xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/SCCPSolver.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements the Sparse Conditional Constant Propagation (SCCP)
11 // utility.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SCCPSolver.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/InitializePasses.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include <cassert>
27 #include <utility>
28 #include <vector>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "sccp"
33 
34 // The maximum number of range extensions allowed for operations requiring
35 // widening.
36 static const unsigned MaxNumRangeExtensions = 10;
37 
38 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
39 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
40   return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
41       MaxNumRangeExtensions);
42 }
43 
44 namespace {
45 
46 // Helper to check if \p LV is either a constant or a constant
47 // range with a single element. This should cover exactly the same cases as the
48 // old ValueLatticeElement::isConstant() and is intended to be used in the
49 // transition to ValueLatticeElement.
50 bool isConstant(const ValueLatticeElement &LV) {
51   return LV.isConstant() ||
52          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
53 }
54 
55 // Helper to check if \p LV is either overdefined or a constant range with more
56 // than a single element. This should cover exactly the same cases as the old
57 // ValueLatticeElement::isOverdefined() and is intended to be used in the
58 // transition to ValueLatticeElement.
59 bool isOverdefined(const ValueLatticeElement &LV) {
60   return !LV.isUnknownOrUndef() && !isConstant(LV);
61 }
62 
63 } // namespace
64 
65 namespace llvm {
66 
67 /// Helper class for SCCPSolver. This implements the instruction visitor and
68 /// holds all the state.
69 class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
70   const DataLayout &DL;
71   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
72   SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
73   DenseMap<Value *, ValueLatticeElement>
74       ValueState; // The state each value is in.
75 
76   /// StructValueState - This maintains ValueState for values that have
77   /// StructType, for example for formal arguments, calls, insertelement, etc.
78   DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
79 
80   /// GlobalValue - If we are tracking any values for the contents of a global
81   /// variable, we keep a mapping from the constant accessor to the element of
82   /// the global, to the currently known value.  If the value becomes
83   /// overdefined, it's entry is simply removed from this map.
84   DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
85 
86   /// TrackedRetVals - If we are tracking arguments into and the return
87   /// value out of a function, it will have an entry in this map, indicating
88   /// what the known return value for the function is.
89   MapVector<Function *, ValueLatticeElement> TrackedRetVals;
90 
91   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
92   /// that return multiple values.
93   MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
94       TrackedMultipleRetVals;
95 
96   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
97   /// represented here for efficient lookup.
98   SmallPtrSet<Function *, 16> MRVFunctionsTracked;
99 
100   /// A list of functions whose return cannot be modified.
101   SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
102 
103   /// TrackingIncomingArguments - This is the set of functions for whose
104   /// arguments we make optimistic assumptions about and try to prove as
105   /// constants.
106   SmallPtrSet<Function *, 16> TrackingIncomingArguments;
107 
108   /// The reason for two worklists is that overdefined is the lowest state
109   /// on the lattice, and moving things to overdefined as fast as possible
110   /// makes SCCP converge much faster.
111   ///
112   /// By having a separate worklist, we accomplish this because everything
113   /// possibly overdefined will become overdefined at the soonest possible
114   /// point.
115   SmallVector<Value *, 64> OverdefinedInstWorkList;
116   SmallVector<Value *, 64> InstWorkList;
117 
118   // The BasicBlock work list
119   SmallVector<BasicBlock *, 64> BBWorkList;
120 
121   /// KnownFeasibleEdges - Entries in this set are edges which have already had
122   /// PHI nodes retriggered.
123   using Edge = std::pair<BasicBlock *, BasicBlock *>;
124   DenseSet<Edge> KnownFeasibleEdges;
125 
126   DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
127   DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
128 
129   LLVMContext &Ctx;
130 
131 private:
132   ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
133     return dyn_cast_or_null<ConstantInt>(getConstant(IV));
134   }
135 
136   // pushToWorkList - Helper for markConstant/markOverdefined
137   void pushToWorkList(ValueLatticeElement &IV, Value *V);
138 
139   // Helper to push \p V to the worklist, after updating it to \p IV. Also
140   // prints a debug message with the updated value.
141   void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
142 
143   // markConstant - Make a value be marked as "constant".  If the value
144   // is not already a constant, add it to the instruction work list so that
145   // the users of the instruction are updated later.
146   bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
147                     bool MayIncludeUndef = false);
148 
149   bool markConstant(Value *V, Constant *C) {
150     assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
151     return markConstant(ValueState[V], V, C);
152   }
153 
154   // markOverdefined - Make a value be marked as "overdefined". If the
155   // value is not already overdefined, add it to the overdefined instruction
156   // work list so that the users of the instruction are updated later.
157   bool markOverdefined(ValueLatticeElement &IV, Value *V);
158 
159   /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
160   /// changes.
161   bool mergeInValue(ValueLatticeElement &IV, Value *V,
162                     ValueLatticeElement MergeWithV,
163                     ValueLatticeElement::MergeOptions Opts = {
164                         /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
165 
166   bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
167                     ValueLatticeElement::MergeOptions Opts = {
168                         /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
169     assert(!V->getType()->isStructTy() &&
170            "non-structs should use markConstant");
171     return mergeInValue(ValueState[V], V, MergeWithV, Opts);
172   }
173 
174   /// getValueState - Return the ValueLatticeElement object that corresponds to
175   /// the value.  This function handles the case when the value hasn't been seen
176   /// yet by properly seeding constants etc.
177   ValueLatticeElement &getValueState(Value *V) {
178     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
179 
180     auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
181     ValueLatticeElement &LV = I.first->second;
182 
183     if (!I.second)
184       return LV; // Common case, already in the map.
185 
186     if (auto *C = dyn_cast<Constant>(V))
187       LV.markConstant(C); // Constants are constant
188 
189     // All others are unknown by default.
190     return LV;
191   }
192 
193   /// getStructValueState - Return the ValueLatticeElement object that
194   /// corresponds to the value/field pair.  This function handles the case when
195   /// the value hasn't been seen yet by properly seeding constants etc.
196   ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
197     assert(V->getType()->isStructTy() && "Should use getValueState");
198     assert(i < cast<StructType>(V->getType())->getNumElements() &&
199            "Invalid element #");
200 
201     auto I = StructValueState.insert(
202         std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
203     ValueLatticeElement &LV = I.first->second;
204 
205     if (!I.second)
206       return LV; // Common case, already in the map.
207 
208     if (auto *C = dyn_cast<Constant>(V)) {
209       Constant *Elt = C->getAggregateElement(i);
210 
211       if (!Elt)
212         LV.markOverdefined(); // Unknown sort of constant.
213       else if (isa<UndefValue>(Elt))
214         ; // Undef values remain unknown.
215       else
216         LV.markConstant(Elt); // Constants are constant.
217     }
218 
219     // All others are underdefined by default.
220     return LV;
221   }
222 
223   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
224   /// work list if it is not already executable.
225   bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
226 
227   // getFeasibleSuccessors - Return a vector of booleans to indicate which
228   // successors are reachable from a given terminator instruction.
229   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
230 
231   // OperandChangedState - This method is invoked on all of the users of an
232   // instruction that was just changed state somehow.  Based on this
233   // information, we need to update the specified user of this instruction.
234   void operandChangedState(Instruction *I) {
235     if (BBExecutable.count(I->getParent())) // Inst is executable?
236       visit(*I);
237   }
238 
239   // Add U as additional user of V.
240   void addAdditionalUser(Value *V, User *U) {
241     auto Iter = AdditionalUsers.insert({V, {}});
242     Iter.first->second.insert(U);
243   }
244 
245   // Mark I's users as changed, including AdditionalUsers.
246   void markUsersAsChanged(Value *I) {
247     // Functions include their arguments in the use-list. Changed function
248     // values mean that the result of the function changed. We only need to
249     // update the call sites with the new function result and do not have to
250     // propagate the call arguments.
251     if (isa<Function>(I)) {
252       for (User *U : I->users()) {
253         if (auto *CB = dyn_cast<CallBase>(U))
254           handleCallResult(*CB);
255       }
256     } else {
257       for (User *U : I->users())
258         if (auto *UI = dyn_cast<Instruction>(U))
259           operandChangedState(UI);
260     }
261 
262     auto Iter = AdditionalUsers.find(I);
263     if (Iter != AdditionalUsers.end()) {
264       // Copy additional users before notifying them of changes, because new
265       // users may be added, potentially invalidating the iterator.
266       SmallVector<Instruction *, 2> ToNotify;
267       for (User *U : Iter->second)
268         if (auto *UI = dyn_cast<Instruction>(U))
269           ToNotify.push_back(UI);
270       for (Instruction *UI : ToNotify)
271         operandChangedState(UI);
272     }
273   }
274   void handleCallOverdefined(CallBase &CB);
275   void handleCallResult(CallBase &CB);
276   void handleCallArguments(CallBase &CB);
277 
278 private:
279   friend class InstVisitor<SCCPInstVisitor>;
280 
281   // visit implementations - Something changed in this instruction.  Either an
282   // operand made a transition, or the instruction is newly executable.  Change
283   // the value type of I to reflect these changes if appropriate.
284   void visitPHINode(PHINode &I);
285 
286   // Terminators
287 
288   void visitReturnInst(ReturnInst &I);
289   void visitTerminator(Instruction &TI);
290 
291   void visitCastInst(CastInst &I);
292   void visitSelectInst(SelectInst &I);
293   void visitUnaryOperator(Instruction &I);
294   void visitBinaryOperator(Instruction &I);
295   void visitCmpInst(CmpInst &I);
296   void visitExtractValueInst(ExtractValueInst &EVI);
297   void visitInsertValueInst(InsertValueInst &IVI);
298 
299   void visitCatchSwitchInst(CatchSwitchInst &CPI) {
300     markOverdefined(&CPI);
301     visitTerminator(CPI);
302   }
303 
304   // Instructions that cannot be folded away.
305 
306   void visitStoreInst(StoreInst &I);
307   void visitLoadInst(LoadInst &I);
308   void visitGetElementPtrInst(GetElementPtrInst &I);
309 
310   void visitInvokeInst(InvokeInst &II) {
311     visitCallBase(II);
312     visitTerminator(II);
313   }
314 
315   void visitCallBrInst(CallBrInst &CBI) {
316     visitCallBase(CBI);
317     visitTerminator(CBI);
318   }
319 
320   void visitCallBase(CallBase &CB);
321   void visitResumeInst(ResumeInst &I) { /*returns void*/
322   }
323   void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
324   }
325   void visitFenceInst(FenceInst &I) { /*returns void*/
326   }
327 
328   void visitInstruction(Instruction &I);
329 
330 public:
331   void addAnalysis(Function &F, AnalysisResultsForFn A) {
332     AnalysisResults.insert({&F, std::move(A)});
333   }
334 
335   void visitCallInst(CallInst &I) { visitCallBase(I); }
336 
337   bool markBlockExecutable(BasicBlock *BB);
338 
339   const PredicateBase *getPredicateInfoFor(Instruction *I) {
340     auto A = AnalysisResults.find(I->getParent()->getParent());
341     if (A == AnalysisResults.end())
342       return nullptr;
343     return A->second.PredInfo->getPredicateInfoFor(I);
344   }
345 
346   DomTreeUpdater getDTU(Function &F) {
347     auto A = AnalysisResults.find(&F);
348     assert(A != AnalysisResults.end() && "Need analysis results for function.");
349     return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
350   }
351 
352   SCCPInstVisitor(const DataLayout &DL,
353                   std::function<const TargetLibraryInfo &(Function &)> GetTLI,
354                   LLVMContext &Ctx)
355       : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
356 
357   void trackValueOfGlobalVariable(GlobalVariable *GV) {
358     // We only track the contents of scalar globals.
359     if (GV->getValueType()->isSingleValueType()) {
360       ValueLatticeElement &IV = TrackedGlobals[GV];
361       if (!isa<UndefValue>(GV->getInitializer()))
362         IV.markConstant(GV->getInitializer());
363     }
364   }
365 
366   void addTrackedFunction(Function *F) {
367     // Add an entry, F -> undef.
368     if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
369       MRVFunctionsTracked.insert(F);
370       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
371         TrackedMultipleRetVals.insert(
372             std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
373     } else if (!F->getReturnType()->isVoidTy())
374       TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
375   }
376 
377   void addToMustPreserveReturnsInFunctions(Function *F) {
378     MustPreserveReturnsInFunctions.insert(F);
379   }
380 
381   bool mustPreserveReturn(Function *F) {
382     return MustPreserveReturnsInFunctions.count(F);
383   }
384 
385   void addArgumentTrackedFunction(Function *F) {
386     TrackingIncomingArguments.insert(F);
387   }
388 
389   bool isArgumentTrackedFunction(Function *F) {
390     return TrackingIncomingArguments.count(F);
391   }
392 
393   void solve();
394 
395   bool resolvedUndefsIn(Function &F);
396 
397   bool isBlockExecutable(BasicBlock *BB) const {
398     return BBExecutable.count(BB);
399   }
400 
401   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
402 
403   std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
404     std::vector<ValueLatticeElement> StructValues;
405     auto *STy = dyn_cast<StructType>(V->getType());
406     assert(STy && "getStructLatticeValueFor() can be called only on structs");
407     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
408       auto I = StructValueState.find(std::make_pair(V, i));
409       assert(I != StructValueState.end() && "Value not in valuemap!");
410       StructValues.push_back(I->second);
411     }
412     return StructValues;
413   }
414 
415   void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
416 
417   const ValueLatticeElement &getLatticeValueFor(Value *V) const {
418     assert(!V->getType()->isStructTy() &&
419            "Should use getStructLatticeValueFor");
420     DenseMap<Value *, ValueLatticeElement>::const_iterator I =
421         ValueState.find(V);
422     assert(I != ValueState.end() &&
423            "V not found in ValueState nor Paramstate map!");
424     return I->second;
425   }
426 
427   const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
428     return TrackedRetVals;
429   }
430 
431   const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
432     return TrackedGlobals;
433   }
434 
435   const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
436     return MRVFunctionsTracked;
437   }
438 
439   void markOverdefined(Value *V) {
440     if (auto *STy = dyn_cast<StructType>(V->getType()))
441       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
442         markOverdefined(getStructValueState(V, i), V);
443     else
444       markOverdefined(ValueState[V], V);
445   }
446 
447   bool isStructLatticeConstant(Function *F, StructType *STy);
448 
449   Constant *getConstant(const ValueLatticeElement &LV) const;
450 
451   SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() {
452     return TrackingIncomingArguments;
453   }
454 
455   void markArgInFuncSpecialization(Function *F, Argument *A, Constant *C);
456 
457   void markFunctionUnreachable(Function *F) {
458     for (auto &BB : *F)
459       BBExecutable.erase(&BB);
460   }
461 };
462 
463 } // namespace llvm
464 
465 bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
466   if (!BBExecutable.insert(BB).second)
467     return false;
468   LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
469   BBWorkList.push_back(BB); // Add the block to the work list!
470   return true;
471 }
472 
473 void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
474   if (IV.isOverdefined())
475     return OverdefinedInstWorkList.push_back(V);
476   InstWorkList.push_back(V);
477 }
478 
479 void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
480   LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
481   pushToWorkList(IV, V);
482 }
483 
484 bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
485                                    Constant *C, bool MayIncludeUndef) {
486   if (!IV.markConstant(C, MayIncludeUndef))
487     return false;
488   LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
489   pushToWorkList(IV, V);
490   return true;
491 }
492 
493 bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
494   if (!IV.markOverdefined())
495     return false;
496 
497   LLVM_DEBUG(dbgs() << "markOverdefined: ";
498              if (auto *F = dyn_cast<Function>(V)) dbgs()
499              << "Function '" << F->getName() << "'\n";
500              else dbgs() << *V << '\n');
501   // Only instructions go on the work list
502   pushToWorkList(IV, V);
503   return true;
504 }
505 
506 bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
507   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
508     const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
509     assert(It != TrackedMultipleRetVals.end());
510     ValueLatticeElement LV = It->second;
511     if (!isConstant(LV))
512       return false;
513   }
514   return true;
515 }
516 
517 Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const {
518   if (LV.isConstant())
519     return LV.getConstant();
520 
521   if (LV.isConstantRange()) {
522     const auto &CR = LV.getConstantRange();
523     if (CR.getSingleElement())
524       return ConstantInt::get(Ctx, *CR.getSingleElement());
525   }
526   return nullptr;
527 }
528 
529 void SCCPInstVisitor::markArgInFuncSpecialization(Function *F, Argument *A,
530                                                   Constant *C) {
531   assert(F->arg_size() == A->getParent()->arg_size() &&
532          "Functions should have the same number of arguments");
533 
534   // Mark the argument constant in the new function.
535   markConstant(A, C);
536 
537   // For the remaining arguments in the new function, copy the lattice state
538   // over from the old function.
539   for (auto I = F->arg_begin(), J = A->getParent()->arg_begin(),
540             E = F->arg_end();
541        I != E; ++I, ++J)
542     if (J != A && ValueState.count(I)) {
543       ValueState[J] = ValueState[I];
544       pushToWorkList(ValueState[J], J);
545     }
546 }
547 
548 void SCCPInstVisitor::visitInstruction(Instruction &I) {
549   // All the instructions we don't do any special handling for just
550   // go to overdefined.
551   LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
552   markOverdefined(&I);
553 }
554 
555 bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
556                                    ValueLatticeElement MergeWithV,
557                                    ValueLatticeElement::MergeOptions Opts) {
558   if (IV.mergeIn(MergeWithV, Opts)) {
559     pushToWorkList(IV, V);
560     LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
561                       << IV << "\n");
562     return true;
563   }
564   return false;
565 }
566 
567 bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
568   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
569     return false; // This edge is already known to be executable!
570 
571   if (!markBlockExecutable(Dest)) {
572     // If the destination is already executable, we just made an *edge*
573     // feasible that wasn't before.  Revisit the PHI nodes in the block
574     // because they have potentially new operands.
575     LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
576                       << " -> " << Dest->getName() << '\n');
577 
578     for (PHINode &PN : Dest->phis())
579       visitPHINode(PN);
580   }
581   return true;
582 }
583 
584 // getFeasibleSuccessors - Return a vector of booleans to indicate which
585 // successors are reachable from a given terminator instruction.
586 void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
587                                             SmallVectorImpl<bool> &Succs) {
588   Succs.resize(TI.getNumSuccessors());
589   if (auto *BI = dyn_cast<BranchInst>(&TI)) {
590     if (BI->isUnconditional()) {
591       Succs[0] = true;
592       return;
593     }
594 
595     ValueLatticeElement BCValue = getValueState(BI->getCondition());
596     ConstantInt *CI = getConstantInt(BCValue);
597     if (!CI) {
598       // Overdefined condition variables, and branches on unfoldable constant
599       // conditions, mean the branch could go either way.
600       if (!BCValue.isUnknownOrUndef())
601         Succs[0] = Succs[1] = true;
602       return;
603     }
604 
605     // Constant condition variables mean the branch can only go a single way.
606     Succs[CI->isZero()] = true;
607     return;
608   }
609 
610   // Unwinding instructions successors are always executable.
611   if (TI.isExceptionalTerminator()) {
612     Succs.assign(TI.getNumSuccessors(), true);
613     return;
614   }
615 
616   if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
617     if (!SI->getNumCases()) {
618       Succs[0] = true;
619       return;
620     }
621     const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
622     if (ConstantInt *CI = getConstantInt(SCValue)) {
623       Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
624       return;
625     }
626 
627     // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
628     // is ready.
629     if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
630       const ConstantRange &Range = SCValue.getConstantRange();
631       for (const auto &Case : SI->cases()) {
632         const APInt &CaseValue = Case.getCaseValue()->getValue();
633         if (Range.contains(CaseValue))
634           Succs[Case.getSuccessorIndex()] = true;
635       }
636 
637       // TODO: Determine whether default case is reachable.
638       Succs[SI->case_default()->getSuccessorIndex()] = true;
639       return;
640     }
641 
642     // Overdefined or unknown condition? All destinations are executable!
643     if (!SCValue.isUnknownOrUndef())
644       Succs.assign(TI.getNumSuccessors(), true);
645     return;
646   }
647 
648   // In case of indirect branch and its address is a blockaddress, we mark
649   // the target as executable.
650   if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
651     // Casts are folded by visitCastInst.
652     ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
653     BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
654     if (!Addr) { // Overdefined or unknown condition?
655       // All destinations are executable!
656       if (!IBRValue.isUnknownOrUndef())
657         Succs.assign(TI.getNumSuccessors(), true);
658       return;
659     }
660 
661     BasicBlock *T = Addr->getBasicBlock();
662     assert(Addr->getFunction() == T->getParent() &&
663            "Block address of a different function ?");
664     for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
665       // This is the target.
666       if (IBR->getDestination(i) == T) {
667         Succs[i] = true;
668         return;
669       }
670     }
671 
672     // If we didn't find our destination in the IBR successor list, then we
673     // have undefined behavior. Its ok to assume no successor is executable.
674     return;
675   }
676 
677   // In case of callbr, we pessimistically assume that all successors are
678   // feasible.
679   if (isa<CallBrInst>(&TI)) {
680     Succs.assign(TI.getNumSuccessors(), true);
681     return;
682   }
683 
684   LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
685   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
686 }
687 
688 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
689 // block to the 'To' basic block is currently feasible.
690 bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
691   // Check if we've called markEdgeExecutable on the edge yet. (We could
692   // be more aggressive and try to consider edges which haven't been marked
693   // yet, but there isn't any need.)
694   return KnownFeasibleEdges.count(Edge(From, To));
695 }
696 
697 // visit Implementations - Something changed in this instruction, either an
698 // operand made a transition, or the instruction is newly executable.  Change
699 // the value type of I to reflect these changes if appropriate.  This method
700 // makes sure to do the following actions:
701 //
702 // 1. If a phi node merges two constants in, and has conflicting value coming
703 //    from different branches, or if the PHI node merges in an overdefined
704 //    value, then the PHI node becomes overdefined.
705 // 2. If a phi node merges only constants in, and they all agree on value, the
706 //    PHI node becomes a constant value equal to that.
707 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
708 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
709 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
710 // 6. If a conditional branch has a value that is constant, make the selected
711 //    destination executable
712 // 7. If a conditional branch has a value that is overdefined, make all
713 //    successors executable.
714 void SCCPInstVisitor::visitPHINode(PHINode &PN) {
715   // If this PN returns a struct, just mark the result overdefined.
716   // TODO: We could do a lot better than this if code actually uses this.
717   if (PN.getType()->isStructTy())
718     return (void)markOverdefined(&PN);
719 
720   if (getValueState(&PN).isOverdefined())
721     return; // Quick exit
722 
723   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
724   // and slow us down a lot.  Just mark them overdefined.
725   if (PN.getNumIncomingValues() > 64)
726     return (void)markOverdefined(&PN);
727 
728   unsigned NumActiveIncoming = 0;
729 
730   // Look at all of the executable operands of the PHI node.  If any of them
731   // are overdefined, the PHI becomes overdefined as well.  If they are all
732   // constant, and they agree with each other, the PHI becomes the identical
733   // constant.  If they are constant and don't agree, the PHI is a constant
734   // range. If there are no executable operands, the PHI remains unknown.
735   ValueLatticeElement PhiState = getValueState(&PN);
736   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
737     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
738       continue;
739 
740     ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
741     PhiState.mergeIn(IV);
742     NumActiveIncoming++;
743     if (PhiState.isOverdefined())
744       break;
745   }
746 
747   // We allow up to 1 range extension per active incoming value and one
748   // additional extension. Note that we manually adjust the number of range
749   // extensions to match the number of active incoming values. This helps to
750   // limit multiple extensions caused by the same incoming value, if other
751   // incoming values are equal.
752   mergeInValue(&PN, PhiState,
753                ValueLatticeElement::MergeOptions().setMaxWidenSteps(
754                    NumActiveIncoming + 1));
755   ValueLatticeElement &PhiStateRef = getValueState(&PN);
756   PhiStateRef.setNumRangeExtensions(
757       std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
758 }
759 
760 void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
761   if (I.getNumOperands() == 0)
762     return; // ret void
763 
764   Function *F = I.getParent()->getParent();
765   Value *ResultOp = I.getOperand(0);
766 
767   // If we are tracking the return value of this function, merge it in.
768   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
769     auto TFRVI = TrackedRetVals.find(F);
770     if (TFRVI != TrackedRetVals.end()) {
771       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
772       return;
773     }
774   }
775 
776   // Handle functions that return multiple values.
777   if (!TrackedMultipleRetVals.empty()) {
778     if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
779       if (MRVFunctionsTracked.count(F))
780         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
781           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
782                        getStructValueState(ResultOp, i));
783   }
784 }
785 
786 void SCCPInstVisitor::visitTerminator(Instruction &TI) {
787   SmallVector<bool, 16> SuccFeasible;
788   getFeasibleSuccessors(TI, SuccFeasible);
789 
790   BasicBlock *BB = TI.getParent();
791 
792   // Mark all feasible successors executable.
793   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
794     if (SuccFeasible[i])
795       markEdgeExecutable(BB, TI.getSuccessor(i));
796 }
797 
798 void SCCPInstVisitor::visitCastInst(CastInst &I) {
799   // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
800   // discover a concrete value later.
801   if (ValueState[&I].isOverdefined())
802     return;
803 
804   ValueLatticeElement OpSt = getValueState(I.getOperand(0));
805   if (Constant *OpC = getConstant(OpSt)) {
806     // Fold the constant as we build.
807     Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
808     if (isa<UndefValue>(C))
809       return;
810     // Propagate constant value
811     markConstant(&I, C);
812   } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) {
813     auto &LV = getValueState(&I);
814     ConstantRange OpRange = OpSt.getConstantRange();
815     Type *DestTy = I.getDestTy();
816     // Vectors where all elements have the same known constant range are treated
817     // as a single constant range in the lattice. When bitcasting such vectors,
818     // there is a mis-match between the width of the lattice value (single
819     // constant range) and the original operands (vector). Go to overdefined in
820     // that case.
821     if (I.getOpcode() == Instruction::BitCast &&
822         I.getOperand(0)->getType()->isVectorTy() &&
823         OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
824       return (void)markOverdefined(&I);
825 
826     ConstantRange Res =
827         OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
828     mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
829   } else if (!OpSt.isUnknownOrUndef())
830     markOverdefined(&I);
831 }
832 
833 void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
834   // If this returns a struct, mark all elements over defined, we don't track
835   // structs in structs.
836   if (EVI.getType()->isStructTy())
837     return (void)markOverdefined(&EVI);
838 
839   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
840   // discover a concrete value later.
841   if (ValueState[&EVI].isOverdefined())
842     return (void)markOverdefined(&EVI);
843 
844   // If this is extracting from more than one level of struct, we don't know.
845   if (EVI.getNumIndices() != 1)
846     return (void)markOverdefined(&EVI);
847 
848   Value *AggVal = EVI.getAggregateOperand();
849   if (AggVal->getType()->isStructTy()) {
850     unsigned i = *EVI.idx_begin();
851     ValueLatticeElement EltVal = getStructValueState(AggVal, i);
852     mergeInValue(getValueState(&EVI), &EVI, EltVal);
853   } else {
854     // Otherwise, must be extracting from an array.
855     return (void)markOverdefined(&EVI);
856   }
857 }
858 
859 void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
860   auto *STy = dyn_cast<StructType>(IVI.getType());
861   if (!STy)
862     return (void)markOverdefined(&IVI);
863 
864   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
865   // discover a concrete value later.
866   if (isOverdefined(ValueState[&IVI]))
867     return (void)markOverdefined(&IVI);
868 
869   // If this has more than one index, we can't handle it, drive all results to
870   // undef.
871   if (IVI.getNumIndices() != 1)
872     return (void)markOverdefined(&IVI);
873 
874   Value *Aggr = IVI.getAggregateOperand();
875   unsigned Idx = *IVI.idx_begin();
876 
877   // Compute the result based on what we're inserting.
878   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
879     // This passes through all values that aren't the inserted element.
880     if (i != Idx) {
881       ValueLatticeElement EltVal = getStructValueState(Aggr, i);
882       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
883       continue;
884     }
885 
886     Value *Val = IVI.getInsertedValueOperand();
887     if (Val->getType()->isStructTy())
888       // We don't track structs in structs.
889       markOverdefined(getStructValueState(&IVI, i), &IVI);
890     else {
891       ValueLatticeElement InVal = getValueState(Val);
892       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
893     }
894   }
895 }
896 
897 void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
898   // If this select returns a struct, just mark the result overdefined.
899   // TODO: We could do a lot better than this if code actually uses this.
900   if (I.getType()->isStructTy())
901     return (void)markOverdefined(&I);
902 
903   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
904   // discover a concrete value later.
905   if (ValueState[&I].isOverdefined())
906     return (void)markOverdefined(&I);
907 
908   ValueLatticeElement CondValue = getValueState(I.getCondition());
909   if (CondValue.isUnknownOrUndef())
910     return;
911 
912   if (ConstantInt *CondCB = getConstantInt(CondValue)) {
913     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
914     mergeInValue(&I, getValueState(OpVal));
915     return;
916   }
917 
918   // Otherwise, the condition is overdefined or a constant we can't evaluate.
919   // See if we can produce something better than overdefined based on the T/F
920   // value.
921   ValueLatticeElement TVal = getValueState(I.getTrueValue());
922   ValueLatticeElement FVal = getValueState(I.getFalseValue());
923 
924   bool Changed = ValueState[&I].mergeIn(TVal);
925   Changed |= ValueState[&I].mergeIn(FVal);
926   if (Changed)
927     pushToWorkListMsg(ValueState[&I], &I);
928 }
929 
930 // Handle Unary Operators.
931 void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
932   ValueLatticeElement V0State = getValueState(I.getOperand(0));
933 
934   ValueLatticeElement &IV = ValueState[&I];
935   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
936   // discover a concrete value later.
937   if (isOverdefined(IV))
938     return (void)markOverdefined(&I);
939 
940   if (isConstant(V0State)) {
941     Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));
942 
943     // op Y -> undef.
944     if (isa<UndefValue>(C))
945       return;
946     return (void)markConstant(IV, &I, C);
947   }
948 
949   // If something is undef, wait for it to resolve.
950   if (!isOverdefined(V0State))
951     return;
952 
953   markOverdefined(&I);
954 }
955 
956 // Handle Binary Operators.
957 void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
958   ValueLatticeElement V1State = getValueState(I.getOperand(0));
959   ValueLatticeElement V2State = getValueState(I.getOperand(1));
960 
961   ValueLatticeElement &IV = ValueState[&I];
962   if (IV.isOverdefined())
963     return;
964 
965   // If something is undef, wait for it to resolve.
966   if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
967     return;
968 
969   if (V1State.isOverdefined() && V2State.isOverdefined())
970     return (void)markOverdefined(&I);
971 
972   // If either of the operands is a constant, try to fold it to a constant.
973   // TODO: Use information from notconstant better.
974   if ((V1State.isConstant() || V2State.isConstant())) {
975     Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
976     Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
977     Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
978     auto *C = dyn_cast_or_null<Constant>(R);
979     if (C) {
980       // X op Y -> undef.
981       if (isa<UndefValue>(C))
982         return;
983       // Conservatively assume that the result may be based on operands that may
984       // be undef. Note that we use mergeInValue to combine the constant with
985       // the existing lattice value for I, as different constants might be found
986       // after one of the operands go to overdefined, e.g. due to one operand
987       // being a special floating value.
988       ValueLatticeElement NewV;
989       NewV.markConstant(C, /*MayIncludeUndef=*/true);
990       return (void)mergeInValue(&I, NewV);
991     }
992   }
993 
994   // Only use ranges for binary operators on integers.
995   if (!I.getType()->isIntegerTy())
996     return markOverdefined(&I);
997 
998   // Try to simplify to a constant range.
999   ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
1000   ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
1001   if (V1State.isConstantRange())
1002     A = V1State.getConstantRange();
1003   if (V2State.isConstantRange())
1004     B = V2State.getConstantRange();
1005 
1006   ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
1007   mergeInValue(&I, ValueLatticeElement::getRange(R));
1008 
1009   // TODO: Currently we do not exploit special values that produce something
1010   // better than overdefined with an overdefined operand for vector or floating
1011   // point types, like and <4 x i32> overdefined, zeroinitializer.
1012 }
1013 
1014 // Handle ICmpInst instruction.
1015 void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1016   // Do not cache this lookup, getValueState calls later in the function might
1017   // invalidate the reference.
1018   if (isOverdefined(ValueState[&I]))
1019     return (void)markOverdefined(&I);
1020 
1021   Value *Op1 = I.getOperand(0);
1022   Value *Op2 = I.getOperand(1);
1023 
1024   // For parameters, use ParamState which includes constant range info if
1025   // available.
1026   auto V1State = getValueState(Op1);
1027   auto V2State = getValueState(Op2);
1028 
1029   Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
1030   if (C) {
1031     if (isa<UndefValue>(C))
1032       return;
1033     ValueLatticeElement CV;
1034     CV.markConstant(C);
1035     mergeInValue(&I, CV);
1036     return;
1037   }
1038 
1039   // If operands are still unknown, wait for it to resolve.
1040   if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1041       !isConstant(ValueState[&I]))
1042     return;
1043 
1044   markOverdefined(&I);
1045 }
1046 
1047 // Handle getelementptr instructions.  If all operands are constants then we
1048 // can turn this into a getelementptr ConstantExpr.
1049 void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1050   if (isOverdefined(ValueState[&I]))
1051     return (void)markOverdefined(&I);
1052 
1053   SmallVector<Constant *, 8> Operands;
1054   Operands.reserve(I.getNumOperands());
1055 
1056   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1057     ValueLatticeElement State = getValueState(I.getOperand(i));
1058     if (State.isUnknownOrUndef())
1059       return; // Operands are not resolved yet.
1060 
1061     if (isOverdefined(State))
1062       return (void)markOverdefined(&I);
1063 
1064     if (Constant *C = getConstant(State)) {
1065       Operands.push_back(C);
1066       continue;
1067     }
1068 
1069     return (void)markOverdefined(&I);
1070   }
1071 
1072   Constant *Ptr = Operands[0];
1073   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1074   Constant *C =
1075       ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1076   if (isa<UndefValue>(C))
1077     return;
1078   markConstant(&I, C);
1079 }
1080 
1081 void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1082   // If this store is of a struct, ignore it.
1083   if (SI.getOperand(0)->getType()->isStructTy())
1084     return;
1085 
1086   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1087     return;
1088 
1089   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1090   auto I = TrackedGlobals.find(GV);
1091   if (I == TrackedGlobals.end())
1092     return;
1093 
1094   // Get the value we are storing into the global, then merge it.
1095   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1096                ValueLatticeElement::MergeOptions().setCheckWiden(false));
1097   if (I->second.isOverdefined())
1098     TrackedGlobals.erase(I); // No need to keep tracking this!
1099 }
1100 
1101 static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
1102   if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1103     if (I->getType()->isIntegerTy())
1104       return ValueLatticeElement::getRange(
1105           getConstantRangeFromMetadata(*Ranges));
1106   if (I->hasMetadata(LLVMContext::MD_nonnull))
1107     return ValueLatticeElement::getNot(
1108         ConstantPointerNull::get(cast<PointerType>(I->getType())));
1109   return ValueLatticeElement::getOverdefined();
1110 }
1111 
1112 // Handle load instructions.  If the operand is a constant pointer to a constant
1113 // global, we can replace the load with the loaded constant value!
1114 void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1115   // If this load is of a struct or the load is volatile, just mark the result
1116   // as overdefined.
1117   if (I.getType()->isStructTy() || I.isVolatile())
1118     return (void)markOverdefined(&I);
1119 
1120   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1121   // discover a concrete value later.
1122   if (ValueState[&I].isOverdefined())
1123     return (void)markOverdefined(&I);
1124 
1125   ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1126   if (PtrVal.isUnknownOrUndef())
1127     return; // The pointer is not resolved yet!
1128 
1129   ValueLatticeElement &IV = ValueState[&I];
1130 
1131   if (isConstant(PtrVal)) {
1132     Constant *Ptr = getConstant(PtrVal);
1133 
1134     // load null is undefined.
1135     if (isa<ConstantPointerNull>(Ptr)) {
1136       if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1137         return (void)markOverdefined(IV, &I);
1138       else
1139         return;
1140     }
1141 
1142     // Transform load (constant global) into the value loaded.
1143     if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1144       if (!TrackedGlobals.empty()) {
1145         // If we are tracking this global, merge in the known value for it.
1146         auto It = TrackedGlobals.find(GV);
1147         if (It != TrackedGlobals.end()) {
1148           mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1149           return;
1150         }
1151       }
1152     }
1153 
1154     // Transform load from a constant into a constant if possible.
1155     if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1156       if (isa<UndefValue>(C))
1157         return;
1158       return (void)markConstant(IV, &I, C);
1159     }
1160   }
1161 
1162   // Fall back to metadata.
1163   mergeInValue(&I, getValueFromMetadata(&I));
1164 }
1165 
1166 void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1167   handleCallResult(CB);
1168   handleCallArguments(CB);
1169 }
1170 
1171 void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1172   Function *F = CB.getCalledFunction();
1173 
1174   // Void return and not tracking callee, just bail.
1175   if (CB.getType()->isVoidTy())
1176     return;
1177 
1178   // Always mark struct return as overdefined.
1179   if (CB.getType()->isStructTy())
1180     return (void)markOverdefined(&CB);
1181 
1182   // Otherwise, if we have a single return value case, and if the function is
1183   // a declaration, maybe we can constant fold it.
1184   if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1185     SmallVector<Constant *, 8> Operands;
1186     for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) {
1187       if (AI->get()->getType()->isStructTy())
1188         return markOverdefined(&CB); // Can't handle struct args.
1189       ValueLatticeElement State = getValueState(*AI);
1190 
1191       if (State.isUnknownOrUndef())
1192         return; // Operands are not resolved yet.
1193       if (isOverdefined(State))
1194         return (void)markOverdefined(&CB);
1195       assert(isConstant(State) && "Unknown state!");
1196       Operands.push_back(getConstant(State));
1197     }
1198 
1199     if (isOverdefined(getValueState(&CB)))
1200       return (void)markOverdefined(&CB);
1201 
1202     // If we can constant fold this, mark the result of the call as a
1203     // constant.
1204     if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
1205       // call -> undef.
1206       if (isa<UndefValue>(C))
1207         return;
1208       return (void)markConstant(&CB, C);
1209     }
1210   }
1211 
1212   // Fall back to metadata.
1213   mergeInValue(&CB, getValueFromMetadata(&CB));
1214 }
1215 
1216 void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1217   Function *F = CB.getCalledFunction();
1218   // If this is a local function that doesn't have its address taken, mark its
1219   // entry block executable and merge in the actual arguments to the call into
1220   // the formal arguments of the function.
1221   if (!TrackingIncomingArguments.empty() &&
1222       TrackingIncomingArguments.count(F)) {
1223     markBlockExecutable(&F->front());
1224 
1225     // Propagate information from this call site into the callee.
1226     auto CAI = CB.arg_begin();
1227     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1228          ++AI, ++CAI) {
1229       // If this argument is byval, and if the function is not readonly, there
1230       // will be an implicit copy formed of the input aggregate.
1231       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1232         markOverdefined(&*AI);
1233         continue;
1234       }
1235 
1236       if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1237         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1238           ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1239           mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1240                        getMaxWidenStepsOpts());
1241         }
1242       } else
1243         mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1244     }
1245   }
1246 }
1247 
1248 void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1249   Function *F = CB.getCalledFunction();
1250 
1251   if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1252     if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1253       if (ValueState[&CB].isOverdefined())
1254         return;
1255 
1256       Value *CopyOf = CB.getOperand(0);
1257       ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1258       const auto *PI = getPredicateInfoFor(&CB);
1259       assert(PI && "Missing predicate info for ssa.copy");
1260 
1261       const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1262       if (!Constraint) {
1263         mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1264         return;
1265       }
1266 
1267       CmpInst::Predicate Pred = Constraint->Predicate;
1268       Value *OtherOp = Constraint->OtherOp;
1269 
1270       // Wait until OtherOp is resolved.
1271       if (getValueState(OtherOp).isUnknown()) {
1272         addAdditionalUser(OtherOp, &CB);
1273         return;
1274       }
1275 
1276       // TODO: Actually filp MayIncludeUndef for the created range to false,
1277       // once most places in the optimizer respect the branches on
1278       // undef/poison are UB rule. The reason why the new range cannot be
1279       // undef is as follows below:
1280       // The new range is based on a branch condition. That guarantees that
1281       // neither of the compare operands can be undef in the branch targets,
1282       // unless we have conditions that are always true/false (e.g. icmp ule
1283       // i32, %a, i32_max). For the latter overdefined/empty range will be
1284       // inferred, but the branch will get folded accordingly anyways.
1285       bool MayIncludeUndef = !isa<PredicateAssume>(PI);
1286 
1287       ValueLatticeElement CondVal = getValueState(OtherOp);
1288       ValueLatticeElement &IV = ValueState[&CB];
1289       if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1290         auto ImposedCR =
1291             ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1292 
1293         // Get the range imposed by the condition.
1294         if (CondVal.isConstantRange())
1295           ImposedCR = ConstantRange::makeAllowedICmpRegion(
1296               Pred, CondVal.getConstantRange());
1297 
1298         // Combine range info for the original value with the new range from the
1299         // condition.
1300         auto CopyOfCR = CopyOfVal.isConstantRange()
1301                             ? CopyOfVal.getConstantRange()
1302                             : ConstantRange::getFull(
1303                                   DL.getTypeSizeInBits(CopyOf->getType()));
1304         auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1305         // If the existing information is != x, do not use the information from
1306         // a chained predicate, as the != x information is more likely to be
1307         // helpful in practice.
1308         if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1309           NewCR = CopyOfCR;
1310 
1311         addAdditionalUser(OtherOp, &CB);
1312         mergeInValue(IV, &CB,
1313                      ValueLatticeElement::getRange(NewCR, MayIncludeUndef));
1314         return;
1315       } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
1316         // For non-integer values or integer constant expressions, only
1317         // propagate equal constants.
1318         addAdditionalUser(OtherOp, &CB);
1319         mergeInValue(IV, &CB, CondVal);
1320         return;
1321       } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() &&
1322                  !MayIncludeUndef) {
1323         // Propagate inequalities.
1324         addAdditionalUser(OtherOp, &CB);
1325         mergeInValue(IV, &CB,
1326                      ValueLatticeElement::getNot(CondVal.getConstant()));
1327         return;
1328       }
1329 
1330       return (void)mergeInValue(IV, &CB, CopyOfVal);
1331     }
1332 
1333     if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1334       // Compute result range for intrinsics supported by ConstantRange.
1335       // Do this even if we don't know a range for all operands, as we may
1336       // still know something about the result range, e.g. of abs(x).
1337       SmallVector<ConstantRange, 2> OpRanges;
1338       for (Value *Op : II->args()) {
1339         const ValueLatticeElement &State = getValueState(Op);
1340         if (State.isConstantRange())
1341           OpRanges.push_back(State.getConstantRange());
1342         else
1343           OpRanges.push_back(
1344               ConstantRange::getFull(Op->getType()->getScalarSizeInBits()));
1345       }
1346 
1347       ConstantRange Result =
1348           ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1349       return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1350     }
1351   }
1352 
1353   // The common case is that we aren't tracking the callee, either because we
1354   // are not doing interprocedural analysis or the callee is indirect, or is
1355   // external.  Handle these cases first.
1356   if (!F || F->isDeclaration())
1357     return handleCallOverdefined(CB);
1358 
1359   // If this is a single/zero retval case, see if we're tracking the function.
1360   if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1361     if (!MRVFunctionsTracked.count(F))
1362       return handleCallOverdefined(CB); // Not tracking this callee.
1363 
1364     // If we are tracking this callee, propagate the result of the function
1365     // into this call site.
1366     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1367       mergeInValue(getStructValueState(&CB, i), &CB,
1368                    TrackedMultipleRetVals[std::make_pair(F, i)],
1369                    getMaxWidenStepsOpts());
1370   } else {
1371     auto TFRVI = TrackedRetVals.find(F);
1372     if (TFRVI == TrackedRetVals.end())
1373       return handleCallOverdefined(CB); // Not tracking this callee.
1374 
1375     // If so, propagate the return value of the callee into this call result.
1376     mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1377   }
1378 }
1379 
1380 void SCCPInstVisitor::solve() {
1381   // Process the work lists until they are empty!
1382   while (!BBWorkList.empty() || !InstWorkList.empty() ||
1383          !OverdefinedInstWorkList.empty()) {
1384     // Process the overdefined instruction's work list first, which drives other
1385     // things to overdefined more quickly.
1386     while (!OverdefinedInstWorkList.empty()) {
1387       Value *I = OverdefinedInstWorkList.pop_back_val();
1388 
1389       LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1390 
1391       // "I" got into the work list because it either made the transition from
1392       // bottom to constant, or to overdefined.
1393       //
1394       // Anything on this worklist that is overdefined need not be visited
1395       // since all of its users will have already been marked as overdefined
1396       // Update all of the users of this instruction's value.
1397       //
1398       markUsersAsChanged(I);
1399     }
1400 
1401     // Process the instruction work list.
1402     while (!InstWorkList.empty()) {
1403       Value *I = InstWorkList.pop_back_val();
1404 
1405       LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1406 
1407       // "I" got into the work list because it made the transition from undef to
1408       // constant.
1409       //
1410       // Anything on this worklist that is overdefined need not be visited
1411       // since all of its users will have already been marked as overdefined.
1412       // Update all of the users of this instruction's value.
1413       //
1414       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1415         markUsersAsChanged(I);
1416     }
1417 
1418     // Process the basic block work list.
1419     while (!BBWorkList.empty()) {
1420       BasicBlock *BB = BBWorkList.pop_back_val();
1421 
1422       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1423 
1424       // Notify all instructions in this basic block that they are newly
1425       // executable.
1426       visit(BB);
1427     }
1428   }
1429 }
1430 
1431 /// resolvedUndefsIn - While solving the dataflow for a function, we assume
1432 /// that branches on undef values cannot reach any of their successors.
1433 /// However, this is not a safe assumption.  After we solve dataflow, this
1434 /// method should be use to handle this.  If this returns true, the solver
1435 /// should be rerun.
1436 ///
1437 /// This method handles this by finding an unresolved branch and marking it one
1438 /// of the edges from the block as being feasible, even though the condition
1439 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1440 /// CFG and only slightly pessimizes the analysis results (by marking one,
1441 /// potentially infeasible, edge feasible).  This cannot usefully modify the
1442 /// constraints on the condition of the branch, as that would impact other users
1443 /// of the value.
1444 ///
1445 /// This scan also checks for values that use undefs. It conservatively marks
1446 /// them as overdefined.
1447 bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
1448   bool MadeChange = false;
1449   for (BasicBlock &BB : F) {
1450     if (!BBExecutable.count(&BB))
1451       continue;
1452 
1453     for (Instruction &I : BB) {
1454       // Look for instructions which produce undef values.
1455       if (I.getType()->isVoidTy())
1456         continue;
1457 
1458       if (auto *STy = dyn_cast<StructType>(I.getType())) {
1459         // Only a few things that can be structs matter for undef.
1460 
1461         // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1462         if (auto *CB = dyn_cast<CallBase>(&I))
1463           if (Function *F = CB->getCalledFunction())
1464             if (MRVFunctionsTracked.count(F))
1465               continue;
1466 
1467         // extractvalue and insertvalue don't need to be marked; they are
1468         // tracked as precisely as their operands.
1469         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1470           continue;
1471         // Send the results of everything else to overdefined.  We could be
1472         // more precise than this but it isn't worth bothering.
1473         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1474           ValueLatticeElement &LV = getStructValueState(&I, i);
1475           if (LV.isUnknownOrUndef()) {
1476             markOverdefined(LV, &I);
1477             MadeChange = true;
1478           }
1479         }
1480         continue;
1481       }
1482 
1483       ValueLatticeElement &LV = getValueState(&I);
1484       if (!LV.isUnknownOrUndef())
1485         continue;
1486 
1487       // There are two reasons a call can have an undef result
1488       // 1. It could be tracked.
1489       // 2. It could be constant-foldable.
1490       // Because of the way we solve return values, tracked calls must
1491       // never be marked overdefined in resolvedUndefsIn.
1492       if (auto *CB = dyn_cast<CallBase>(&I))
1493         if (Function *F = CB->getCalledFunction())
1494           if (TrackedRetVals.count(F))
1495             continue;
1496 
1497       if (isa<LoadInst>(I)) {
1498         // A load here means one of two things: a load of undef from a global,
1499         // a load from an unknown pointer.  Either way, having it return undef
1500         // is okay.
1501         continue;
1502       }
1503 
1504       markOverdefined(&I);
1505       MadeChange = true;
1506     }
1507 
1508     // Check to see if we have a branch or switch on an undefined value.  If so
1509     // we force the branch to go one way or the other to make the successor
1510     // values live.  It doesn't really matter which way we force it.
1511     Instruction *TI = BB.getTerminator();
1512     if (auto *BI = dyn_cast<BranchInst>(TI)) {
1513       if (!BI->isConditional())
1514         continue;
1515       if (!getValueState(BI->getCondition()).isUnknownOrUndef())
1516         continue;
1517 
1518       // If the input to SCCP is actually branch on undef, fix the undef to
1519       // false.
1520       if (isa<UndefValue>(BI->getCondition())) {
1521         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1522         markEdgeExecutable(&BB, TI->getSuccessor(1));
1523         MadeChange = true;
1524         continue;
1525       }
1526 
1527       // Otherwise, it is a branch on a symbolic value which is currently
1528       // considered to be undef.  Make sure some edge is executable, so a
1529       // branch on "undef" always flows somewhere.
1530       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1531       BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
1532       if (markEdgeExecutable(&BB, DefaultSuccessor))
1533         MadeChange = true;
1534 
1535       continue;
1536     }
1537 
1538     if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
1539       // Indirect branch with no successor ?. Its ok to assume it branches
1540       // to no target.
1541       if (IBR->getNumSuccessors() < 1)
1542         continue;
1543 
1544       if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
1545         continue;
1546 
1547       // If the input to SCCP is actually branch on undef, fix the undef to
1548       // the first successor of the indirect branch.
1549       if (isa<UndefValue>(IBR->getAddress())) {
1550         IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
1551         markEdgeExecutable(&BB, IBR->getSuccessor(0));
1552         MadeChange = true;
1553         continue;
1554       }
1555 
1556       // Otherwise, it is a branch on a symbolic value which is currently
1557       // considered to be undef.  Make sure some edge is executable, so a
1558       // branch on "undef" always flows somewhere.
1559       // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
1560       // we can assume the branch has undefined behavior instead.
1561       BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
1562       if (markEdgeExecutable(&BB, DefaultSuccessor))
1563         MadeChange = true;
1564 
1565       continue;
1566     }
1567 
1568     if (auto *SI = dyn_cast<SwitchInst>(TI)) {
1569       if (!SI->getNumCases() ||
1570           !getValueState(SI->getCondition()).isUnknownOrUndef())
1571         continue;
1572 
1573       // If the input to SCCP is actually switch on undef, fix the undef to
1574       // the first constant.
1575       if (isa<UndefValue>(SI->getCondition())) {
1576         SI->setCondition(SI->case_begin()->getCaseValue());
1577         markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
1578         MadeChange = true;
1579         continue;
1580       }
1581 
1582       // Otherwise, it is a branch on a symbolic value which is currently
1583       // considered to be undef.  Make sure some edge is executable, so a
1584       // branch on "undef" always flows somewhere.
1585       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1586       BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
1587       if (markEdgeExecutable(&BB, DefaultSuccessor))
1588         MadeChange = true;
1589 
1590       continue;
1591     }
1592   }
1593 
1594   return MadeChange;
1595 }
1596 
1597 //===----------------------------------------------------------------------===//
1598 //
1599 // SCCPSolver implementations
1600 //
1601 SCCPSolver::SCCPSolver(
1602     const DataLayout &DL,
1603     std::function<const TargetLibraryInfo &(Function &)> GetTLI,
1604     LLVMContext &Ctx)
1605     : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
1606 
1607 SCCPSolver::~SCCPSolver() {}
1608 
1609 void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) {
1610   return Visitor->addAnalysis(F, std::move(A));
1611 }
1612 
1613 bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
1614   return Visitor->markBlockExecutable(BB);
1615 }
1616 
1617 const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
1618   return Visitor->getPredicateInfoFor(I);
1619 }
1620 
1621 DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); }
1622 
1623 void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
1624   Visitor->trackValueOfGlobalVariable(GV);
1625 }
1626 
1627 void SCCPSolver::addTrackedFunction(Function *F) {
1628   Visitor->addTrackedFunction(F);
1629 }
1630 
1631 void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
1632   Visitor->addToMustPreserveReturnsInFunctions(F);
1633 }
1634 
1635 bool SCCPSolver::mustPreserveReturn(Function *F) {
1636   return Visitor->mustPreserveReturn(F);
1637 }
1638 
1639 void SCCPSolver::addArgumentTrackedFunction(Function *F) {
1640   Visitor->addArgumentTrackedFunction(F);
1641 }
1642 
1643 bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
1644   return Visitor->isArgumentTrackedFunction(F);
1645 }
1646 
1647 void SCCPSolver::solve() { Visitor->solve(); }
1648 
1649 bool SCCPSolver::resolvedUndefsIn(Function &F) {
1650   return Visitor->resolvedUndefsIn(F);
1651 }
1652 
1653 bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
1654   return Visitor->isBlockExecutable(BB);
1655 }
1656 
1657 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
1658   return Visitor->isEdgeFeasible(From, To);
1659 }
1660 
1661 std::vector<ValueLatticeElement>
1662 SCCPSolver::getStructLatticeValueFor(Value *V) const {
1663   return Visitor->getStructLatticeValueFor(V);
1664 }
1665 
1666 void SCCPSolver::removeLatticeValueFor(Value *V) {
1667   return Visitor->removeLatticeValueFor(V);
1668 }
1669 
1670 const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
1671   return Visitor->getLatticeValueFor(V);
1672 }
1673 
1674 const MapVector<Function *, ValueLatticeElement> &
1675 SCCPSolver::getTrackedRetVals() {
1676   return Visitor->getTrackedRetVals();
1677 }
1678 
1679 const DenseMap<GlobalVariable *, ValueLatticeElement> &
1680 SCCPSolver::getTrackedGlobals() {
1681   return Visitor->getTrackedGlobals();
1682 }
1683 
1684 const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
1685   return Visitor->getMRVFunctionsTracked();
1686 }
1687 
1688 void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
1689 
1690 bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
1691   return Visitor->isStructLatticeConstant(F, STy);
1692 }
1693 
1694 Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const {
1695   return Visitor->getConstant(LV);
1696 }
1697 
1698 SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() {
1699   return Visitor->getArgumentTrackedFunctions();
1700 }
1701 
1702 void SCCPSolver::markArgInFuncSpecialization(Function *F, Argument *A,
1703                                              Constant *C) {
1704   Visitor->markArgInFuncSpecialization(F, A, C);
1705 }
1706 
1707 void SCCPSolver::markFunctionUnreachable(Function *F) {
1708   Visitor->markFunctionUnreachable(F);
1709 }
1710 
1711 void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
1712 
1713 void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
1714