CBI);
654   }
655 
656   void visitCallBase(CallBase &CB);
657   void visitResumeInst(ResumeInst &I) { /*returns void*/
658   }
659   void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
660   }
661   void visitFenceInst(FenceInst &I) { /*returns void*/
662   }
663 
664   void visitInstruction(Instruction &I);
665 
666 public:
667   void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC) {
668     FnPredicateInfo.insert({&F, std::make_unique<PredicateInfo>(F, DT, AC)});
669   }
670 
671   void visitCallInst(CallInst &I) { visitCallBase(I); }
672 
673   bool markBlockExecutable(BasicBlock *BB);
674 
675   const PredicateBase *getPredicateInfoFor(Instruction *I) {
676     auto It = FnPredicateInfo.find(I->getParent()->getParent());
677     if (It == FnPredicateInfo.end())
678       return nullptr;
679     return It->second->getPredicateInfoFor(I);
680   }
681 
682   SCCPInstVisitor(const DataLayout &DL,
683                   std::function<const TargetLibraryInfo &(Function &)> GetTLI,
684                   LLVMContext &Ctx)
685       : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
686 
687   void trackValueOfGlobalVariable(GlobalVariable *GV) {
688     // We only track the contents of scalar globals.
689     if (GV->getValueType()->isSingleValueType()) {
690       ValueLatticeElement &IV = TrackedGlobals[GV];
691       IV.markConstant(GV->getInitializer());
692     }
693   }
694 
695   void addTrackedFunction(Function *F) {
696     // Add an entry, F -> undef.
697     if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
698       MRVFunctionsTracked.insert(F);
699       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
700         TrackedMultipleRetVals.insert(
701             std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
702     } else if (!F->getReturnType()->isVoidTy())
703       TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
704   }
705 
706   void addToMustPreserveReturnsInFunctions(Function *F) {
707     MustPreserveReturnsInFunctions.insert(F);
708   }
709 
710   bool mustPreserveReturn(Function *F) {
711     return MustPreserveReturnsInFunctions.count(F);
712   }
713 
714   void addArgumentTrackedFunction(Function *F) {
715     TrackingIncomingArguments.insert(F);
716   }
717 
718   bool isArgumentTrackedFunction(Function *F) {
719     return TrackingIncomingArguments.count(F);
720   }
721 
722   void solve();
723 
724   bool resolvedUndef(Instruction &I);
725 
726   bool resolvedUndefsIn(Function &F);
727 
728   bool isBlockExecutable(BasicBlock *BB) const {
729     return BBExecutable.count(BB);
730   }
731 
732   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
733 
734   std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
735     std::vector<ValueLatticeElement> StructValues;
736     auto *STy = dyn_cast<StructType>(V->getType());
737     assert(STy && "getStructLatticeValueFor() can be called only on structs");
738     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
739       auto I = StructValueState.find(std::make_pair(V, i));
740       assert(I != StructValueState.end() && "Value not in valuemap!");
741       StructValues.push_back(I->second);
742     }
743     return StructValues;
744   }
745 
746   void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
747 
748   /// Invalidate the Lattice Value of \p Call and its users after specializing
749   /// the call. Then recompute it.
750   void resetLatticeValueFor(CallBase *Call) {
751     // Calls to void returning functions do not need invalidation.
752     Function *F = Call->getCalledFunction();
753     (void)F;
754     assert(!F->getReturnType()->isVoidTy() &&
755            (TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) &&
756            "All non void specializations should be tracked");
757     invalidate(Call);
758     handleCallResult(*Call);
759   }
760 
761   const ValueLatticeElement &getLatticeValueFor(Value *V) const {
762     assert(!V->getType()->isStructTy() &&
763            "Should use getStructLatticeValueFor");
764     DenseMap<Value *, ValueLatticeElement>::const_iterator I =
765         ValueState.find(V);
766     assert(I != ValueState.end() &&
767            "V not found in ValueState nor Paramstate map!");
768     return I->second;
769   }
770 
771   const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
772     return TrackedRetVals;
773   }
774 
775   const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
776     return TrackedGlobals;
777   }
778 
779   const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
780     return MRVFunctionsTracked;
781   }
782 
783   void markOverdefined(Value *V) {
784     if (auto *STy = dyn_cast<StructType>(V->getType()))
785       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
786         markOverdefined(getStructValueState(V, i), V);
787     else
788       markOverdefined(ValueState[V], V);
789   }
790 
791   bool isStructLatticeConstant(Function *F, StructType *STy);
792 
793   Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const;
794 
795   Constant *getConstantOrNull(Value *V) const;
796 
797   SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() {
798     return TrackingIncomingArguments;
799   }
800 
801   void setLatticeValueForSpecializationArguments(Function *F,
802                                        const SmallVectorImpl<ArgInfo> &Args);
803 
804   void markFunctionUnreachable(Function *F) {
805     for (auto &BB : *F)
806       BBExecutable.erase(&BB);
807   }
808 
809   void solveWhileResolvedUndefsIn(Module &M) {
810     bool ResolvedUndefs = true;
811     while (ResolvedUndefs) {
812       solve();
813       ResolvedUndefs = false;
814       for (Function &F : M)
815         ResolvedUndefs |= resolvedUndefsIn(F);
816     }
817   }
818 
819   void solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) {
820     bool ResolvedUndefs = true;
821     while (ResolvedUndefs) {
822       solve();
823       ResolvedUndefs = false;
824       for (Function *F : WorkList)
825         ResolvedUndefs |= resolvedUndefsIn(*F);
826     }
827   }
828 
829   void solveWhileResolvedUndefs() {
830     bool ResolvedUndefs = true;
831     while (ResolvedUndefs) {
832       solve();
833       ResolvedUndefs = false;
834       for (Value *V : Invalidated)
835         if (auto *I = dyn_cast<Instruction>(V))
836           ResolvedUndefs |= resolvedUndef(*I);
837     }
838     Invalidated.clear();
839   }
840 };
841 
842 } // namespace llvm
843 
844 bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
845   if (!BBExecutable.insert(BB).second)
846     return false;
847   LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
848   BBWorkList.push_back(BB); // Add the block to the work list!
849   return true;
850 }
851 
852 void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
853   if (IV.isOverdefined()) {
854     if (OverdefinedInstWorkList.empty() || OverdefinedInstWorkList.back() != V)
855       OverdefinedInstWorkList.push_back(V);
856     return;
857   }
858   if (InstWorkList.empty() || InstWorkList.back() != V)
859     InstWorkList.push_back(V);
860 }
861 
862 void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
863   LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
864   pushToWorkList(IV, V);
865 }
866 
867 bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
868                                    Constant *C, bool MayIncludeUndef) {
869   if (!IV.markConstant(C, MayIncludeUndef))
870     return false;
871   LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
872   pushToWorkList(IV, V);
873   return true;
874 }
875 
876 bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
877   if (!IV.markOverdefined())
878     return false;
879 
880   LLVM_DEBUG(dbgs() << "markOverdefined: ";
881              if (auto *F = dyn_cast<Function>(V)) dbgs()
882              << "Function '" << F->getName() << "'\n";
883              else dbgs() << *V << '\n');
884   // Only instructions go on the work list
885   pushToWorkList(IV, V);
886   return true;
887 }
888 
889 bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
890   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
891     const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
892     assert(It != TrackedMultipleRetVals.end());
893     ValueLatticeElement LV = It->second;
894     if (!SCCPSolver::isConstant(LV))
895       return false;
896   }
897   return true;
898 }
899 
900 Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV,
901                                        Type *Ty) const {
902   if (LV.isConstant()) {
903     Constant *C = LV.getConstant();
904     assert(C->getType() == Ty && "Type mismatch");
905     return C;
906   }
907 
908   if (LV.isConstantRange()) {
909     const auto &CR = LV.getConstantRange();
910     if (CR.getSingleElement())
911       return ConstantInt::get(Ty, *CR.getSingleElement());
912   }
913   return nullptr;
914 }
915 
916 Constant *SCCPInstVisitor::getConstantOrNull(Value *V) const {
917   Constant *Const = nullptr;
918   if (V->getType()->isStructTy()) {
919     std::vector<ValueLatticeElement> LVs = getStructLatticeValueFor(V);
920     if (any_of(LVs, SCCPSolver::isOverdefined))
921       return nullptr;
922     std::vector<Constant *> ConstVals;
923     auto *ST = cast<StructType>(V->getType());
924     for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) {
925       ValueLatticeElement LV = LVs[I];
926       ConstVals.push_back(SCCPSolver::isConstant(LV)
927                               ? getConstant(LV, ST->getElementType(I))
928                               : UndefValue::get(ST->getElementType(I)));
929     }
930     Const = ConstantStruct::get(ST, ConstVals);
931   } else {
932     const ValueLatticeElement &LV = getLatticeValueFor(V);
933     if (SCCPSolver::isOverdefined(LV))
934       return nullptr;
935     Const = SCCPSolver::isConstant(LV) ? getConstant(LV, V->getType())
936                                        : UndefValue::get(V->getType());
937   }
938   assert(Const && "Constant is nullptr here!");
939   return Const;
940 }
941 
942 void SCCPInstVisitor::setLatticeValueForSpecializationArguments(Function *F,
943                                         const SmallVectorImpl<ArgInfo> &Args) {
944   assert(!Args.empty() && "Specialization without arguments");
945   assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() &&
946          "Functions should have the same number of arguments");
947 
948   auto Iter = Args.begin();
949   Function::arg_iterator NewArg = F->arg_begin();
950   Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin();
951   for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) {
952 
953     LLVM_DEBUG(dbgs() << "SCCP: Marking argument "
954                       << NewArg->getNameOrAsOperand() << "\n");
955 
956     // Mark the argument constants in the new function
957     // or copy the lattice state over from the old function.
958     if (Iter != Args.end() && Iter->Formal == &*OldArg) {
959       if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
960         for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
961           ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
962           NewValue.markConstant(Iter->Actual->getAggregateElement(I));
963         }
964       } else {
965         ValueState[&*NewArg].markConstant(Iter->Actual);
966       }
967       ++Iter;
968     } else {
969       if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
970         for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
971           ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
972           NewValue = StructValueState[{&*OldArg, I}];
973         }
974       } else {
975         ValueLatticeElement &NewValue = ValueState[&*NewArg];
976         NewValue = ValueState[&*OldArg];
977       }
978     }
979   }
980 }
981 
982 void SCCPInstVisitor::visitInstruction(Instruction &I) {
983   // All the instructions we don't do any special handling for just
984   // go to overdefined.
985   LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
986   markOverdefined(&I);
987 }
988 
989 bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
990                                    ValueLatticeElement MergeWithV,
991                                    ValueLatticeElement::MergeOptions Opts) {
992   if (IV.mergeIn(MergeWithV, Opts)) {
993     pushToWorkList(IV, V);
994     LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
995                       << IV << "\n");
996     return true;
997   }
998   return false;
999 }
1000 
1001 bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
1002   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
1003     return false; // This edge is already known to be executable!
1004 
1005   if (!markBlockExecutable(Dest)) {
1006     // If the destination is already executable, we just made an *edge*
1007     // feasible that wasn't before.  Revisit the PHI nodes in the block
1008     // because they have potentially new operands.
1009     LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
1010                       << " -> " << Dest->getName() << '\n');
1011 
1012     for (PHINode &PN : Dest->phis())
1013       visitPHINode(PN);
1014   }
1015   return true;
1016 }
1017 
1018 // getFeasibleSuccessors - Return a vector of booleans to indicate which
1019 // successors are reachable from a given terminator instruction.
1020 void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
1021                                             SmallVectorImpl<bool> &Succs) {
1022   Succs.resize(TI.getNumSuccessors());
1023   if (auto *BI = dyn_cast<BranchInst>(&TI)) {
1024     if (BI->isUnconditional()) {
1025       Succs[0] = true;
1026       return;
1027     }
1028 
1029     ValueLatticeElement BCValue = getValueState(BI->getCondition());
1030     ConstantInt *CI = getConstantInt(BCValue, BI->getCondition()->getType());
1031     if (!CI) {
1032       // Overdefined condition variables, and branches on unfoldable constant
1033       // conditions, mean the branch could go either way.
1034       if (!BCValue.isUnknownOrUndef())
1035         Succs[0] = Succs[1] = true;
1036       return;
1037     }
1038 
1039     // Constant condition variables mean the branch can only go a single way.
1040     Succs[CI->isZero()] = true;
1041     return;
1042   }
1043 
1044   // We cannot analyze special terminators, so consider all successors
1045   // executable.
1046   if (TI.isSpecialTerminator()) {
1047     Succs.assign(TI.getNumSuccessors(), true);
1048     return;
1049   }
1050 
1051   if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
1052     if (!SI->getNumCases()) {
1053       Succs[0] = true;
1054       return;
1055     }
1056     const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
1057     if (ConstantInt *CI =
1058             getConstantInt(SCValue, SI->getCondition()->getType())) {
1059       Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
1060       return;
1061     }
1062 
1063     // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
1064     // is ready.
1065     if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
1066       const ConstantRange &Range = SCValue.getConstantRange();
1067       unsigned ReachableCaseCount = 0;
1068       for (const auto &Case : SI->cases()) {
1069         const APInt &CaseValue = Case.getCaseValue()->getValue();
1070         if (Range.contains(CaseValue)) {
1071           Succs[Case.getSuccessorIndex()] = true;
1072           ++ReachableCaseCount;
1073         }
1074       }
1075 
1076       Succs[SI->case_default()->getSuccessorIndex()] =
1077           Range.isSizeLargerThan(ReachableCaseCount);
1078       return;
1079     }
1080 
1081     // Overdefined or unknown condition? All destinations are executable!
1082     if (!SCValue.isUnknownOrUndef())
1083       Succs.assign(TI.getNumSuccessors(), true);
1084     return;
1085   }
1086 
1087   // In case of indirect branch and its address is a blockaddress, we mark
1088   // the target as executable.
1089   if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
1090     // Casts are folded by visitCastInst.
1091     ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
1092     BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(
1093         getConstant(IBRValue, IBR->getAddress()->getType()));
1094     if (!Addr) { // Overdefined or unknown condition?
1095       // All destinations are executable!
1096       if (!IBRValue.isUnknownOrUndef())
1097         Succs.assign(TI.getNumSuccessors(), true);
1098       return;
1099     }
1100 
1101     BasicBlock *T = Addr->getBasicBlock();
1102     assert(Addr->getFunction() == T->getParent() &&
1103            "Block address of a different function ?");
1104     for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
1105       // This is the target.
1106       if (IBR->getDestination(i) == T) {
1107         Succs[i] = true;
1108         return;
1109       }
1110     }
1111 
1112     // If we didn't find our destination in the IBR successor list, then we
1113     // have undefined behavior. Its ok to assume no successor is executable.
1114     return;
1115   }
1116 
1117   LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
1118   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
1119 }
1120 
1121 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
1122 // block to the 'To' basic block is currently feasible.
1123 bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
1124   // Check if we've called markEdgeExecutable on the edge yet. (We could
1125   // be more aggressive and try to consider edges which haven't been marked
1126   // yet, but there isn't any need.)
1127   return KnownFeasibleEdges.count(Edge(From, To));
1128 }
1129 
1130 // visit Implementations - Something changed in this instruction, either an
1131 // operand made a transition, or the instruction is newly executable.  Change
1132 // the value type of I to reflect these changes if appropriate.  This method
1133 // makes sure to do the following actions:
1134 //
1135 // 1. If a phi node merges two constants in, and has conflicting value coming
1136 //    from different branches, or if the PHI node merges in an overdefined
1137 //    value, then the PHI node becomes overdefined.
1138 // 2. If a phi node merges only constants in, and they all agree on value, the
1139 //    PHI node becomes a constant value equal to that.
1140 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
1141 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
1142 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
1143 // 6. If a conditional branch has a value that is constant, make the selected
1144 //    destination executable
1145 // 7. If a conditional branch has a value that is overdefined, make all
1146 //    successors executable.
1147 void SCCPInstVisitor::visitPHINode(PHINode &PN) {
1148   // If this PN returns a struct, just mark the result overdefined.
1149   // TODO: We could do a lot better than this if code actually uses this.
1150   if (PN.getType()->isStructTy())
1151     return (void)markOverdefined(&PN);
1152 
1153   if (getValueState(&PN).isOverdefined())
1154     return; // Quick exit
1155 
1156   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
1157   // and slow us down a lot.  Just mark them overdefined.
1158   if (PN.getNumIncomingValues() > 64)
1159     return (void)markOverdefined(&PN);
1160 
1161   unsigned NumActiveIncoming = 0;
1162 
1163   // Look at all of the executable operands of the PHI node.  If any of them
1164   // are overdefined, the PHI becomes overdefined as well.  If they are all
1165   // constant, and they agree with each other, the PHI becomes the identical
1166   // constant.  If they are constant and don't agree, the PHI is a constant
1167   // range. If there are no executable operands, the PHI remains unknown.
1168   ValueLatticeElement PhiState = getValueState(&PN);
1169   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1170     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
1171       continue;
1172 
1173     ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
1174     PhiState.mergeIn(IV);
1175     NumActiveIncoming++;
1176     if (PhiState.isOverdefined())
1177       break;
1178   }
1179 
1180   // We allow up to 1 range extension per active incoming value and one
1181   // additional extension. Note that we manually adjust the number of range
1182   // extensions to match the number of active incoming values. This helps to
1183   // limit multiple extensions caused by the same incoming value, if other
1184   // incoming values are equal.
1185   mergeInValue(&PN, PhiState,
1186                ValueLatticeElement::MergeOptions().setMaxWidenSteps(
1187                    NumActiveIncoming + 1));
1188   ValueLatticeElement &PhiStateRef = getValueState(&PN);
1189   PhiStateRef.setNumRangeExtensions(
1190       std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
1191 }
1192 
1193 void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
1194   if (I.getNumOperands() == 0)
1195     return; // ret void
1196 
1197   Function *F = I.getParent()->getParent();
1198   Value *ResultOp = I.getOperand(0);
1199 
1200   // If we are tracking the return value of this function, merge it in.
1201   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
1202     auto TFRVI = TrackedRetVals.find(F);
1203     if (TFRVI != TrackedRetVals.end()) {
1204       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
1205       return;
1206     }
1207   }
1208 
1209   // Handle functions that return multiple values.
1210   if (!TrackedMultipleRetVals.empty()) {
1211     if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
1212       if (MRVFunctionsTracked.count(F))
1213         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1214           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
1215                        getStructValueState(ResultOp, i));
1216   }
1217 }
1218 
1219 void SCCPInstVisitor::visitTerminator(Instruction &TI) {
1220   SmallVector<bool, 16> SuccFeasible;
1221   getFeasibleSuccessors(TI, SuccFeasible);
1222 
1223   BasicBlock *BB = TI.getParent();
1224 
1225   // Mark all feasible successors executable.
1226   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
1227     if (SuccFeasible[i])
1228       markEdgeExecutable(BB, TI.getSuccessor(i));
1229 }
1230 
1231 void SCCPInstVisitor::visitCastInst(CastInst &I) {
1232   // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1233   // discover a concrete value later.
1234   if (ValueState[&I].isOverdefined())
1235     return;
1236 
1237   ValueLatticeElement OpSt = getValueState(I.getOperand(0));
1238   if (OpSt.isUnknownOrUndef())
1239     return;
1240 
1241   if (Constant *OpC = getConstant(OpSt, I.getOperand(0)->getType())) {
1242     // Fold the constant as we build.
1243     if (Constant *C =
1244             ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL))
1245       return (void)markConstant(&I, C);
1246   }
1247 
1248   if (I.getDestTy()->isIntegerTy() && I.getSrcTy()->isIntOrIntVectorTy()) {
1249     auto &LV = getValueState(&I);
1250     ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy());
1251 
1252     Type *DestTy = I.getDestTy();
1253     // Vectors where all elements have the same known constant range are treated
1254     // as a single constant range in the lattice. When bitcasting such vectors,
1255     // there is a mis-match between the width of the lattice value (single
1256     // constant range) and the original operands (vector). Go to overdefined in
1257     // that case.
1258     if (I.getOpcode() == Instruction::BitCast &&
1259         I.getOperand(0)->getType()->isVectorTy() &&
1260         OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
1261       return (void)markOverdefined(&I);
1262 
1263     ConstantRange Res =
1264         OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
1265     mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
1266   } else
1267     markOverdefined(&I);
1268 }
1269 
1270 void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI,
1271                                                   const WithOverflowInst *WO,
1272                                                   unsigned Idx) {
1273   Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
1274   ValueLatticeElement L = getValueState(LHS);
1275   ValueLatticeElement R = getValueState(RHS);
1276   addAdditionalUser(LHS, &EVI);
1277   addAdditionalUser(RHS, &EVI);
1278   if (L.isUnknownOrUndef() || R.isUnknownOrUndef())
1279     return; // Wait to resolve.
1280 
1281   Type *Ty = LHS->getType();
1282   ConstantRange LR = getConstantRange(L, Ty);
1283   ConstantRange RR = getConstantRange(R, Ty);
1284   if (Idx == 0) {
1285     ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR);
1286     mergeInValue(&EVI, ValueLatticeElement::getRange(Res));
1287   } else {
1288     assert(Idx == 1 && "Index can only be 0 or 1");
1289     ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1290         WO->getBinaryOp(), RR, WO->getNoWrapKind());
1291     if (NWRegion.contains(LR))
1292       return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType()));
1293     markOverdefined(&EVI);
1294   }
1295 }
1296 
1297 void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
1298   // If this returns a struct, mark all elements over defined, we don't track
1299   // structs in structs.
1300   if (EVI.getType()->isStructTy())
1301     return (void)markOverdefined(&EVI);
1302 
1303   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1304   // discover a concrete value later.
1305   if (ValueState[&EVI].isOverdefined())
1306     return (void)markOverdefined(&EVI);
1307 
1308   // If this is extracting from more than one level of struct, we don't know.
1309   if (EVI.getNumIndices() != 1)
1310     return (void)markOverdefined(&EVI);
1311 
1312   Value *AggVal = EVI.getAggregateOperand();
1313   if (AggVal->getType()->isStructTy()) {
1314     unsigned i = *EVI.idx_begin();
1315     if (auto *WO = dyn_cast<WithOverflowInst>(AggVal))
1316       return handleExtractOfWithOverflow(EVI, WO, i);
1317     ValueLatticeElement EltVal = getStructValueState(AggVal, i);
1318     mergeInValue(getValueState(&EVI), &EVI, EltVal);
1319   } else {
1320     // Otherwise, must be extracting from an array.
1321     return (void)markOverdefined(&EVI);
1322   }
1323 }
1324 
1325 void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
1326   auto *STy = dyn_cast<StructType>(IVI.getType());
1327   if (!STy)
1328     return (void)markOverdefined(&IVI);
1329 
1330   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1331   // discover a concrete value later.
1332   if (SCCPSolver::isOverdefined(ValueState[&IVI]))
1333     return (void)markOverdefined(&IVI);
1334 
1335   // If this has more than one index, we can't handle it, drive all results to
1336   // undef.
1337   if (IVI.getNumIndices() != 1)
1338     return (void)markOverdefined(&IVI);
1339 
1340   Value *Aggr = IVI.getAggregateOperand();
1341   unsigned Idx = *IVI.idx_begin();
1342 
1343   // Compute the result based on what we're inserting.
1344   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1345     // This passes through all values that aren't the inserted element.
1346     if (i != Idx) {
1347       ValueLatticeElement EltVal = getStructValueState(Aggr, i);
1348       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
1349       continue;
1350     }
1351 
1352     Value *Val = IVI.getInsertedValueOperand();
1353     if (Val->getType()->isStructTy())
1354       // We don't track structs in structs.
1355       markOverdefined(getStructValueState(&IVI, i), &IVI);
1356     else {
1357       ValueLatticeElement InVal = getValueState(Val);
1358       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
1359     }
1360   }
1361 }
1362 
1363 void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
1364   // If this select returns a struct, just mark the result overdefined.
1365   // TODO: We could do a lot better than this if code actually uses this.
1366   if (I.getType()->isStructTy())
1367     return (void)markOverdefined(&I);
1368 
1369   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1370   // discover a concrete value later.
1371   if (ValueState[&I].isOverdefined())
1372     return (void)markOverdefined(&I);
1373 
1374   ValueLatticeElement CondValue = getValueState(I.getCondition());
1375   if (CondValue.isUnknownOrUndef())
1376     return;
1377 
1378   if (ConstantInt *CondCB =
1379           getConstantInt(CondValue, I.getCondition()->getType())) {
1380     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
1381     mergeInValue(&I, getValueState(OpVal));
1382     return;
1383   }
1384 
1385   // Otherwise, the condition is overdefined or a constant we can't evaluate.
1386   // See if we can produce something better than overdefined based on the T/F
1387   // value.
1388   ValueLatticeElement TVal = getValueState(I.getTrueValue());
1389   ValueLatticeElement FVal = getValueState(I.getFalseValue());
1390 
1391   bool Changed = ValueState[&I].mergeIn(TVal);
1392   Changed |= ValueState[&I].mergeIn(FVal);
1393   if (Changed)
1394     pushToWorkListMsg(ValueState[&I], &I);
1395 }
1396 
1397 // Handle Unary Operators.
1398 void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
1399   ValueLatticeElement V0State = getValueState(I.getOperand(0));
1400 
1401   ValueLatticeElement &IV = ValueState[&I];
1402   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1403   // discover a concrete value later.
1404   if (SCCPSolver::isOverdefined(IV))
1405     return (void)markOverdefined(&I);
1406 
1407   // If something is unknown/undef, wait for it to resolve.
1408   if (V0State.isUnknownOrUndef())
1409     return;
1410 
1411   if (SCCPSolver::isConstant(V0State))
1412     if (Constant *C = ConstantFoldUnaryOpOperand(
1413             I.getOpcode(), getConstant(V0State, I.getType()), DL))
1414       return (void)markConstant(IV, &I, C);
1415 
1416   markOverdefined(&I);
1417 }
1418 
1419 void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) {
1420   // If this freeze returns a struct, just mark the result overdefined.
1421   // TODO: We could do a lot better than this.
1422   if (I.getType()->isStructTy())
1423     return (void)markOverdefined(&I);
1424 
1425   ValueLatticeElement V0State = getValueState(I.getOperand(0));
1426   ValueLatticeElement &IV = ValueState[&I];
1427   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1428   // discover a concrete value later.
1429   if (SCCPSolver::isOverdefined(IV))
1430     return (void)markOverdefined(&I);
1431 
1432   // If something is unknown/undef, wait for it to resolve.
1433   if (V0State.isUnknownOrUndef())
1434     return;
1435 
1436   if (SCCPSolver::isConstant(V0State) &&
1437       isGuaranteedNotToBeUndefOrPoison(getConstant(V0State, I.getType())))
1438     return (void)markConstant(IV, &I, getConstant(V0State, I.getType()));
1439 
1440   markOverdefined(&I);
1441 }
1442 
1443 // Handle Binary Operators.
1444 void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
1445   ValueLatticeElement V1State = getValueState(I.getOperand(0));
1446   ValueLatticeElement V2State = getValueState(I.getOperand(1));
1447 
1448   ValueLatticeElement &IV = ValueState[&I];
1449   if (IV.isOverdefined())
1450     return;
1451 
1452   // If something is undef, wait for it to resolve.
1453   if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
1454     return;
1455 
1456   if (V1State.isOverdefined() && V2State.isOverdefined())
1457     return (void)markOverdefined(&I);
1458 
1459   // If either of the operands is a constant, try to fold it to a constant.
1460   // TODO: Use information from notconstant better.
1461   if ((V1State.isConstant() || V2State.isConstant())) {
1462     Value *V1 = SCCPSolver::isConstant(V1State)
1463                     ? getConstant(V1State, I.getOperand(0)->getType())
1464                     : I.getOperand(0);
1465     Value *V2 = SCCPSolver::isConstant(V2State)
1466                     ? getConstant(V2State, I.getOperand(1)->getType())
1467                     : I.getOperand(1);
1468     Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
1469     auto *C = dyn_cast_or_null<Constant>(R);
1470     if (C) {
1471       // Conservatively assume that the result may be based on operands that may
1472       // be undef. Note that we use mergeInValue to combine the constant with
1473       // the existing lattice value for I, as different constants might be found
1474       // after one of the operands go to overdefined, e.g. due to one operand
1475       // being a special floating value.
1476       ValueLatticeElement NewV;
1477       NewV.markConstant(C, /*MayIncludeUndef=*/true);
1478       return (void)mergeInValue(&I, NewV);
1479     }
1480   }
1481 
1482   // Only use ranges for binary operators on integers.
1483   if (!I.getType()->isIntegerTy())
1484     return markOverdefined(&I);
1485 
1486   // Try to simplify to a constant range.
1487   ConstantRange A = getConstantRange(V1State, I.getType());
1488   ConstantRange B = getConstantRange(V2State, I.getType());
1489   ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
1490   mergeInValue(&I, ValueLatticeElement::getRange(R));
1491 
1492   // TODO: Currently we do not exploit special values that produce something
1493   // better than overdefined with an overdefined operand for vector or floating
1494   // point types, like and <4 x i32> overdefined, zeroinitializer.
1495 }
1496 
1497 // Handle ICmpInst instruction.
1498 void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1499   // Do not cache this lookup, getValueState calls later in the function might
1500   // invalidate the reference.
1501   if (SCCPSolver::isOverdefined(ValueState[&I]))
1502     return (void)markOverdefined(&I);
1503 
1504   Value *Op1 = I.getOperand(0);
1505   Value *Op2 = I.getOperand(1);
1506 
1507   // For parameters, use ParamState which includes constant range info if
1508   // available.
1509   auto V1State = getValueState(Op1);
1510   auto V2State = getValueState(Op2);
1511 
1512   Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
1513   if (C) {
1514     ValueLatticeElement CV;
1515     CV.markConstant(C);
1516     mergeInValue(&I, CV);
1517     return;
1518   }
1519 
1520   // If operands are still unknown, wait for it to resolve.
1521   if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1522       !SCCPSolver::isConstant(ValueState[&I]))
1523     return;
1524 
1525   markOverdefined(&I);
1526 }
1527 
1528 // Handle getelementptr instructions.  If all operands are constants then we
1529 // can turn this into a getelementptr ConstantExpr.
1530 void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1531   if (SCCPSolver::isOverdefined(ValueState[&I]))
1532     return (void)markOverdefined(&I);
1533 
1534   SmallVector<Constant *, 8> Operands;
1535   Operands.reserve(I.getNumOperands());
1536 
1537   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1538     ValueLatticeElement State = getValueState(I.getOperand(i));
1539     if (State.isUnknownOrUndef())
1540       return; // Operands are not resolved yet.
1541 
1542     if (SCCPSolver::isOverdefined(State))
1543       return (void)markOverdefined(&I);
1544 
1545     if (Constant *C = getConstant(State, I.getOperand(i)->getType())) {
1546       Operands.push_back(C);
1547       continue;
1548     }
1549 
1550     return (void)markOverdefined(&I);
1551   }
1552 
1553   if (Constant *C = ConstantFoldInstOperands(&I, Operands, DL))
1554     markConstant(&I, C);
1555 }
1556 
1557 void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1558   // If this store is of a struct, ignore it.
1559   if (SI.getOperand(0)->getType()->isStructTy())
1560     return;
1561 
1562   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1563     return;
1564 
1565   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1566   auto I = TrackedGlobals.find(GV);
1567   if (I == TrackedGlobals.end())
1568     return;
1569 
1570   // Get the value we are storing into the global, then merge it.
1571   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1572                ValueLatticeElement::MergeOptions().setCheckWiden(false));
1573   if (I->second.isOverdefined())
1574     TrackedGlobals.erase(I); // No need to keep tracking this!
1575 }
1576 
1577 static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
1578   if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1579     if (I->getType()->isIntegerTy())
1580       return ValueLatticeElement::getRange(
1581           getConstantRangeFromMetadata(*Ranges));
1582   if (I->hasMetadata(LLVMContext::MD_nonnull))
1583     return ValueLatticeElement::getNot(
1584         ConstantPointerNull::get(cast<PointerType>(I->getType())));
1585   return ValueLatticeElement::getOverdefined();
1586 }
1587 
1588 // Handle load instructions.  If the operand is a constant pointer to a constant
1589 // global, we can replace the load with the loaded constant value!
1590 void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1591   // If this load is of a struct or the load is volatile, just mark the result
1592   // as overdefined.
1593   if (I.getType()->isStructTy() || I.isVolatile())
1594     return (void)markOverdefined(&I);
1595 
1596   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1597   // discover a concrete value later.
1598   if (ValueState[&I].isOverdefined())
1599     return (void)markOverdefined(&I);
1600 
1601   ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1602   if (PtrVal.isUnknownOrUndef())
1603     return; // The pointer is not resolved yet!
1604 
1605   ValueLatticeElement &IV = ValueState[&I];
1606 
1607   if (SCCPSolver::isConstant(PtrVal)) {
1608     Constant *Ptr = getConstant(PtrVal, I.getOperand(0)->getType());
1609 
1610     // load null is undefined.
1611     if (isa<ConstantPointerNull>(Ptr)) {
1612       if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1613         return (void)markOverdefined(IV, &I);
1614       else
1615         return;
1616     }
1617 
1618     // Transform load (constant global) into the value loaded.
1619     if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1620       if (!TrackedGlobals.empty()) {
1621         // If we are tracking this global, merge in the known value for it.
1622         auto It = TrackedGlobals.find(GV);
1623         if (It != TrackedGlobals.end()) {
1624           mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1625           return;
1626         }
1627       }
1628     }
1629 
1630     // Transform load from a constant into a constant if possible.
1631     if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL))
1632       return (void)markConstant(IV, &I, C);
1633   }
1634 
1635   // Fall back to metadata.
1636   mergeInValue(&I, getValueFromMetadata(&I));
1637 }
1638 
1639 void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1640   handleCallResult(CB);
1641   handleCallArguments(CB);
1642 }
1643 
1644 void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1645   Function *F = CB.getCalledFunction();
1646 
1647   // Void return and not tracking callee, just bail.
1648   if (CB.getType()->isVoidTy())
1649     return;
1650 
1651   // Always mark struct return as overdefined.
1652   if (CB.getType()->isStructTy())
1653     return (void)markOverdefined(&CB);
1654 
1655   // Otherwise, if we have a single return value case, and if the function is
1656   // a declaration, maybe we can constant fold it.
1657   if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1658     SmallVector<Constant *, 8> Operands;
1659     for (const Use &A : CB.args()) {
1660       if (A.get()->getType()->isStructTy())
1661         return markOverdefined(&CB); // Can't handle struct args.
1662       if (A.get()->getType()->isMetadataTy())
1663         continue;                    // Carried in CB, not allowed in Operands.
1664       ValueLatticeElement State = getValueState(A);
1665 
1666       if (State.isUnknownOrUndef())
1667         return; // Operands are not resolved yet.
1668       if (SCCPSolver::isOverdefined(State))
1669         return (void)markOverdefined(&CB);
1670       assert(SCCPSolver::isConstant(State) && "Unknown state!");
1671       Operands.push_back(getConstant(State, A->getType()));
1672     }
1673 
1674     if (SCCPSolver::isOverdefined(getValueState(&CB)))
1675       return (void)markOverdefined(&CB);
1676 
1677     // If we can constant fold this, mark the result of the call as a
1678     // constant.
1679     if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F)))
1680       return (void)markConstant(&CB, C);
1681   }
1682 
1683   // Fall back to metadata.
1684   mergeInValue(&CB, getValueFromMetadata(&CB));
1685 }
1686 
1687 void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1688   Function *F = CB.getCalledFunction();
1689   // If this is a local function that doesn't have its address taken, mark its
1690   // entry block executable and merge in the actual arguments to the call into
1691   // the formal arguments of the function.
1692   if (TrackingIncomingArguments.count(F)) {
1693     markBlockExecutable(&F->front());
1694 
1695     // Propagate information from this call site into the callee.
1696     auto CAI = CB.arg_begin();
1697     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1698          ++AI, ++CAI) {
1699       // If this argument is byval, and if the function is not readonly, there
1700       // will be an implicit copy formed of the input aggregate.
1701       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1702         markOverdefined(&*AI);
1703         continue;
1704       }
1705 
1706       if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1707         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1708           ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1709           mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1710                        getMaxWidenStepsOpts());
1711         }
1712       } else
1713         mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1714     }
1715   }
1716 }
1717 
1718 void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1719   Function *F = CB.getCalledFunction();
1720 
1721   if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1722     if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1723       if (ValueState[&CB].isOverdefined())
1724         return;
1725 
1726       Value *CopyOf = CB.getOperand(0);
1727       ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1728       const auto *PI = getPredicateInfoFor(&CB);
1729       assert(PI && "Missing predicate info for ssa.copy");
1730 
1731       const std::optional<PredicateConstraint> &Constraint =
1732           PI->getConstraint();
1733       if (!Constraint) {
1734         mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1735         return;
1736       }
1737 
1738       CmpInst::Predicate Pred = Constraint->Predicate;
1739       Value *OtherOp = Constraint->OtherOp;
1740 
1741       // Wait until OtherOp is resolved.
1742       if (getValueState(OtherOp).isUnknown()) {
1743         addAdditionalUser(OtherOp, &CB);
1744         return;
1745       }
1746 
1747       ValueLatticeElement CondVal = getValueState(OtherOp);
1748       ValueLatticeElement &IV = ValueState[&CB];
1749       if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1750         auto ImposedCR =
1751             ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1752 
1753         // Get the range imposed by the condition.
1754         if (CondVal.isConstantRange())
1755           ImposedCR = ConstantRange::makeAllowedICmpRegion(
1756               Pred, CondVal.getConstantRange());
1757 
1758         // Combine range info for the original value with the new range from the
1759         // condition.
1760         auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType());
1761         auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1762         // If the existing information is != x, do not use the information from
1763         // a chained predicate, as the != x information is more likely to be
1764         // helpful in practice.
1765         if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1766           NewCR = CopyOfCR;
1767 
1768         // The new range is based on a branch condition. That guarantees that
1769         // neither of the compare operands can be undef in the branch targets,
1770         // unless we have conditions that are always true/false (e.g. icmp ule
1771         // i32, %a, i32_max). For the latter overdefined/empty range will be
1772         // inferred, but the branch will get folded accordingly anyways.
1773         addAdditionalUser(OtherOp, &CB);
1774         mergeInValue(
1775             IV, &CB,
1776             ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false));
1777         return;
1778       } else if (Pred == CmpInst::ICMP_EQ &&
1779                  (CondVal.isConstant() || CondVal.isNotConstant())) {
1780         // For non-integer values or integer constant expressions, only
1781         // propagate equal constants or not-constants.
1782         addAdditionalUser(OtherOp, &CB);
1783         mergeInValue(IV, &CB, CondVal);
1784         return;
1785       } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) {
1786         // Propagate inequalities.
1787         addAdditionalUser(OtherOp, &CB);
1788         mergeInValue(IV, &CB,
1789                      ValueLatticeElement::getNot(CondVal.getConstant()));
1790         return;
1791       }
1792 
1793       return (void)mergeInValue(IV, &CB, CopyOfVal);
1794     }
1795 
1796     if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1797       // Compute result range for intrinsics supported by ConstantRange.
1798       // Do this even if we don't know a range for all operands, as we may
1799       // still know something about the result range, e.g. of abs(x).
1800       SmallVector<ConstantRange, 2> OpRanges;
1801       for (Value *Op : II->args()) {
1802         const ValueLatticeElement &State = getValueState(Op);
1803         if (State.isUnknownOrUndef())
1804           return;
1805         OpRanges.push_back(getConstantRange(State, Op->getType()));
1806       }
1807 
1808       ConstantRange Result =
1809           ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1810       return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1811     }
1812   }
1813 
1814   // The common case is that we aren't tracking the callee, either because we
1815   // are not doing interprocedural analysis or the callee is indirect, or is
1816   // external.  Handle these cases first.
1817   if (!F || F->isDeclaration())
1818     return handleCallOverdefined(CB);
1819 
1820   // If this is a single/zero retval case, see if we're tracking the function.
1821   if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1822     if (!MRVFunctionsTracked.count(F))
1823       return handleCallOverdefined(CB); // Not tracking this callee.
1824 
1825     // If we are tracking this callee, propagate the result of the function
1826     // into this call site.
1827     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1828       mergeInValue(getStructValueState(&CB, i), &CB,
1829                    TrackedMultipleRetVals[std::make_pair(F, i)],
1830                    getMaxWidenStepsOpts());
1831   } else {
1832     auto TFRVI = TrackedRetVals.find(F);
1833     if (TFRVI == TrackedRetVals.end())
1834       return handleCallOverdefined(CB); // Not tracking this callee.
1835 
1836     // If so, propagate the return value of the callee into this call result.
1837     mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1838   }
1839 }
1840 
1841 void SCCPInstVisitor::solve() {
1842   // Process the work lists until they are empty!
1843   while (!BBWorkList.empty() || !InstWorkList.empty() ||
1844          !OverdefinedInstWorkList.empty()) {
1845     // Process the overdefined instruction's work list first, which drives other
1846     // things to overdefined more quickly.
1847     while (!OverdefinedInstWorkList.empty()) {
1848       Value *I = OverdefinedInstWorkList.pop_back_val();
1849       Invalidated.erase(I);
1850 
1851       LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1852 
1853       // "I" got into the work list because it either made the transition from
1854       // bottom to constant, or to overdefined.
1855       //
1856       // Anything on this worklist that is overdefined need not be visited
1857       // since all of its users will have already been marked as overdefined
1858       // Update all of the users of this instruction's value.
1859       //
1860       markUsersAsChanged(I);
1861     }
1862 
1863     // Process the instruction work list.
1864     while (!InstWorkList.empty()) {
1865       Value *I = InstWorkList.pop_back_val();
1866       Invalidated.erase(I);
1867 
1868       LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1869 
1870       // "I" got into the work list because it made the transition from undef to
1871       // constant.
1872       //
1873       // Anything on this worklist that is overdefined need not be visited
1874       // since all of its users will have already been marked as overdefined.
1875       // Update all of the users of this instruction's value.
1876       //
1877       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1878         markUsersAsChanged(I);
1879     }
1880 
1881     // Process the basic block work list.
1882     while (!BBWorkList.empty()) {
1883       BasicBlock *BB = BBWorkList.pop_back_val();
1884 
1885       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1886 
1887       // Notify all instructions in this basic block that they are newly
1888       // executable.
1889       visit(BB);
1890     }
1891   }
1892 }
1893 
1894 bool SCCPInstVisitor::resolvedUndef(Instruction &I) {
1895   // Look for instructions which produce undef values.
1896   if (I.getType()->isVoidTy())
1897     return false;
1898 
1899   if (auto *STy = dyn_cast<StructType>(I.getType())) {
1900     // Only a few things that can be structs matter for undef.
1901 
1902     // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1903     if (auto *CB = dyn_cast<CallBase>(&I))
1904       if (Function *F = CB->getCalledFunction())
1905         if (MRVFunctionsTracked.count(F))
1906           return false;
1907 
1908     // extractvalue and insertvalue don't need to be marked; they are
1909     // tracked as precisely as their operands.
1910     if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1911       return false;
1912     // Send the results of everything else to overdefined.  We could be
1913     // more precise than this but it isn't worth bothering.
1914     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1915       ValueLatticeElement &LV = getStructValueState(&I, i);
1916       if (LV.isUnknown()) {
1917         markOverdefined(LV, &I);
1918         return true;
1919       }
1920     }
1921     return false;
1922   }
1923 
1924   ValueLatticeElement &LV = getValueState(&I);
1925   if (!LV.isUnknown())
1926     return false;
1927 
1928   // There are two reasons a call can have an undef result
1929   // 1. It could be tracked.
1930   // 2. It could be constant-foldable.
1931   // Because of the way we solve return values, tracked calls must
1932   // never be marked overdefined in resolvedUndefsIn.
1933   if (auto *CB = dyn_cast<CallBase>(&I))
1934     if (Function *F = CB->getCalledFunction())
1935       if (TrackedRetVals.count(F))
1936         return false;
1937 
1938   if (isa<LoadInst>(I)) {
1939     // A load here means one of two things: a load of undef from a global,
1940     // a load from an unknown pointer.  Either way, having it return undef
1941     // is okay.
1942     return false;
1943   }
1944 
1945   markOverdefined(&I);
1946   return true;
1947 }
1948 
1949 /// While solving the dataflow for a function, we don't compute a result for
1950 /// operations with an undef operand, to allow undef to be lowered to a
1951 /// constant later. For example, constant folding of "zext i8 undef to i16"
1952 /// would result in "i16 0", and if undef is later lowered to "i8 1", then the
1953 /// zext result would become "i16 1" and would result into an overdefined
1954 /// lattice value once merged with the previous result. Not computing the
1955 /// result of the zext (treating undef the same as unknown) allows us to handle
1956 /// a later undef->constant lowering more optimally.
1957 ///
1958 /// However, if the operand remains undef when the solver returns, we do need
1959 /// to assign some result to the instruction (otherwise we would treat it as
1960 /// unreachable). For simplicity, we mark any instructions that are still
1961 /// unknown as overdefined.
1962 bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
1963   bool MadeChange = false;
1964   for (BasicBlock &BB : F) {
1965     if (!BBExecutable.count(&BB))
1966       continue;
1967 
1968     for (Instruction &I : BB)
1969       MadeChange |= resolvedUndef(I);
1970   }
1971 
1972   LLVM_DEBUG(if (MadeChange) dbgs()
1973              << "\nResolved undefs in " << F.getName() << '\n');
1974 
1975   return MadeChange;
1976 }
1977 
1978 //===----------------------------------------------------------------------===//
1979 //
1980 // SCCPSolver implementations
1981 //
1982 SCCPSolver::SCCPSolver(
1983     const DataLayout &DL,
1984     std::function<const TargetLibraryInfo &(Function &)> GetTLI,
1985     LLVMContext &Ctx)
1986     : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
1987 
1988 SCCPSolver::~SCCPSolver() = default;
1989 
1990 void SCCPSolver::addPredicateInfo(Function &F, DominatorTree &DT,
1991                                   AssumptionCache &AC) {
1992   Visitor->addPredicateInfo(F, DT, AC);
1993 }
1994 
1995 bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
1996   return Visitor->markBlockExecutable(BB);
1997 }
1998 
1999 const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
2000   return Visitor->getPredicateInfoFor(I);
2001 }
2002 
2003 void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
2004   Visitor->trackValueOfGlobalVariable(GV);
2005 }
2006 
2007 void SCCPSolver::addTrackedFunction(Function *F) {
2008   Visitor->addTrackedFunction(F);
2009 }
2010 
2011 void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
2012   Visitor->addToMustPreserveReturnsInFunctions(F);
2013 }
2014 
2015 bool SCCPSolver::mustPreserveReturn(Function *F) {
2016   return Visitor->mustPreserveReturn(F);
2017 }
2018 
2019 void SCCPSolver::addArgumentTrackedFunction(Function *F) {
2020   Visitor->addArgumentTrackedFunction(F);
2021 }
2022 
2023 bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
2024   return Visitor->isArgumentTrackedFunction(F);
2025 }
2026 
2027 void SCCPSolver::solve() { Visitor->solve(); }
2028 
2029 bool SCCPSolver::resolvedUndefsIn(Function &F) {
2030   return Visitor->resolvedUndefsIn(F);
2031 }
2032 
2033 void SCCPSolver::solveWhileResolvedUndefsIn(Module &M) {
2034   Visitor->solveWhileResolvedUndefsIn(M);
2035 }
2036 
2037 void
2038 SCCPSolver::solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) {
2039   Visitor->solveWhileResolvedUndefsIn(WorkList);
2040 }
2041 
2042 void SCCPSolver::solveWhileResolvedUndefs() {
2043   Visitor->solveWhileResolvedUndefs();
2044 }
2045 
2046 bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
2047   return Visitor->isBlockExecutable(BB);
2048 }
2049 
2050 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
2051   return Visitor->isEdgeFeasible(From, To);
2052 }
2053 
2054 std::vector<ValueLatticeElement>
2055 SCCPSolver::getStructLatticeValueFor(Value *V) const {
2056   return Visitor->getStructLatticeValueFor(V);
2057 }
2058 
2059 void SCCPSolver::removeLatticeValueFor(Value *V) {
2060   return Visitor->removeLatticeValueFor(V);
2061 }
2062 
2063 void SCCPSolver::resetLatticeValueFor(CallBase *Call) {
2064   Visitor->resetLatticeValueFor(Call);
2065 }
2066 
2067 const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
2068   return Visitor->getLatticeValueFor(V);
2069 }
2070 
2071 const MapVector<Function *, ValueLatticeElement> &
2072 SCCPSolver::getTrackedRetVals() {
2073   return Visitor->getTrackedRetVals();
2074 }
2075 
2076 const DenseMap<GlobalVariable *, ValueLatticeElement> &
2077 SCCPSolver::getTrackedGlobals() {
2078   return Visitor->getTrackedGlobals();
2079 }
2080 
2081 const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
2082   return Visitor->getMRVFunctionsTracked();
2083 }
2084 
2085 void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
2086 
2087 bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
2088   return Visitor->isStructLatticeConstant(F, STy);
2089 }
2090 
2091 Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV,
2092                                   Type *Ty) const {
2093   return Visitor->getConstant(LV, Ty);
2094 }
2095 
2096 Constant *SCCPSolver::getConstantOrNull(Value *V) const {
2097   return Visitor->getConstantOrNull(V);
2098 }
2099 
2100 SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() {
2101   return Visitor->getArgumentTrackedFunctions();
2102 }
2103 
2104 void SCCPSolver::setLatticeValueForSpecializationArguments(Function *F,
2105                                    const SmallVectorImpl<ArgInfo> &Args) {
2106   Visitor->setLatticeValueForSpecializationArguments(F, Args);
2107 }
2108 
2109 void SCCPSolver::markFunctionUnreachable(Function *F) {
2110   Visitor->markFunctionUnreachable(F);
2111 }
2112 
2113 void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
2114 
2115 void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
2116