1 //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements the Sparse Conditional Constant Propagation (SCCP) 11 // utility. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SCCPSolver.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/InitializePasses.h" 20 #include "llvm/Pass.h" 21 #include "llvm/Support/Casting.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Transforms/Utils/Local.h" 26 #include <cassert> 27 #include <utility> 28 #include <vector> 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "sccp" 33 34 // The maximum number of range extensions allowed for operations requiring 35 // widening. 36 static const unsigned MaxNumRangeExtensions = 10; 37 38 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions. 39 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() { 40 return ValueLatticeElement::MergeOptions().setMaxWidenSteps( 41 MaxNumRangeExtensions); 42 } 43 44 namespace { 45 46 // Helper to check if \p LV is either a constant or a constant 47 // range with a single element. This should cover exactly the same cases as the 48 // old ValueLatticeElement::isConstant() and is intended to be used in the 49 // transition to ValueLatticeElement. 50 bool isConstant(const ValueLatticeElement &LV) { 51 return LV.isConstant() || 52 (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); 53 } 54 55 // Helper to check if \p LV is either overdefined or a constant range with more 56 // than a single element. This should cover exactly the same cases as the old 57 // ValueLatticeElement::isOverdefined() and is intended to be used in the 58 // transition to ValueLatticeElement. 59 bool isOverdefined(const ValueLatticeElement &LV) { 60 return !LV.isUnknownOrUndef() && !isConstant(LV); 61 } 62 63 } // namespace 64 65 namespace llvm { 66 67 /// Helper class for SCCPSolver. This implements the instruction visitor and 68 /// holds all the state. 69 class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> { 70 const DataLayout &DL; 71 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 72 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. 73 DenseMap<Value *, ValueLatticeElement> 74 ValueState; // The state each value is in. 75 76 /// StructValueState - This maintains ValueState for values that have 77 /// StructType, for example for formal arguments, calls, insertelement, etc. 78 DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState; 79 80 /// GlobalValue - If we are tracking any values for the contents of a global 81 /// variable, we keep a mapping from the constant accessor to the element of 82 /// the global, to the currently known value. If the value becomes 83 /// overdefined, it's entry is simply removed from this map. 84 DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals; 85 86 /// TrackedRetVals - If we are tracking arguments into and the return 87 /// value out of a function, it will have an entry in this map, indicating 88 /// what the known return value for the function is. 89 MapVector<Function *, ValueLatticeElement> TrackedRetVals; 90 91 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 92 /// that return multiple values. 93 MapVector<std::pair<Function *, unsigned>, ValueLatticeElement> 94 TrackedMultipleRetVals; 95 96 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 97 /// represented here for efficient lookup. 98 SmallPtrSet<Function *, 16> MRVFunctionsTracked; 99 100 /// A list of functions whose return cannot be modified. 101 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions; 102 103 /// TrackingIncomingArguments - This is the set of functions for whose 104 /// arguments we make optimistic assumptions about and try to prove as 105 /// constants. 106 SmallPtrSet<Function *, 16> TrackingIncomingArguments; 107 108 /// The reason for two worklists is that overdefined is the lowest state 109 /// on the lattice, and moving things to overdefined as fast as possible 110 /// makes SCCP converge much faster. 111 /// 112 /// By having a separate worklist, we accomplish this because everything 113 /// possibly overdefined will become overdefined at the soonest possible 114 /// point. 115 SmallVector<Value *, 64> OverdefinedInstWorkList; 116 SmallVector<Value *, 64> InstWorkList; 117 118 // The BasicBlock work list 119 SmallVector<BasicBlock *, 64> BBWorkList; 120 121 /// KnownFeasibleEdges - Entries in this set are edges which have already had 122 /// PHI nodes retriggered. 123 using Edge = std::pair<BasicBlock *, BasicBlock *>; 124 DenseSet<Edge> KnownFeasibleEdges; 125 126 DenseMap<Function *, AnalysisResultsForFn> AnalysisResults; 127 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers; 128 129 LLVMContext &Ctx; 130 131 private: 132 ConstantInt *getConstantInt(const ValueLatticeElement &IV) const { 133 return dyn_cast_or_null<ConstantInt>(getConstant(IV)); 134 } 135 136 // pushToWorkList - Helper for markConstant/markOverdefined 137 void pushToWorkList(ValueLatticeElement &IV, Value *V); 138 139 // Helper to push \p V to the worklist, after updating it to \p IV. Also 140 // prints a debug message with the updated value. 141 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V); 142 143 // markConstant - Make a value be marked as "constant". If the value 144 // is not already a constant, add it to the instruction work list so that 145 // the users of the instruction are updated later. 146 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C, 147 bool MayIncludeUndef = false); 148 149 bool markConstant(Value *V, Constant *C) { 150 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 151 return markConstant(ValueState[V], V, C); 152 } 153 154 // markOverdefined - Make a value be marked as "overdefined". If the 155 // value is not already overdefined, add it to the overdefined instruction 156 // work list so that the users of the instruction are updated later. 157 bool markOverdefined(ValueLatticeElement &IV, Value *V); 158 159 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV 160 /// changes. 161 bool mergeInValue(ValueLatticeElement &IV, Value *V, 162 ValueLatticeElement MergeWithV, 163 ValueLatticeElement::MergeOptions Opts = { 164 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}); 165 166 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV, 167 ValueLatticeElement::MergeOptions Opts = { 168 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) { 169 assert(!V->getType()->isStructTy() && 170 "non-structs should use markConstant"); 171 return mergeInValue(ValueState[V], V, MergeWithV, Opts); 172 } 173 174 /// getValueState - Return the ValueLatticeElement object that corresponds to 175 /// the value. This function handles the case when the value hasn't been seen 176 /// yet by properly seeding constants etc. 177 ValueLatticeElement &getValueState(Value *V) { 178 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 179 180 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement())); 181 ValueLatticeElement &LV = I.first->second; 182 183 if (!I.second) 184 return LV; // Common case, already in the map. 185 186 if (auto *C = dyn_cast<Constant>(V)) 187 LV.markConstant(C); // Constants are constant 188 189 // All others are unknown by default. 190 return LV; 191 } 192 193 /// getStructValueState - Return the ValueLatticeElement object that 194 /// corresponds to the value/field pair. This function handles the case when 195 /// the value hasn't been seen yet by properly seeding constants etc. 196 ValueLatticeElement &getStructValueState(Value *V, unsigned i) { 197 assert(V->getType()->isStructTy() && "Should use getValueState"); 198 assert(i < cast<StructType>(V->getType())->getNumElements() && 199 "Invalid element #"); 200 201 auto I = StructValueState.insert( 202 std::make_pair(std::make_pair(V, i), ValueLatticeElement())); 203 ValueLatticeElement &LV = I.first->second; 204 205 if (!I.second) 206 return LV; // Common case, already in the map. 207 208 if (auto *C = dyn_cast<Constant>(V)) { 209 Constant *Elt = C->getAggregateElement(i); 210 211 if (!Elt) 212 LV.markOverdefined(); // Unknown sort of constant. 213 else if (isa<UndefValue>(Elt)) 214 ; // Undef values remain unknown. 215 else 216 LV.markConstant(Elt); // Constants are constant. 217 } 218 219 // All others are underdefined by default. 220 return LV; 221 } 222 223 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 224 /// work list if it is not already executable. 225 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); 226 227 // getFeasibleSuccessors - Return a vector of booleans to indicate which 228 // successors are reachable from a given terminator instruction. 229 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); 230 231 // OperandChangedState - This method is invoked on all of the users of an 232 // instruction that was just changed state somehow. Based on this 233 // information, we need to update the specified user of this instruction. 234 void operandChangedState(Instruction *I) { 235 if (BBExecutable.count(I->getParent())) // Inst is executable? 236 visit(*I); 237 } 238 239 // Add U as additional user of V. 240 void addAdditionalUser(Value *V, User *U) { 241 auto Iter = AdditionalUsers.insert({V, {}}); 242 Iter.first->second.insert(U); 243 } 244 245 // Mark I's users as changed, including AdditionalUsers. 246 void markUsersAsChanged(Value *I) { 247 // Functions include their arguments in the use-list. Changed function 248 // values mean that the result of the function changed. We only need to 249 // update the call sites with the new function result and do not have to 250 // propagate the call arguments. 251 if (isa<Function>(I)) { 252 for (User *U : I->users()) { 253 if (auto *CB = dyn_cast<CallBase>(U)) 254 handleCallResult(*CB); 255 } 256 } else { 257 for (User *U : I->users()) 258 if (auto *UI = dyn_cast<Instruction>(U)) 259 operandChangedState(UI); 260 } 261 262 auto Iter = AdditionalUsers.find(I); 263 if (Iter != AdditionalUsers.end()) { 264 // Copy additional users before notifying them of changes, because new 265 // users may be added, potentially invalidating the iterator. 266 SmallVector<Instruction *, 2> ToNotify; 267 for (User *U : Iter->second) 268 if (auto *UI = dyn_cast<Instruction>(U)) 269 ToNotify.push_back(UI); 270 for (Instruction *UI : ToNotify) 271 operandChangedState(UI); 272 } 273 } 274 void handleCallOverdefined(CallBase &CB); 275 void handleCallResult(CallBase &CB); 276 void handleCallArguments(CallBase &CB); 277 278 private: 279 friend class InstVisitor<SCCPInstVisitor>; 280 281 // visit implementations - Something changed in this instruction. Either an 282 // operand made a transition, or the instruction is newly executable. Change 283 // the value type of I to reflect these changes if appropriate. 284 void visitPHINode(PHINode &I); 285 286 // Terminators 287 288 void visitReturnInst(ReturnInst &I); 289 void visitTerminator(Instruction &TI); 290 291 void visitCastInst(CastInst &I); 292 void visitSelectInst(SelectInst &I); 293 void visitUnaryOperator(Instruction &I); 294 void visitBinaryOperator(Instruction &I); 295 void visitCmpInst(CmpInst &I); 296 void visitExtractValueInst(ExtractValueInst &EVI); 297 void visitInsertValueInst(InsertValueInst &IVI); 298 299 void visitCatchSwitchInst(CatchSwitchInst &CPI) { 300 markOverdefined(&CPI); 301 visitTerminator(CPI); 302 } 303 304 // Instructions that cannot be folded away. 305 306 void visitStoreInst(StoreInst &I); 307 void visitLoadInst(LoadInst &I); 308 void visitGetElementPtrInst(GetElementPtrInst &I); 309 310 void visitInvokeInst(InvokeInst &II) { 311 visitCallBase(II); 312 visitTerminator(II); 313 } 314 315 void visitCallBrInst(CallBrInst &CBI) { 316 visitCallBase(CBI); 317 visitTerminator(CBI); 318 } 319 320 void visitCallBase(CallBase &CB); 321 void visitResumeInst(ResumeInst &I) { /*returns void*/ 322 } 323 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ 324 } 325 void visitFenceInst(FenceInst &I) { /*returns void*/ 326 } 327 328 void visitInstruction(Instruction &I); 329 330 public: 331 void addAnalysis(Function &F, AnalysisResultsForFn A) { 332 AnalysisResults.insert({&F, std::move(A)}); 333 } 334 335 void visitCallInst(CallInst &I) { visitCallBase(I); } 336 337 bool markBlockExecutable(BasicBlock *BB); 338 339 const PredicateBase *getPredicateInfoFor(Instruction *I) { 340 auto A = AnalysisResults.find(I->getParent()->getParent()); 341 if (A == AnalysisResults.end()) 342 return nullptr; 343 return A->second.PredInfo->getPredicateInfoFor(I); 344 } 345 346 DomTreeUpdater getDTU(Function &F) { 347 auto A = AnalysisResults.find(&F); 348 assert(A != AnalysisResults.end() && "Need analysis results for function."); 349 return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy}; 350 } 351 352 SCCPInstVisitor(const DataLayout &DL, 353 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 354 LLVMContext &Ctx) 355 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {} 356 357 void trackValueOfGlobalVariable(GlobalVariable *GV) { 358 // We only track the contents of scalar globals. 359 if (GV->getValueType()->isSingleValueType()) { 360 ValueLatticeElement &IV = TrackedGlobals[GV]; 361 if (!isa<UndefValue>(GV->getInitializer())) 362 IV.markConstant(GV->getInitializer()); 363 } 364 } 365 366 void addTrackedFunction(Function *F) { 367 // Add an entry, F -> undef. 368 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 369 MRVFunctionsTracked.insert(F); 370 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 371 TrackedMultipleRetVals.insert( 372 std::make_pair(std::make_pair(F, i), ValueLatticeElement())); 373 } else if (!F->getReturnType()->isVoidTy()) 374 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement())); 375 } 376 377 void addToMustPreserveReturnsInFunctions(Function *F) { 378 MustPreserveReturnsInFunctions.insert(F); 379 } 380 381 bool mustPreserveReturn(Function *F) { 382 return MustPreserveReturnsInFunctions.count(F); 383 } 384 385 void addArgumentTrackedFunction(Function *F) { 386 TrackingIncomingArguments.insert(F); 387 } 388 389 bool isArgumentTrackedFunction(Function *F) { 390 return TrackingIncomingArguments.count(F); 391 } 392 393 void solve(); 394 395 bool resolvedUndefsIn(Function &F); 396 397 bool isBlockExecutable(BasicBlock *BB) const { 398 return BBExecutable.count(BB); 399 } 400 401 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const; 402 403 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const { 404 std::vector<ValueLatticeElement> StructValues; 405 auto *STy = dyn_cast<StructType>(V->getType()); 406 assert(STy && "getStructLatticeValueFor() can be called only on structs"); 407 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 408 auto I = StructValueState.find(std::make_pair(V, i)); 409 assert(I != StructValueState.end() && "Value not in valuemap!"); 410 StructValues.push_back(I->second); 411 } 412 return StructValues; 413 } 414 415 void removeLatticeValueFor(Value *V) { ValueState.erase(V); } 416 417 const ValueLatticeElement &getLatticeValueFor(Value *V) const { 418 assert(!V->getType()->isStructTy() && 419 "Should use getStructLatticeValueFor"); 420 DenseMap<Value *, ValueLatticeElement>::const_iterator I = 421 ValueState.find(V); 422 assert(I != ValueState.end() && 423 "V not found in ValueState nor Paramstate map!"); 424 return I->second; 425 } 426 427 const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() { 428 return TrackedRetVals; 429 } 430 431 const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() { 432 return TrackedGlobals; 433 } 434 435 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { 436 return MRVFunctionsTracked; 437 } 438 439 void markOverdefined(Value *V) { 440 if (auto *STy = dyn_cast<StructType>(V->getType())) 441 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 442 markOverdefined(getStructValueState(V, i), V); 443 else 444 markOverdefined(ValueState[V], V); 445 } 446 447 bool isStructLatticeConstant(Function *F, StructType *STy); 448 449 Constant *getConstant(const ValueLatticeElement &LV) const; 450 451 SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() { 452 return TrackingIncomingArguments; 453 } 454 455 void markArgInFuncSpecialization(Function *F, Argument *A, Constant *C); 456 457 void markFunctionUnreachable(Function *F) { 458 for (auto &BB : *F) 459 BBExecutable.erase(&BB); 460 } 461 }; 462 463 } // namespace llvm 464 465 bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) { 466 if (!BBExecutable.insert(BB).second) 467 return false; 468 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 469 BBWorkList.push_back(BB); // Add the block to the work list! 470 return true; 471 } 472 473 void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) { 474 if (IV.isOverdefined()) 475 return OverdefinedInstWorkList.push_back(V); 476 InstWorkList.push_back(V); 477 } 478 479 void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) { 480 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n'); 481 pushToWorkList(IV, V); 482 } 483 484 bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V, 485 Constant *C, bool MayIncludeUndef) { 486 if (!IV.markConstant(C, MayIncludeUndef)) 487 return false; 488 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 489 pushToWorkList(IV, V); 490 return true; 491 } 492 493 bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) { 494 if (!IV.markOverdefined()) 495 return false; 496 497 LLVM_DEBUG(dbgs() << "markOverdefined: "; 498 if (auto *F = dyn_cast<Function>(V)) dbgs() 499 << "Function '" << F->getName() << "'\n"; 500 else dbgs() << *V << '\n'); 501 // Only instructions go on the work list 502 pushToWorkList(IV, V); 503 return true; 504 } 505 506 bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) { 507 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 508 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 509 assert(It != TrackedMultipleRetVals.end()); 510 ValueLatticeElement LV = It->second; 511 if (!isConstant(LV)) 512 return false; 513 } 514 return true; 515 } 516 517 Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const { 518 if (LV.isConstant()) 519 return LV.getConstant(); 520 521 if (LV.isConstantRange()) { 522 const auto &CR = LV.getConstantRange(); 523 if (CR.getSingleElement()) 524 return ConstantInt::get(Ctx, *CR.getSingleElement()); 525 } 526 return nullptr; 527 } 528 529 void SCCPInstVisitor::markArgInFuncSpecialization(Function *F, Argument *A, 530 Constant *C) { 531 assert(F->arg_size() == A->getParent()->arg_size() && 532 "Functions should have the same number of arguments"); 533 534 // Mark the argument constant in the new function. 535 markConstant(A, C); 536 537 // For the remaining arguments in the new function, copy the lattice state 538 // over from the old function. 539 for (auto I = F->arg_begin(), J = A->getParent()->arg_begin(), 540 E = F->arg_end(); 541 I != E; ++I, ++J) 542 if (J != A && ValueState.count(I)) { 543 ValueState[J] = ValueState[I]; 544 pushToWorkList(ValueState[J], J); 545 } 546 } 547 548 void SCCPInstVisitor::visitInstruction(Instruction &I) { 549 // All the instructions we don't do any special handling for just 550 // go to overdefined. 551 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); 552 markOverdefined(&I); 553 } 554 555 bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V, 556 ValueLatticeElement MergeWithV, 557 ValueLatticeElement::MergeOptions Opts) { 558 if (IV.mergeIn(MergeWithV, Opts)) { 559 pushToWorkList(IV, V); 560 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : " 561 << IV << "\n"); 562 return true; 563 } 564 return false; 565 } 566 567 bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 568 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 569 return false; // This edge is already known to be executable! 570 571 if (!markBlockExecutable(Dest)) { 572 // If the destination is already executable, we just made an *edge* 573 // feasible that wasn't before. Revisit the PHI nodes in the block 574 // because they have potentially new operands. 575 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 576 << " -> " << Dest->getName() << '\n'); 577 578 for (PHINode &PN : Dest->phis()) 579 visitPHINode(PN); 580 } 581 return true; 582 } 583 584 // getFeasibleSuccessors - Return a vector of booleans to indicate which 585 // successors are reachable from a given terminator instruction. 586 void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI, 587 SmallVectorImpl<bool> &Succs) { 588 Succs.resize(TI.getNumSuccessors()); 589 if (auto *BI = dyn_cast<BranchInst>(&TI)) { 590 if (BI->isUnconditional()) { 591 Succs[0] = true; 592 return; 593 } 594 595 ValueLatticeElement BCValue = getValueState(BI->getCondition()); 596 ConstantInt *CI = getConstantInt(BCValue); 597 if (!CI) { 598 // Overdefined condition variables, and branches on unfoldable constant 599 // conditions, mean the branch could go either way. 600 if (!BCValue.isUnknownOrUndef()) 601 Succs[0] = Succs[1] = true; 602 return; 603 } 604 605 // Constant condition variables mean the branch can only go a single way. 606 Succs[CI->isZero()] = true; 607 return; 608 } 609 610 // Unwinding instructions successors are always executable. 611 if (TI.isExceptionalTerminator()) { 612 Succs.assign(TI.getNumSuccessors(), true); 613 return; 614 } 615 616 if (auto *SI = dyn_cast<SwitchInst>(&TI)) { 617 if (!SI->getNumCases()) { 618 Succs[0] = true; 619 return; 620 } 621 const ValueLatticeElement &SCValue = getValueState(SI->getCondition()); 622 if (ConstantInt *CI = getConstantInt(SCValue)) { 623 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; 624 return; 625 } 626 627 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM 628 // is ready. 629 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) { 630 const ConstantRange &Range = SCValue.getConstantRange(); 631 for (const auto &Case : SI->cases()) { 632 const APInt &CaseValue = Case.getCaseValue()->getValue(); 633 if (Range.contains(CaseValue)) 634 Succs[Case.getSuccessorIndex()] = true; 635 } 636 637 // TODO: Determine whether default case is reachable. 638 Succs[SI->case_default()->getSuccessorIndex()] = true; 639 return; 640 } 641 642 // Overdefined or unknown condition? All destinations are executable! 643 if (!SCValue.isUnknownOrUndef()) 644 Succs.assign(TI.getNumSuccessors(), true); 645 return; 646 } 647 648 // In case of indirect branch and its address is a blockaddress, we mark 649 // the target as executable. 650 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { 651 // Casts are folded by visitCastInst. 652 ValueLatticeElement IBRValue = getValueState(IBR->getAddress()); 653 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue)); 654 if (!Addr) { // Overdefined or unknown condition? 655 // All destinations are executable! 656 if (!IBRValue.isUnknownOrUndef()) 657 Succs.assign(TI.getNumSuccessors(), true); 658 return; 659 } 660 661 BasicBlock *T = Addr->getBasicBlock(); 662 assert(Addr->getFunction() == T->getParent() && 663 "Block address of a different function ?"); 664 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { 665 // This is the target. 666 if (IBR->getDestination(i) == T) { 667 Succs[i] = true; 668 return; 669 } 670 } 671 672 // If we didn't find our destination in the IBR successor list, then we 673 // have undefined behavior. Its ok to assume no successor is executable. 674 return; 675 } 676 677 // In case of callbr, we pessimistically assume that all successors are 678 // feasible. 679 if (isa<CallBrInst>(&TI)) { 680 Succs.assign(TI.getNumSuccessors(), true); 681 return; 682 } 683 684 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); 685 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 686 } 687 688 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 689 // block to the 'To' basic block is currently feasible. 690 bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 691 // Check if we've called markEdgeExecutable on the edge yet. (We could 692 // be more aggressive and try to consider edges which haven't been marked 693 // yet, but there isn't any need.) 694 return KnownFeasibleEdges.count(Edge(From, To)); 695 } 696 697 // visit Implementations - Something changed in this instruction, either an 698 // operand made a transition, or the instruction is newly executable. Change 699 // the value type of I to reflect these changes if appropriate. This method 700 // makes sure to do the following actions: 701 // 702 // 1. If a phi node merges two constants in, and has conflicting value coming 703 // from different branches, or if the PHI node merges in an overdefined 704 // value, then the PHI node becomes overdefined. 705 // 2. If a phi node merges only constants in, and they all agree on value, the 706 // PHI node becomes a constant value equal to that. 707 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 708 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 709 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 710 // 6. If a conditional branch has a value that is constant, make the selected 711 // destination executable 712 // 7. If a conditional branch has a value that is overdefined, make all 713 // successors executable. 714 void SCCPInstVisitor::visitPHINode(PHINode &PN) { 715 // If this PN returns a struct, just mark the result overdefined. 716 // TODO: We could do a lot better than this if code actually uses this. 717 if (PN.getType()->isStructTy()) 718 return (void)markOverdefined(&PN); 719 720 if (getValueState(&PN).isOverdefined()) 721 return; // Quick exit 722 723 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 724 // and slow us down a lot. Just mark them overdefined. 725 if (PN.getNumIncomingValues() > 64) 726 return (void)markOverdefined(&PN); 727 728 unsigned NumActiveIncoming = 0; 729 730 // Look at all of the executable operands of the PHI node. If any of them 731 // are overdefined, the PHI becomes overdefined as well. If they are all 732 // constant, and they agree with each other, the PHI becomes the identical 733 // constant. If they are constant and don't agree, the PHI is a constant 734 // range. If there are no executable operands, the PHI remains unknown. 735 ValueLatticeElement PhiState = getValueState(&PN); 736 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 737 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 738 continue; 739 740 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i)); 741 PhiState.mergeIn(IV); 742 NumActiveIncoming++; 743 if (PhiState.isOverdefined()) 744 break; 745 } 746 747 // We allow up to 1 range extension per active incoming value and one 748 // additional extension. Note that we manually adjust the number of range 749 // extensions to match the number of active incoming values. This helps to 750 // limit multiple extensions caused by the same incoming value, if other 751 // incoming values are equal. 752 mergeInValue(&PN, PhiState, 753 ValueLatticeElement::MergeOptions().setMaxWidenSteps( 754 NumActiveIncoming + 1)); 755 ValueLatticeElement &PhiStateRef = getValueState(&PN); 756 PhiStateRef.setNumRangeExtensions( 757 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions())); 758 } 759 760 void SCCPInstVisitor::visitReturnInst(ReturnInst &I) { 761 if (I.getNumOperands() == 0) 762 return; // ret void 763 764 Function *F = I.getParent()->getParent(); 765 Value *ResultOp = I.getOperand(0); 766 767 // If we are tracking the return value of this function, merge it in. 768 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 769 auto TFRVI = TrackedRetVals.find(F); 770 if (TFRVI != TrackedRetVals.end()) { 771 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 772 return; 773 } 774 } 775 776 // Handle functions that return multiple values. 777 if (!TrackedMultipleRetVals.empty()) { 778 if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) 779 if (MRVFunctionsTracked.count(F)) 780 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 781 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 782 getStructValueState(ResultOp, i)); 783 } 784 } 785 786 void SCCPInstVisitor::visitTerminator(Instruction &TI) { 787 SmallVector<bool, 16> SuccFeasible; 788 getFeasibleSuccessors(TI, SuccFeasible); 789 790 BasicBlock *BB = TI.getParent(); 791 792 // Mark all feasible successors executable. 793 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 794 if (SuccFeasible[i]) 795 markEdgeExecutable(BB, TI.getSuccessor(i)); 796 } 797 798 void SCCPInstVisitor::visitCastInst(CastInst &I) { 799 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 800 // discover a concrete value later. 801 if (ValueState[&I].isOverdefined()) 802 return; 803 804 ValueLatticeElement OpSt = getValueState(I.getOperand(0)); 805 if (Constant *OpC = getConstant(OpSt)) { 806 // Fold the constant as we build. 807 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL); 808 if (isa<UndefValue>(C)) 809 return; 810 // Propagate constant value 811 markConstant(&I, C); 812 } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) { 813 auto &LV = getValueState(&I); 814 ConstantRange OpRange = OpSt.getConstantRange(); 815 Type *DestTy = I.getDestTy(); 816 // Vectors where all elements have the same known constant range are treated 817 // as a single constant range in the lattice. When bitcasting such vectors, 818 // there is a mis-match between the width of the lattice value (single 819 // constant range) and the original operands (vector). Go to overdefined in 820 // that case. 821 if (I.getOpcode() == Instruction::BitCast && 822 I.getOperand(0)->getType()->isVectorTy() && 823 OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy)) 824 return (void)markOverdefined(&I); 825 826 ConstantRange Res = 827 OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy)); 828 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res)); 829 } else if (!OpSt.isUnknownOrUndef()) 830 markOverdefined(&I); 831 } 832 833 void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) { 834 // If this returns a struct, mark all elements over defined, we don't track 835 // structs in structs. 836 if (EVI.getType()->isStructTy()) 837 return (void)markOverdefined(&EVI); 838 839 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 840 // discover a concrete value later. 841 if (ValueState[&EVI].isOverdefined()) 842 return (void)markOverdefined(&EVI); 843 844 // If this is extracting from more than one level of struct, we don't know. 845 if (EVI.getNumIndices() != 1) 846 return (void)markOverdefined(&EVI); 847 848 Value *AggVal = EVI.getAggregateOperand(); 849 if (AggVal->getType()->isStructTy()) { 850 unsigned i = *EVI.idx_begin(); 851 ValueLatticeElement EltVal = getStructValueState(AggVal, i); 852 mergeInValue(getValueState(&EVI), &EVI, EltVal); 853 } else { 854 // Otherwise, must be extracting from an array. 855 return (void)markOverdefined(&EVI); 856 } 857 } 858 859 void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) { 860 auto *STy = dyn_cast<StructType>(IVI.getType()); 861 if (!STy) 862 return (void)markOverdefined(&IVI); 863 864 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 865 // discover a concrete value later. 866 if (isOverdefined(ValueState[&IVI])) 867 return (void)markOverdefined(&IVI); 868 869 // If this has more than one index, we can't handle it, drive all results to 870 // undef. 871 if (IVI.getNumIndices() != 1) 872 return (void)markOverdefined(&IVI); 873 874 Value *Aggr = IVI.getAggregateOperand(); 875 unsigned Idx = *IVI.idx_begin(); 876 877 // Compute the result based on what we're inserting. 878 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 879 // This passes through all values that aren't the inserted element. 880 if (i != Idx) { 881 ValueLatticeElement EltVal = getStructValueState(Aggr, i); 882 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 883 continue; 884 } 885 886 Value *Val = IVI.getInsertedValueOperand(); 887 if (Val->getType()->isStructTy()) 888 // We don't track structs in structs. 889 markOverdefined(getStructValueState(&IVI, i), &IVI); 890 else { 891 ValueLatticeElement InVal = getValueState(Val); 892 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 893 } 894 } 895 } 896 897 void SCCPInstVisitor::visitSelectInst(SelectInst &I) { 898 // If this select returns a struct, just mark the result overdefined. 899 // TODO: We could do a lot better than this if code actually uses this. 900 if (I.getType()->isStructTy()) 901 return (void)markOverdefined(&I); 902 903 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 904 // discover a concrete value later. 905 if (ValueState[&I].isOverdefined()) 906 return (void)markOverdefined(&I); 907 908 ValueLatticeElement CondValue = getValueState(I.getCondition()); 909 if (CondValue.isUnknownOrUndef()) 910 return; 911 912 if (ConstantInt *CondCB = getConstantInt(CondValue)) { 913 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 914 mergeInValue(&I, getValueState(OpVal)); 915 return; 916 } 917 918 // Otherwise, the condition is overdefined or a constant we can't evaluate. 919 // See if we can produce something better than overdefined based on the T/F 920 // value. 921 ValueLatticeElement TVal = getValueState(I.getTrueValue()); 922 ValueLatticeElement FVal = getValueState(I.getFalseValue()); 923 924 bool Changed = ValueState[&I].mergeIn(TVal); 925 Changed |= ValueState[&I].mergeIn(FVal); 926 if (Changed) 927 pushToWorkListMsg(ValueState[&I], &I); 928 } 929 930 // Handle Unary Operators. 931 void SCCPInstVisitor::visitUnaryOperator(Instruction &I) { 932 ValueLatticeElement V0State = getValueState(I.getOperand(0)); 933 934 ValueLatticeElement &IV = ValueState[&I]; 935 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 936 // discover a concrete value later. 937 if (isOverdefined(IV)) 938 return (void)markOverdefined(&I); 939 940 if (isConstant(V0State)) { 941 Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State)); 942 943 // op Y -> undef. 944 if (isa<UndefValue>(C)) 945 return; 946 return (void)markConstant(IV, &I, C); 947 } 948 949 // If something is undef, wait for it to resolve. 950 if (!isOverdefined(V0State)) 951 return; 952 953 markOverdefined(&I); 954 } 955 956 // Handle Binary Operators. 957 void SCCPInstVisitor::visitBinaryOperator(Instruction &I) { 958 ValueLatticeElement V1State = getValueState(I.getOperand(0)); 959 ValueLatticeElement V2State = getValueState(I.getOperand(1)); 960 961 ValueLatticeElement &IV = ValueState[&I]; 962 if (IV.isOverdefined()) 963 return; 964 965 // If something is undef, wait for it to resolve. 966 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) 967 return; 968 969 if (V1State.isOverdefined() && V2State.isOverdefined()) 970 return (void)markOverdefined(&I); 971 972 // If either of the operands is a constant, try to fold it to a constant. 973 // TODO: Use information from notconstant better. 974 if ((V1State.isConstant() || V2State.isConstant())) { 975 Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0); 976 Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1); 977 Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL)); 978 auto *C = dyn_cast_or_null<Constant>(R); 979 if (C) { 980 // X op Y -> undef. 981 if (isa<UndefValue>(C)) 982 return; 983 // Conservatively assume that the result may be based on operands that may 984 // be undef. Note that we use mergeInValue to combine the constant with 985 // the existing lattice value for I, as different constants might be found 986 // after one of the operands go to overdefined, e.g. due to one operand 987 // being a special floating value. 988 ValueLatticeElement NewV; 989 NewV.markConstant(C, /*MayIncludeUndef=*/true); 990 return (void)mergeInValue(&I, NewV); 991 } 992 } 993 994 // Only use ranges for binary operators on integers. 995 if (!I.getType()->isIntegerTy()) 996 return markOverdefined(&I); 997 998 // Try to simplify to a constant range. 999 ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits()); 1000 ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits()); 1001 if (V1State.isConstantRange()) 1002 A = V1State.getConstantRange(); 1003 if (V2State.isConstantRange()) 1004 B = V2State.getConstantRange(); 1005 1006 ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B); 1007 mergeInValue(&I, ValueLatticeElement::getRange(R)); 1008 1009 // TODO: Currently we do not exploit special values that produce something 1010 // better than overdefined with an overdefined operand for vector or floating 1011 // point types, like and <4 x i32> overdefined, zeroinitializer. 1012 } 1013 1014 // Handle ICmpInst instruction. 1015 void SCCPInstVisitor::visitCmpInst(CmpInst &I) { 1016 // Do not cache this lookup, getValueState calls later in the function might 1017 // invalidate the reference. 1018 if (isOverdefined(ValueState[&I])) 1019 return (void)markOverdefined(&I); 1020 1021 Value *Op1 = I.getOperand(0); 1022 Value *Op2 = I.getOperand(1); 1023 1024 // For parameters, use ParamState which includes constant range info if 1025 // available. 1026 auto V1State = getValueState(Op1); 1027 auto V2State = getValueState(Op2); 1028 1029 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State); 1030 if (C) { 1031 if (isa<UndefValue>(C)) 1032 return; 1033 ValueLatticeElement CV; 1034 CV.markConstant(C); 1035 mergeInValue(&I, CV); 1036 return; 1037 } 1038 1039 // If operands are still unknown, wait for it to resolve. 1040 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) && 1041 !isConstant(ValueState[&I])) 1042 return; 1043 1044 markOverdefined(&I); 1045 } 1046 1047 // Handle getelementptr instructions. If all operands are constants then we 1048 // can turn this into a getelementptr ConstantExpr. 1049 void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 1050 if (isOverdefined(ValueState[&I])) 1051 return (void)markOverdefined(&I); 1052 1053 SmallVector<Constant *, 8> Operands; 1054 Operands.reserve(I.getNumOperands()); 1055 1056 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1057 ValueLatticeElement State = getValueState(I.getOperand(i)); 1058 if (State.isUnknownOrUndef()) 1059 return; // Operands are not resolved yet. 1060 1061 if (isOverdefined(State)) 1062 return (void)markOverdefined(&I); 1063 1064 if (Constant *C = getConstant(State)) { 1065 Operands.push_back(C); 1066 continue; 1067 } 1068 1069 return (void)markOverdefined(&I); 1070 } 1071 1072 Constant *Ptr = Operands[0]; 1073 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); 1074 Constant *C = 1075 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); 1076 if (isa<UndefValue>(C)) 1077 return; 1078 markConstant(&I, C); 1079 } 1080 1081 void SCCPInstVisitor::visitStoreInst(StoreInst &SI) { 1082 // If this store is of a struct, ignore it. 1083 if (SI.getOperand(0)->getType()->isStructTy()) 1084 return; 1085 1086 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1087 return; 1088 1089 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1090 auto I = TrackedGlobals.find(GV); 1091 if (I == TrackedGlobals.end()) 1092 return; 1093 1094 // Get the value we are storing into the global, then merge it. 1095 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)), 1096 ValueLatticeElement::MergeOptions().setCheckWiden(false)); 1097 if (I->second.isOverdefined()) 1098 TrackedGlobals.erase(I); // No need to keep tracking this! 1099 } 1100 1101 static ValueLatticeElement getValueFromMetadata(const Instruction *I) { 1102 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) 1103 if (I->getType()->isIntegerTy()) 1104 return ValueLatticeElement::getRange( 1105 getConstantRangeFromMetadata(*Ranges)); 1106 if (I->hasMetadata(LLVMContext::MD_nonnull)) 1107 return ValueLatticeElement::getNot( 1108 ConstantPointerNull::get(cast<PointerType>(I->getType()))); 1109 return ValueLatticeElement::getOverdefined(); 1110 } 1111 1112 // Handle load instructions. If the operand is a constant pointer to a constant 1113 // global, we can replace the load with the loaded constant value! 1114 void SCCPInstVisitor::visitLoadInst(LoadInst &I) { 1115 // If this load is of a struct or the load is volatile, just mark the result 1116 // as overdefined. 1117 if (I.getType()->isStructTy() || I.isVolatile()) 1118 return (void)markOverdefined(&I); 1119 1120 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1121 // discover a concrete value later. 1122 if (ValueState[&I].isOverdefined()) 1123 return (void)markOverdefined(&I); 1124 1125 ValueLatticeElement PtrVal = getValueState(I.getOperand(0)); 1126 if (PtrVal.isUnknownOrUndef()) 1127 return; // The pointer is not resolved yet! 1128 1129 ValueLatticeElement &IV = ValueState[&I]; 1130 1131 if (isConstant(PtrVal)) { 1132 Constant *Ptr = getConstant(PtrVal); 1133 1134 // load null is undefined. 1135 if (isa<ConstantPointerNull>(Ptr)) { 1136 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) 1137 return (void)markOverdefined(IV, &I); 1138 else 1139 return; 1140 } 1141 1142 // Transform load (constant global) into the value loaded. 1143 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { 1144 if (!TrackedGlobals.empty()) { 1145 // If we are tracking this global, merge in the known value for it. 1146 auto It = TrackedGlobals.find(GV); 1147 if (It != TrackedGlobals.end()) { 1148 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts()); 1149 return; 1150 } 1151 } 1152 } 1153 1154 // Transform load from a constant into a constant if possible. 1155 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { 1156 if (isa<UndefValue>(C)) 1157 return; 1158 return (void)markConstant(IV, &I, C); 1159 } 1160 } 1161 1162 // Fall back to metadata. 1163 mergeInValue(&I, getValueFromMetadata(&I)); 1164 } 1165 1166 void SCCPInstVisitor::visitCallBase(CallBase &CB) { 1167 handleCallResult(CB); 1168 handleCallArguments(CB); 1169 } 1170 1171 void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) { 1172 Function *F = CB.getCalledFunction(); 1173 1174 // Void return and not tracking callee, just bail. 1175 if (CB.getType()->isVoidTy()) 1176 return; 1177 1178 // Always mark struct return as overdefined. 1179 if (CB.getType()->isStructTy()) 1180 return (void)markOverdefined(&CB); 1181 1182 // Otherwise, if we have a single return value case, and if the function is 1183 // a declaration, maybe we can constant fold it. 1184 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) { 1185 SmallVector<Constant *, 8> Operands; 1186 for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) { 1187 if (AI->get()->getType()->isStructTy()) 1188 return markOverdefined(&CB); // Can't handle struct args. 1189 ValueLatticeElement State = getValueState(*AI); 1190 1191 if (State.isUnknownOrUndef()) 1192 return; // Operands are not resolved yet. 1193 if (isOverdefined(State)) 1194 return (void)markOverdefined(&CB); 1195 assert(isConstant(State) && "Unknown state!"); 1196 Operands.push_back(getConstant(State)); 1197 } 1198 1199 if (isOverdefined(getValueState(&CB))) 1200 return (void)markOverdefined(&CB); 1201 1202 // If we can constant fold this, mark the result of the call as a 1203 // constant. 1204 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) { 1205 // call -> undef. 1206 if (isa<UndefValue>(C)) 1207 return; 1208 return (void)markConstant(&CB, C); 1209 } 1210 } 1211 1212 // Fall back to metadata. 1213 mergeInValue(&CB, getValueFromMetadata(&CB)); 1214 } 1215 1216 void SCCPInstVisitor::handleCallArguments(CallBase &CB) { 1217 Function *F = CB.getCalledFunction(); 1218 // If this is a local function that doesn't have its address taken, mark its 1219 // entry block executable and merge in the actual arguments to the call into 1220 // the formal arguments of the function. 1221 if (!TrackingIncomingArguments.empty() && 1222 TrackingIncomingArguments.count(F)) { 1223 markBlockExecutable(&F->front()); 1224 1225 // Propagate information from this call site into the callee. 1226 auto CAI = CB.arg_begin(); 1227 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 1228 ++AI, ++CAI) { 1229 // If this argument is byval, and if the function is not readonly, there 1230 // will be an implicit copy formed of the input aggregate. 1231 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1232 markOverdefined(&*AI); 1233 continue; 1234 } 1235 1236 if (auto *STy = dyn_cast<StructType>(AI->getType())) { 1237 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1238 ValueLatticeElement CallArg = getStructValueState(*CAI, i); 1239 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg, 1240 getMaxWidenStepsOpts()); 1241 } 1242 } else 1243 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts()); 1244 } 1245 } 1246 } 1247 1248 void SCCPInstVisitor::handleCallResult(CallBase &CB) { 1249 Function *F = CB.getCalledFunction(); 1250 1251 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) { 1252 if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 1253 if (ValueState[&CB].isOverdefined()) 1254 return; 1255 1256 Value *CopyOf = CB.getOperand(0); 1257 ValueLatticeElement CopyOfVal = getValueState(CopyOf); 1258 const auto *PI = getPredicateInfoFor(&CB); 1259 assert(PI && "Missing predicate info for ssa.copy"); 1260 1261 const Optional<PredicateConstraint> &Constraint = PI->getConstraint(); 1262 if (!Constraint) { 1263 mergeInValue(ValueState[&CB], &CB, CopyOfVal); 1264 return; 1265 } 1266 1267 CmpInst::Predicate Pred = Constraint->Predicate; 1268 Value *OtherOp = Constraint->OtherOp; 1269 1270 // Wait until OtherOp is resolved. 1271 if (getValueState(OtherOp).isUnknown()) { 1272 addAdditionalUser(OtherOp, &CB); 1273 return; 1274 } 1275 1276 // TODO: Actually filp MayIncludeUndef for the created range to false, 1277 // once most places in the optimizer respect the branches on 1278 // undef/poison are UB rule. The reason why the new range cannot be 1279 // undef is as follows below: 1280 // The new range is based on a branch condition. That guarantees that 1281 // neither of the compare operands can be undef in the branch targets, 1282 // unless we have conditions that are always true/false (e.g. icmp ule 1283 // i32, %a, i32_max). For the latter overdefined/empty range will be 1284 // inferred, but the branch will get folded accordingly anyways. 1285 bool MayIncludeUndef = !isa<PredicateAssume>(PI); 1286 1287 ValueLatticeElement CondVal = getValueState(OtherOp); 1288 ValueLatticeElement &IV = ValueState[&CB]; 1289 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) { 1290 auto ImposedCR = 1291 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType())); 1292 1293 // Get the range imposed by the condition. 1294 if (CondVal.isConstantRange()) 1295 ImposedCR = ConstantRange::makeAllowedICmpRegion( 1296 Pred, CondVal.getConstantRange()); 1297 1298 // Combine range info for the original value with the new range from the 1299 // condition. 1300 auto CopyOfCR = CopyOfVal.isConstantRange() 1301 ? CopyOfVal.getConstantRange() 1302 : ConstantRange::getFull( 1303 DL.getTypeSizeInBits(CopyOf->getType())); 1304 auto NewCR = ImposedCR.intersectWith(CopyOfCR); 1305 // If the existing information is != x, do not use the information from 1306 // a chained predicate, as the != x information is more likely to be 1307 // helpful in practice. 1308 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement()) 1309 NewCR = CopyOfCR; 1310 1311 addAdditionalUser(OtherOp, &CB); 1312 mergeInValue(IV, &CB, 1313 ValueLatticeElement::getRange(NewCR, MayIncludeUndef)); 1314 return; 1315 } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) { 1316 // For non-integer values or integer constant expressions, only 1317 // propagate equal constants. 1318 addAdditionalUser(OtherOp, &CB); 1319 mergeInValue(IV, &CB, CondVal); 1320 return; 1321 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() && 1322 !MayIncludeUndef) { 1323 // Propagate inequalities. 1324 addAdditionalUser(OtherOp, &CB); 1325 mergeInValue(IV, &CB, 1326 ValueLatticeElement::getNot(CondVal.getConstant())); 1327 return; 1328 } 1329 1330 return (void)mergeInValue(IV, &CB, CopyOfVal); 1331 } 1332 1333 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 1334 // Compute result range for intrinsics supported by ConstantRange. 1335 // Do this even if we don't know a range for all operands, as we may 1336 // still know something about the result range, e.g. of abs(x). 1337 SmallVector<ConstantRange, 2> OpRanges; 1338 for (Value *Op : II->args()) { 1339 const ValueLatticeElement &State = getValueState(Op); 1340 if (State.isConstantRange()) 1341 OpRanges.push_back(State.getConstantRange()); 1342 else 1343 OpRanges.push_back( 1344 ConstantRange::getFull(Op->getType()->getScalarSizeInBits())); 1345 } 1346 1347 ConstantRange Result = 1348 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges); 1349 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result)); 1350 } 1351 } 1352 1353 // The common case is that we aren't tracking the callee, either because we 1354 // are not doing interprocedural analysis or the callee is indirect, or is 1355 // external. Handle these cases first. 1356 if (!F || F->isDeclaration()) 1357 return handleCallOverdefined(CB); 1358 1359 // If this is a single/zero retval case, see if we're tracking the function. 1360 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 1361 if (!MRVFunctionsTracked.count(F)) 1362 return handleCallOverdefined(CB); // Not tracking this callee. 1363 1364 // If we are tracking this callee, propagate the result of the function 1365 // into this call site. 1366 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1367 mergeInValue(getStructValueState(&CB, i), &CB, 1368 TrackedMultipleRetVals[std::make_pair(F, i)], 1369 getMaxWidenStepsOpts()); 1370 } else { 1371 auto TFRVI = TrackedRetVals.find(F); 1372 if (TFRVI == TrackedRetVals.end()) 1373 return handleCallOverdefined(CB); // Not tracking this callee. 1374 1375 // If so, propagate the return value of the callee into this call result. 1376 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts()); 1377 } 1378 } 1379 1380 void SCCPInstVisitor::solve() { 1381 // Process the work lists until they are empty! 1382 while (!BBWorkList.empty() || !InstWorkList.empty() || 1383 !OverdefinedInstWorkList.empty()) { 1384 // Process the overdefined instruction's work list first, which drives other 1385 // things to overdefined more quickly. 1386 while (!OverdefinedInstWorkList.empty()) { 1387 Value *I = OverdefinedInstWorkList.pop_back_val(); 1388 1389 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1390 1391 // "I" got into the work list because it either made the transition from 1392 // bottom to constant, or to overdefined. 1393 // 1394 // Anything on this worklist that is overdefined need not be visited 1395 // since all of its users will have already been marked as overdefined 1396 // Update all of the users of this instruction's value. 1397 // 1398 markUsersAsChanged(I); 1399 } 1400 1401 // Process the instruction work list. 1402 while (!InstWorkList.empty()) { 1403 Value *I = InstWorkList.pop_back_val(); 1404 1405 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1406 1407 // "I" got into the work list because it made the transition from undef to 1408 // constant. 1409 // 1410 // Anything on this worklist that is overdefined need not be visited 1411 // since all of its users will have already been marked as overdefined. 1412 // Update all of the users of this instruction's value. 1413 // 1414 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1415 markUsersAsChanged(I); 1416 } 1417 1418 // Process the basic block work list. 1419 while (!BBWorkList.empty()) { 1420 BasicBlock *BB = BBWorkList.pop_back_val(); 1421 1422 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1423 1424 // Notify all instructions in this basic block that they are newly 1425 // executable. 1426 visit(BB); 1427 } 1428 } 1429 } 1430 1431 /// resolvedUndefsIn - While solving the dataflow for a function, we assume 1432 /// that branches on undef values cannot reach any of their successors. 1433 /// However, this is not a safe assumption. After we solve dataflow, this 1434 /// method should be use to handle this. If this returns true, the solver 1435 /// should be rerun. 1436 /// 1437 /// This method handles this by finding an unresolved branch and marking it one 1438 /// of the edges from the block as being feasible, even though the condition 1439 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1440 /// CFG and only slightly pessimizes the analysis results (by marking one, 1441 /// potentially infeasible, edge feasible). This cannot usefully modify the 1442 /// constraints on the condition of the branch, as that would impact other users 1443 /// of the value. 1444 /// 1445 /// This scan also checks for values that use undefs. It conservatively marks 1446 /// them as overdefined. 1447 bool SCCPInstVisitor::resolvedUndefsIn(Function &F) { 1448 bool MadeChange = false; 1449 for (BasicBlock &BB : F) { 1450 if (!BBExecutable.count(&BB)) 1451 continue; 1452 1453 for (Instruction &I : BB) { 1454 // Look for instructions which produce undef values. 1455 if (I.getType()->isVoidTy()) 1456 continue; 1457 1458 if (auto *STy = dyn_cast<StructType>(I.getType())) { 1459 // Only a few things that can be structs matter for undef. 1460 1461 // Tracked calls must never be marked overdefined in resolvedUndefsIn. 1462 if (auto *CB = dyn_cast<CallBase>(&I)) 1463 if (Function *F = CB->getCalledFunction()) 1464 if (MRVFunctionsTracked.count(F)) 1465 continue; 1466 1467 // extractvalue and insertvalue don't need to be marked; they are 1468 // tracked as precisely as their operands. 1469 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1470 continue; 1471 // Send the results of everything else to overdefined. We could be 1472 // more precise than this but it isn't worth bothering. 1473 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1474 ValueLatticeElement &LV = getStructValueState(&I, i); 1475 if (LV.isUnknownOrUndef()) { 1476 markOverdefined(LV, &I); 1477 MadeChange = true; 1478 } 1479 } 1480 continue; 1481 } 1482 1483 ValueLatticeElement &LV = getValueState(&I); 1484 if (!LV.isUnknownOrUndef()) 1485 continue; 1486 1487 // There are two reasons a call can have an undef result 1488 // 1. It could be tracked. 1489 // 2. It could be constant-foldable. 1490 // Because of the way we solve return values, tracked calls must 1491 // never be marked overdefined in resolvedUndefsIn. 1492 if (auto *CB = dyn_cast<CallBase>(&I)) 1493 if (Function *F = CB->getCalledFunction()) 1494 if (TrackedRetVals.count(F)) 1495 continue; 1496 1497 if (isa<LoadInst>(I)) { 1498 // A load here means one of two things: a load of undef from a global, 1499 // a load from an unknown pointer. Either way, having it return undef 1500 // is okay. 1501 continue; 1502 } 1503 1504 markOverdefined(&I); 1505 MadeChange = true; 1506 } 1507 1508 // Check to see if we have a branch or switch on an undefined value. If so 1509 // we force the branch to go one way or the other to make the successor 1510 // values live. It doesn't really matter which way we force it. 1511 Instruction *TI = BB.getTerminator(); 1512 if (auto *BI = dyn_cast<BranchInst>(TI)) { 1513 if (!BI->isConditional()) 1514 continue; 1515 if (!getValueState(BI->getCondition()).isUnknownOrUndef()) 1516 continue; 1517 1518 // If the input to SCCP is actually branch on undef, fix the undef to 1519 // false. 1520 if (isa<UndefValue>(BI->getCondition())) { 1521 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1522 markEdgeExecutable(&BB, TI->getSuccessor(1)); 1523 MadeChange = true; 1524 continue; 1525 } 1526 1527 // Otherwise, it is a branch on a symbolic value which is currently 1528 // considered to be undef. Make sure some edge is executable, so a 1529 // branch on "undef" always flows somewhere. 1530 // FIXME: Distinguish between dead code and an LLVM "undef" value. 1531 BasicBlock *DefaultSuccessor = TI->getSuccessor(1); 1532 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1533 MadeChange = true; 1534 1535 continue; 1536 } 1537 1538 if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) { 1539 // Indirect branch with no successor ?. Its ok to assume it branches 1540 // to no target. 1541 if (IBR->getNumSuccessors() < 1) 1542 continue; 1543 1544 if (!getValueState(IBR->getAddress()).isUnknownOrUndef()) 1545 continue; 1546 1547 // If the input to SCCP is actually branch on undef, fix the undef to 1548 // the first successor of the indirect branch. 1549 if (isa<UndefValue>(IBR->getAddress())) { 1550 IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); 1551 markEdgeExecutable(&BB, IBR->getSuccessor(0)); 1552 MadeChange = true; 1553 continue; 1554 } 1555 1556 // Otherwise, it is a branch on a symbolic value which is currently 1557 // considered to be undef. Make sure some edge is executable, so a 1558 // branch on "undef" always flows somewhere. 1559 // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere: 1560 // we can assume the branch has undefined behavior instead. 1561 BasicBlock *DefaultSuccessor = IBR->getSuccessor(0); 1562 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1563 MadeChange = true; 1564 1565 continue; 1566 } 1567 1568 if (auto *SI = dyn_cast<SwitchInst>(TI)) { 1569 if (!SI->getNumCases() || 1570 !getValueState(SI->getCondition()).isUnknownOrUndef()) 1571 continue; 1572 1573 // If the input to SCCP is actually switch on undef, fix the undef to 1574 // the first constant. 1575 if (isa<UndefValue>(SI->getCondition())) { 1576 SI->setCondition(SI->case_begin()->getCaseValue()); 1577 markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); 1578 MadeChange = true; 1579 continue; 1580 } 1581 1582 // Otherwise, it is a branch on a symbolic value which is currently 1583 // considered to be undef. Make sure some edge is executable, so a 1584 // branch on "undef" always flows somewhere. 1585 // FIXME: Distinguish between dead code and an LLVM "undef" value. 1586 BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor(); 1587 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1588 MadeChange = true; 1589 1590 continue; 1591 } 1592 } 1593 1594 return MadeChange; 1595 } 1596 1597 //===----------------------------------------------------------------------===// 1598 // 1599 // SCCPSolver implementations 1600 // 1601 SCCPSolver::SCCPSolver( 1602 const DataLayout &DL, 1603 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 1604 LLVMContext &Ctx) 1605 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {} 1606 1607 SCCPSolver::~SCCPSolver() {} 1608 1609 void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) { 1610 return Visitor->addAnalysis(F, std::move(A)); 1611 } 1612 1613 bool SCCPSolver::markBlockExecutable(BasicBlock *BB) { 1614 return Visitor->markBlockExecutable(BB); 1615 } 1616 1617 const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) { 1618 return Visitor->getPredicateInfoFor(I); 1619 } 1620 1621 DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); } 1622 1623 void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) { 1624 Visitor->trackValueOfGlobalVariable(GV); 1625 } 1626 1627 void SCCPSolver::addTrackedFunction(Function *F) { 1628 Visitor->addTrackedFunction(F); 1629 } 1630 1631 void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) { 1632 Visitor->addToMustPreserveReturnsInFunctions(F); 1633 } 1634 1635 bool SCCPSolver::mustPreserveReturn(Function *F) { 1636 return Visitor->mustPreserveReturn(F); 1637 } 1638 1639 void SCCPSolver::addArgumentTrackedFunction(Function *F) { 1640 Visitor->addArgumentTrackedFunction(F); 1641 } 1642 1643 bool SCCPSolver::isArgumentTrackedFunction(Function *F) { 1644 return Visitor->isArgumentTrackedFunction(F); 1645 } 1646 1647 void SCCPSolver::solve() { Visitor->solve(); } 1648 1649 bool SCCPSolver::resolvedUndefsIn(Function &F) { 1650 return Visitor->resolvedUndefsIn(F); 1651 } 1652 1653 bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const { 1654 return Visitor->isBlockExecutable(BB); 1655 } 1656 1657 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 1658 return Visitor->isEdgeFeasible(From, To); 1659 } 1660 1661 std::vector<ValueLatticeElement> 1662 SCCPSolver::getStructLatticeValueFor(Value *V) const { 1663 return Visitor->getStructLatticeValueFor(V); 1664 } 1665 1666 void SCCPSolver::removeLatticeValueFor(Value *V) { 1667 return Visitor->removeLatticeValueFor(V); 1668 } 1669 1670 const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const { 1671 return Visitor->getLatticeValueFor(V); 1672 } 1673 1674 const MapVector<Function *, ValueLatticeElement> & 1675 SCCPSolver::getTrackedRetVals() { 1676 return Visitor->getTrackedRetVals(); 1677 } 1678 1679 const DenseMap<GlobalVariable *, ValueLatticeElement> & 1680 SCCPSolver::getTrackedGlobals() { 1681 return Visitor->getTrackedGlobals(); 1682 } 1683 1684 const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() { 1685 return Visitor->getMRVFunctionsTracked(); 1686 } 1687 1688 void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); } 1689 1690 bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) { 1691 return Visitor->isStructLatticeConstant(F, STy); 1692 } 1693 1694 Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const { 1695 return Visitor->getConstant(LV); 1696 } 1697 1698 SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() { 1699 return Visitor->getArgumentTrackedFunctions(); 1700 } 1701 1702 void SCCPSolver::markArgInFuncSpecialization(Function *F, Argument *A, 1703 Constant *C) { 1704 Visitor->markArgInFuncSpecialization(F, A, C); 1705 } 1706 1707 void SCCPSolver::markFunctionUnreachable(Function *F) { 1708 Visitor->markFunctionUnreachable(F); 1709 } 1710 1711 void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); } 1712 1713 void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); } 1714