1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the PredicateInfo class. 10 // 11 //===----------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/PredicateInfo.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/IR/AssemblyAnnotationWriter.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstIterator.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/DebugCounter.h" 37 #include "llvm/Support/FormattedStream.h" 38 #include "llvm/Transforms/Utils.h" 39 #include <algorithm> 40 #define DEBUG_TYPE "predicateinfo" 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 45 "PredicateInfo Printer", false, false) 46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 48 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 49 "PredicateInfo Printer", false, false) 50 static cl::opt<bool> VerifyPredicateInfo( 51 "verify-predicateinfo", cl::init(false), cl::Hidden, 52 cl::desc("Verify PredicateInfo in legacy printer pass.")); 53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 54 "Controls which variables are renamed with predicateinfo"); 55 56 namespace { 57 // Given a predicate info that is a type of branching terminator, get the 58 // branching block. 59 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 60 assert(isa<PredicateWithEdge>(PB) && 61 "Only branches and switches should have PHIOnly defs that " 62 "require branch blocks."); 63 return cast<PredicateWithEdge>(PB)->From; 64 } 65 66 // Given a predicate info that is a type of branching terminator, get the 67 // branching terminator. 68 static Instruction *getBranchTerminator(const PredicateBase *PB) { 69 assert(isa<PredicateWithEdge>(PB) && 70 "Not a predicate info type we know how to get a terminator from."); 71 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 72 } 73 74 // Given a predicate info that is a type of branching terminator, get the 75 // edge this predicate info represents 76 const std::pair<BasicBlock *, BasicBlock *> 77 getBlockEdge(const PredicateBase *PB) { 78 assert(isa<PredicateWithEdge>(PB) && 79 "Not a predicate info type we know how to get an edge from."); 80 const auto *PEdge = cast<PredicateWithEdge>(PB); 81 return std::make_pair(PEdge->From, PEdge->To); 82 } 83 } 84 85 namespace llvm { 86 enum LocalNum { 87 // Operations that must appear first in the block. 88 LN_First, 89 // Operations that are somewhere in the middle of the block, and are sorted on 90 // demand. 91 LN_Middle, 92 // Operations that must appear last in a block, like successor phi node uses. 93 LN_Last 94 }; 95 96 // Associate global and local DFS info with defs and uses, so we can sort them 97 // into a global domination ordering. 98 struct ValueDFS { 99 int DFSIn = 0; 100 int DFSOut = 0; 101 unsigned int LocalNum = LN_Middle; 102 // Only one of Def or Use will be set. 103 Value *Def = nullptr; 104 Use *U = nullptr; 105 // Neither PInfo nor EdgeOnly participate in the ordering 106 PredicateBase *PInfo = nullptr; 107 bool EdgeOnly = false; 108 }; 109 110 // Perform a strict weak ordering on instructions and arguments. 111 static bool valueComesBefore(const Value *A, const Value *B) { 112 auto *ArgA = dyn_cast_or_null<Argument>(A); 113 auto *ArgB = dyn_cast_or_null<Argument>(B); 114 if (ArgA && !ArgB) 115 return true; 116 if (ArgB && !ArgA) 117 return false; 118 if (ArgA && ArgB) 119 return ArgA->getArgNo() < ArgB->getArgNo(); 120 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B)); 121 } 122 123 // This compares ValueDFS structures. Doing so allows us to walk the minimum 124 // number of instructions necessary to compute our def/use ordering. 125 struct ValueDFS_Compare { 126 DominatorTree &DT; 127 ValueDFS_Compare(DominatorTree &DT) : DT(DT) {} 128 129 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 130 if (&A == &B) 131 return false; 132 // The only case we can't directly compare them is when they in the same 133 // block, and both have localnum == middle. In that case, we have to use 134 // comesbefore to see what the real ordering is, because they are in the 135 // same basic block. 136 137 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) && 138 "Equal DFS-in numbers imply equal out numbers"); 139 bool SameBlock = A.DFSIn == B.DFSIn; 140 141 // We want to put the def that will get used for a given set of phi uses, 142 // before those phi uses. 143 // So we sort by edge, then by def. 144 // Note that only phi nodes uses and defs can come last. 145 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 146 return comparePHIRelated(A, B); 147 148 bool isADef = A.Def; 149 bool isBDef = B.Def; 150 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 151 return std::tie(A.DFSIn, A.LocalNum, isADef) < 152 std::tie(B.DFSIn, B.LocalNum, isBDef); 153 return localComesBefore(A, B); 154 } 155 156 // For a phi use, or a non-materialized def, return the edge it represents. 157 const std::pair<BasicBlock *, BasicBlock *> 158 getBlockEdge(const ValueDFS &VD) const { 159 if (!VD.Def && VD.U) { 160 auto *PHI = cast<PHINode>(VD.U->getUser()); 161 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 162 } 163 // This is really a non-materialized def. 164 return ::getBlockEdge(VD.PInfo); 165 } 166 167 // For two phi related values, return the ordering. 168 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 169 BasicBlock *ASrc, *ADest, *BSrc, *BDest; 170 std::tie(ASrc, ADest) = getBlockEdge(A); 171 std::tie(BSrc, BDest) = getBlockEdge(B); 172 173 #ifndef NDEBUG 174 // This function should only be used for values in the same BB, check that. 175 DomTreeNode *DomASrc = DT.getNode(ASrc); 176 DomTreeNode *DomBSrc = DT.getNode(BSrc); 177 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn && 178 "DFS numbers for A should match the ones of the source block"); 179 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn && 180 "DFS numbers for B should match the ones of the source block"); 181 assert(A.DFSIn == B.DFSIn && "Values must be in the same block"); 182 #endif 183 (void)ASrc; 184 (void)BSrc; 185 186 // Use DFS numbers to compare destination blocks, to guarantee a 187 // deterministic order. 188 DomTreeNode *DomADest = DT.getNode(ADest); 189 DomTreeNode *DomBDest = DT.getNode(BDest); 190 unsigned AIn = DomADest->getDFSNumIn(); 191 unsigned BIn = DomBDest->getDFSNumIn(); 192 bool isADef = A.Def; 193 bool isBDef = B.Def; 194 assert((!A.Def || !A.U) && (!B.Def || !B.U) && 195 "Def and U cannot be set at the same time"); 196 // Now sort by edge destination and then defs before uses. 197 return std::tie(AIn, isADef) < std::tie(BIn, isBDef); 198 } 199 200 // Get the definition of an instruction that occurs in the middle of a block. 201 Value *getMiddleDef(const ValueDFS &VD) const { 202 if (VD.Def) 203 return VD.Def; 204 // It's possible for the defs and uses to be null. For branches, the local 205 // numbering will say the placed predicaeinfos should go first (IE 206 // LN_beginning), so we won't be in this function. For assumes, we will end 207 // up here, beause we need to order the def we will place relative to the 208 // assume. So for the purpose of ordering, we pretend the def is right 209 // after the assume, because that is where we will insert the info. 210 if (!VD.U) { 211 assert(VD.PInfo && 212 "No def, no use, and no predicateinfo should not occur"); 213 assert(isa<PredicateAssume>(VD.PInfo) && 214 "Middle of block should only occur for assumes"); 215 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode(); 216 } 217 return nullptr; 218 } 219 220 // Return either the Def, if it's not null, or the user of the Use, if the def 221 // is null. 222 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 223 if (Def) 224 return cast<Instruction>(Def); 225 return cast<Instruction>(U->getUser()); 226 } 227 228 // This performs the necessary local basic block ordering checks to tell 229 // whether A comes before B, where both are in the same basic block. 230 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 231 auto *ADef = getMiddleDef(A); 232 auto *BDef = getMiddleDef(B); 233 234 // See if we have real values or uses. If we have real values, we are 235 // guaranteed they are instructions or arguments. No matter what, we are 236 // guaranteed they are in the same block if they are instructions. 237 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 238 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 239 240 if (ArgA || ArgB) 241 return valueComesBefore(ArgA, ArgB); 242 243 auto *AInst = getDefOrUser(ADef, A.U); 244 auto *BInst = getDefOrUser(BDef, B.U); 245 return valueComesBefore(AInst, BInst); 246 } 247 }; 248 249 class PredicateInfoBuilder { 250 // Used to store information about each value we might rename. 251 struct ValueInfo { 252 SmallVector<PredicateBase *, 4> Infos; 253 }; 254 255 PredicateInfo &PI; 256 Function &F; 257 DominatorTree &DT; 258 AssumptionCache &AC; 259 260 // This stores info about each operand or comparison result we make copies 261 // of. The real ValueInfos start at index 1, index 0 is unused so that we 262 // can more easily detect invalid indexing. 263 SmallVector<ValueInfo, 32> ValueInfos; 264 265 // This gives the index into the ValueInfos array for a given Value. Because 266 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell 267 // whether it returned a valid result. 268 DenseMap<Value *, unsigned int> ValueInfoNums; 269 270 // The set of edges along which we can only handle phi uses, due to critical 271 // edges. 272 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly; 273 274 ValueInfo &getOrCreateValueInfo(Value *); 275 const ValueInfo &getValueInfo(Value *) const; 276 277 void processAssume(IntrinsicInst *, BasicBlock *, 278 SmallVectorImpl<Value *> &OpsToRename); 279 void processBranch(BranchInst *, BasicBlock *, 280 SmallVectorImpl<Value *> &OpsToRename); 281 void processSwitch(SwitchInst *, BasicBlock *, 282 SmallVectorImpl<Value *> &OpsToRename); 283 void renameUses(SmallVectorImpl<Value *> &OpsToRename); 284 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, 285 PredicateBase *PB); 286 287 typedef SmallVectorImpl<ValueDFS> ValueDFSStack; 288 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &); 289 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *); 290 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const; 291 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &); 292 293 public: 294 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT, 295 AssumptionCache &AC) 296 : PI(PI), F(F), DT(DT), AC(AC) { 297 // Push an empty operand info so that we can detect 0 as not finding one 298 ValueInfos.resize(1); 299 } 300 301 void buildPredicateInfo(); 302 }; 303 304 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack, 305 const ValueDFS &VDUse) const { 306 if (Stack.empty()) 307 return false; 308 // If it's a phi only use, make sure it's for this phi node edge, and that the 309 // use is in a phi node. If it's anything else, and the top of the stack is 310 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 311 // the defs they must go with so that we can know it's time to pop the stack 312 // when we hit the end of the phi uses for a given def. 313 if (Stack.back().EdgeOnly) { 314 if (!VDUse.U) 315 return false; 316 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 317 if (!PHI) 318 return false; 319 // Check edge 320 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 321 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 322 return false; 323 324 // Use dominates, which knows how to handle edge dominance. 325 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 326 } 327 328 return (VDUse.DFSIn >= Stack.back().DFSIn && 329 VDUse.DFSOut <= Stack.back().DFSOut); 330 } 331 332 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack, 333 const ValueDFS &VD) { 334 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 335 Stack.pop_back(); 336 } 337 338 // Convert the uses of Op into a vector of uses, associating global and local 339 // DFS info with each one. 340 void PredicateInfoBuilder::convertUsesToDFSOrdered( 341 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 342 for (auto &U : Op->uses()) { 343 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 344 ValueDFS VD; 345 // Put the phi node uses in the incoming block. 346 BasicBlock *IBlock; 347 if (auto *PN = dyn_cast<PHINode>(I)) { 348 IBlock = PN->getIncomingBlock(U); 349 // Make phi node users appear last in the incoming block 350 // they are from. 351 VD.LocalNum = LN_Last; 352 } else { 353 // If it's not a phi node use, it is somewhere in the middle of the 354 // block. 355 IBlock = I->getParent(); 356 VD.LocalNum = LN_Middle; 357 } 358 DomTreeNode *DomNode = DT.getNode(IBlock); 359 // It's possible our use is in an unreachable block. Skip it if so. 360 if (!DomNode) 361 continue; 362 VD.DFSIn = DomNode->getDFSNumIn(); 363 VD.DFSOut = DomNode->getDFSNumOut(); 364 VD.U = &U; 365 DFSOrderedSet.push_back(VD); 366 } 367 } 368 } 369 370 // Collect relevant operations from Comparison that we may want to insert copies 371 // for. 372 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 373 auto *Op0 = Comparison->getOperand(0); 374 auto *Op1 = Comparison->getOperand(1); 375 if (Op0 == Op1) 376 return; 377 CmpOperands.push_back(Comparison); 378 // Only want real values, not constants. Additionally, operands with one use 379 // are only being used in the comparison, which means they will not be useful 380 // for us to consider for predicateinfo. 381 // 382 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 383 CmpOperands.push_back(Op0); 384 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 385 CmpOperands.push_back(Op1); 386 } 387 388 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 389 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, 390 Value *Op, PredicateBase *PB) { 391 auto &OperandInfo = getOrCreateValueInfo(Op); 392 if (OperandInfo.Infos.empty()) 393 OpsToRename.push_back(Op); 394 PI.AllInfos.push_back(PB); 395 OperandInfo.Infos.push_back(PB); 396 } 397 398 // Process an assume instruction and place relevant operations we want to rename 399 // into OpsToRename. 400 void PredicateInfoBuilder::processAssume( 401 IntrinsicInst *II, BasicBlock *AssumeBB, 402 SmallVectorImpl<Value *> &OpsToRename) { 403 // See if we have a comparison we support 404 SmallVector<Value *, 8> CmpOperands; 405 SmallVector<Value *, 2> ConditionsToProcess; 406 CmpInst::Predicate Pred; 407 Value *Operand = II->getOperand(0); 408 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 409 m_Cmp(Pred, m_Value(), m_Value())) 410 .match(II->getOperand(0))) { 411 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 412 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 413 ConditionsToProcess.push_back(Operand); 414 } else if (isa<CmpInst>(Operand)) { 415 416 ConditionsToProcess.push_back(Operand); 417 } 418 for (auto Cond : ConditionsToProcess) { 419 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 420 collectCmpOps(Cmp, CmpOperands); 421 // Now add our copy infos for our operands 422 for (auto *Op : CmpOperands) { 423 auto *PA = new PredicateAssume(Op, II, Cmp); 424 addInfoFor(OpsToRename, Op, PA); 425 } 426 CmpOperands.clear(); 427 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 428 // Otherwise, it should be an AND. 429 assert(BinOp->getOpcode() == Instruction::And && 430 "Should have been an AND"); 431 auto *PA = new PredicateAssume(BinOp, II, BinOp); 432 addInfoFor(OpsToRename, BinOp, PA); 433 } else { 434 llvm_unreachable("Unknown type of condition"); 435 } 436 } 437 } 438 439 // Process a block terminating branch, and place relevant operations to be 440 // renamed into OpsToRename. 441 void PredicateInfoBuilder::processBranch( 442 BranchInst *BI, BasicBlock *BranchBB, 443 SmallVectorImpl<Value *> &OpsToRename) { 444 BasicBlock *FirstBB = BI->getSuccessor(0); 445 BasicBlock *SecondBB = BI->getSuccessor(1); 446 SmallVector<BasicBlock *, 2> SuccsToProcess; 447 SuccsToProcess.push_back(FirstBB); 448 SuccsToProcess.push_back(SecondBB); 449 SmallVector<Value *, 2> ConditionsToProcess; 450 451 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 452 for (auto *Succ : SuccsToProcess) { 453 // Don't try to insert on a self-edge. This is mainly because we will 454 // eliminate during renaming anyway. 455 if (Succ == BranchBB) 456 continue; 457 bool TakenEdge = (Succ == FirstBB); 458 // For and, only insert on the true edge 459 // For or, only insert on the false edge 460 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 461 continue; 462 PredicateBase *PB = 463 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 464 addInfoFor(OpsToRename, Op, PB); 465 if (!Succ->getSinglePredecessor()) 466 EdgeUsesOnly.insert({BranchBB, Succ}); 467 } 468 }; 469 470 // Match combinations of conditions. 471 CmpInst::Predicate Pred; 472 bool isAnd = false; 473 bool isOr = false; 474 SmallVector<Value *, 8> CmpOperands; 475 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 476 m_Cmp(Pred, m_Value(), m_Value()))) || 477 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 478 m_Cmp(Pred, m_Value(), m_Value())))) { 479 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 480 if (BinOp->getOpcode() == Instruction::And) 481 isAnd = true; 482 else if (BinOp->getOpcode() == Instruction::Or) 483 isOr = true; 484 ConditionsToProcess.push_back(BinOp->getOperand(0)); 485 ConditionsToProcess.push_back(BinOp->getOperand(1)); 486 ConditionsToProcess.push_back(BI->getCondition()); 487 } else if (isa<CmpInst>(BI->getCondition())) { 488 ConditionsToProcess.push_back(BI->getCondition()); 489 } 490 for (auto Cond : ConditionsToProcess) { 491 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 492 collectCmpOps(Cmp, CmpOperands); 493 // Now add our copy infos for our operands 494 for (auto *Op : CmpOperands) 495 InsertHelper(Op, isAnd, isOr, Cmp); 496 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 497 // This must be an AND or an OR. 498 assert((BinOp->getOpcode() == Instruction::And || 499 BinOp->getOpcode() == Instruction::Or) && 500 "Should have been an AND or an OR"); 501 // The actual value of the binop is not subject to the same restrictions 502 // as the comparison. It's either true or false on the true/false branch. 503 InsertHelper(BinOp, false, false, BinOp); 504 } else { 505 llvm_unreachable("Unknown type of condition"); 506 } 507 CmpOperands.clear(); 508 } 509 } 510 // Process a block terminating switch, and place relevant operations to be 511 // renamed into OpsToRename. 512 void PredicateInfoBuilder::processSwitch( 513 SwitchInst *SI, BasicBlock *BranchBB, 514 SmallVectorImpl<Value *> &OpsToRename) { 515 Value *Op = SI->getCondition(); 516 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 517 return; 518 519 // Remember how many outgoing edges there are to every successor. 520 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 521 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 522 BasicBlock *TargetBlock = SI->getSuccessor(i); 523 ++SwitchEdges[TargetBlock]; 524 } 525 526 // Now propagate info for each case value 527 for (auto C : SI->cases()) { 528 BasicBlock *TargetBlock = C.getCaseSuccessor(); 529 if (SwitchEdges.lookup(TargetBlock) == 1) { 530 PredicateSwitch *PS = new PredicateSwitch( 531 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 532 addInfoFor(OpsToRename, Op, PS); 533 if (!TargetBlock->getSinglePredecessor()) 534 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 535 } 536 } 537 } 538 539 // Build predicate info for our function 540 void PredicateInfoBuilder::buildPredicateInfo() { 541 DT.updateDFSNumbers(); 542 // Collect operands to rename from all conditional branch terminators, as well 543 // as assume statements. 544 SmallVector<Value *, 8> OpsToRename; 545 for (auto DTN : depth_first(DT.getRootNode())) { 546 BasicBlock *BranchBB = DTN->getBlock(); 547 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 548 if (!BI->isConditional()) 549 continue; 550 // Can't insert conditional information if they all go to the same place. 551 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 552 continue; 553 processBranch(BI, BranchBB, OpsToRename); 554 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 555 processSwitch(SI, BranchBB, OpsToRename); 556 } 557 } 558 for (auto &Assume : AC.assumptions()) { 559 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 560 if (DT.isReachableFromEntry(II->getParent())) 561 processAssume(II, II->getParent(), OpsToRename); 562 } 563 // Now rename all our operations. 564 renameUses(OpsToRename); 565 } 566 567 // Create a ssa_copy declaration with custom mangling, because 568 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly: 569 // all unnamed types get mangled to the same string. We use the pointer 570 // to the type as name here, as it guarantees unique names for different 571 // types and we remove the declarations when destroying PredicateInfo. 572 // It is a workaround for PR38117, because solving it in a fully general way is 573 // tricky (FIXME). 574 static Function *getCopyDeclaration(Module *M, Type *Ty) { 575 std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty); 576 return cast<Function>( 577 M->getOrInsertFunction(Name, 578 getType(M->getContext(), Intrinsic::ssa_copy, Ty)) 579 .getCallee()); 580 } 581 582 // Given the renaming stack, make all the operands currently on the stack real 583 // by inserting them into the IR. Return the last operation's value. 584 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter, 585 ValueDFSStack &RenameStack, 586 Value *OrigOp) { 587 // Find the first thing we have to materialize 588 auto RevIter = RenameStack.rbegin(); 589 for (; RevIter != RenameStack.rend(); ++RevIter) 590 if (RevIter->Def) 591 break; 592 593 size_t Start = RevIter - RenameStack.rbegin(); 594 // The maximum number of things we should be trying to materialize at once 595 // right now is 4, depending on if we had an assume, a branch, and both used 596 // and of conditions. 597 for (auto RenameIter = RenameStack.end() - Start; 598 RenameIter != RenameStack.end(); ++RenameIter) { 599 auto *Op = 600 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 601 ValueDFS &Result = *RenameIter; 602 auto *ValInfo = Result.PInfo; 603 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin() 604 ? OrigOp 605 : (RenameStack.end() - Start - 1)->Def; 606 // For edge predicates, we can just place the operand in the block before 607 // the terminator. For assume, we have to place it right before the assume 608 // to ensure we dominate all of our uses. Always insert right before the 609 // relevant instruction (terminator, assume), so that we insert in proper 610 // order in the case of multiple predicateinfo in the same block. 611 if (isa<PredicateWithEdge>(ValInfo)) { 612 IRBuilder<> B(getBranchTerminator(ValInfo)); 613 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 614 if (IF->users().empty()) 615 PI.CreatedDeclarations.insert(IF); 616 CallInst *PIC = 617 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 618 PI.PredicateMap.insert({PIC, ValInfo}); 619 Result.Def = PIC; 620 } else { 621 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 622 assert(PAssume && 623 "Should not have gotten here without it being an assume"); 624 // Insert the predicate directly after the assume. While it also holds 625 // directly before it, assume(i1 true) is not a useful fact. 626 IRBuilder<> B(PAssume->AssumeInst->getNextNode()); 627 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 628 if (IF->users().empty()) 629 PI.CreatedDeclarations.insert(IF); 630 CallInst *PIC = B.CreateCall(IF, Op); 631 PI.PredicateMap.insert({PIC, ValInfo}); 632 Result.Def = PIC; 633 } 634 } 635 return RenameStack.back().Def; 636 } 637 638 // Instead of the standard SSA renaming algorithm, which is O(Number of 639 // instructions), and walks the entire dominator tree, we walk only the defs + 640 // uses. The standard SSA renaming algorithm does not really rely on the 641 // dominator tree except to order the stack push/pops of the renaming stacks, so 642 // that defs end up getting pushed before hitting the correct uses. This does 643 // not require the dominator tree, only the *order* of the dominator tree. The 644 // complete and correct ordering of the defs and uses, in dominator tree is 645 // contained in the DFS numbering of the dominator tree. So we sort the defs and 646 // uses into the DFS ordering, and then just use the renaming stack as per 647 // normal, pushing when we hit a def (which is a predicateinfo instruction), 648 // popping when we are out of the dfs scope for that def, and replacing any uses 649 // with top of stack if it exists. In order to handle liveness without 650 // propagating liveness info, we don't actually insert the predicateinfo 651 // instruction def until we see a use that it would dominate. Once we see such 652 // a use, we materialize the predicateinfo instruction in the right place and 653 // use it. 654 // 655 // TODO: Use this algorithm to perform fast single-variable renaming in 656 // promotememtoreg and memoryssa. 657 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) { 658 ValueDFS_Compare Compare(DT); 659 // Compute liveness, and rename in O(uses) per Op. 660 for (auto *Op : OpsToRename) { 661 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 662 unsigned Counter = 0; 663 SmallVector<ValueDFS, 16> OrderedUses; 664 const auto &ValueInfo = getValueInfo(Op); 665 // Insert the possible copies into the def/use list. 666 // They will become real copies if we find a real use for them, and never 667 // created otherwise. 668 for (auto &PossibleCopy : ValueInfo.Infos) { 669 ValueDFS VD; 670 // Determine where we are going to place the copy by the copy type. 671 // The predicate info for branches always come first, they will get 672 // materialized in the split block at the top of the block. 673 // The predicate info for assumes will be somewhere in the middle, 674 // it will get materialized in front of the assume. 675 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 676 VD.LocalNum = LN_Middle; 677 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 678 if (!DomNode) 679 continue; 680 VD.DFSIn = DomNode->getDFSNumIn(); 681 VD.DFSOut = DomNode->getDFSNumOut(); 682 VD.PInfo = PossibleCopy; 683 OrderedUses.push_back(VD); 684 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 685 // If we can only do phi uses, we treat it like it's in the branch 686 // block, and handle it specially. We know that it goes last, and only 687 // dominate phi uses. 688 auto BlockEdge = getBlockEdge(PossibleCopy); 689 if (EdgeUsesOnly.count(BlockEdge)) { 690 VD.LocalNum = LN_Last; 691 auto *DomNode = DT.getNode(BlockEdge.first); 692 if (DomNode) { 693 VD.DFSIn = DomNode->getDFSNumIn(); 694 VD.DFSOut = DomNode->getDFSNumOut(); 695 VD.PInfo = PossibleCopy; 696 VD.EdgeOnly = true; 697 OrderedUses.push_back(VD); 698 } 699 } else { 700 // Otherwise, we are in the split block (even though we perform 701 // insertion in the branch block). 702 // Insert a possible copy at the split block and before the branch. 703 VD.LocalNum = LN_First; 704 auto *DomNode = DT.getNode(BlockEdge.second); 705 if (DomNode) { 706 VD.DFSIn = DomNode->getDFSNumIn(); 707 VD.DFSOut = DomNode->getDFSNumOut(); 708 VD.PInfo = PossibleCopy; 709 OrderedUses.push_back(VD); 710 } 711 } 712 } 713 } 714 715 convertUsesToDFSOrdered(Op, OrderedUses); 716 // Here we require a stable sort because we do not bother to try to 717 // assign an order to the operands the uses represent. Thus, two 718 // uses in the same instruction do not have a strict sort order 719 // currently and will be considered equal. We could get rid of the 720 // stable sort by creating one if we wanted. 721 llvm::stable_sort(OrderedUses, Compare); 722 SmallVector<ValueDFS, 8> RenameStack; 723 // For each use, sorted into dfs order, push values and replaces uses with 724 // top of stack, which will represent the reaching def. 725 for (auto &VD : OrderedUses) { 726 // We currently do not materialize copy over copy, but we should decide if 727 // we want to. 728 bool PossibleCopy = VD.PInfo != nullptr; 729 if (RenameStack.empty()) { 730 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 731 } else { 732 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 733 << RenameStack.back().DFSIn << "," 734 << RenameStack.back().DFSOut << ")\n"); 735 } 736 737 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 738 << VD.DFSOut << ")\n"); 739 740 bool ShouldPush = (VD.Def || PossibleCopy); 741 bool OutOfScope = !stackIsInScope(RenameStack, VD); 742 if (OutOfScope || ShouldPush) { 743 // Sync to our current scope. 744 popStackUntilDFSScope(RenameStack, VD); 745 if (ShouldPush) { 746 RenameStack.push_back(VD); 747 } 748 } 749 // If we get to this point, and the stack is empty we must have a use 750 // with no renaming needed, just skip it. 751 if (RenameStack.empty()) 752 continue; 753 // Skip values, only want to rename the uses 754 if (VD.Def || PossibleCopy) 755 continue; 756 if (!DebugCounter::shouldExecute(RenameCounter)) { 757 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 758 continue; 759 } 760 ValueDFS &Result = RenameStack.back(); 761 762 // If the possible copy dominates something, materialize our stack up to 763 // this point. This ensures every comparison that affects our operation 764 // ends up with predicateinfo. 765 if (!Result.Def) 766 Result.Def = materializeStack(Counter, RenameStack, Op); 767 768 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 769 << *VD.U->get() << " in " << *(VD.U->getUser()) 770 << "\n"); 771 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 772 "Predicateinfo def should have dominated this use"); 773 VD.U->set(Result.Def); 774 } 775 } 776 } 777 778 PredicateInfoBuilder::ValueInfo & 779 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) { 780 auto OIN = ValueInfoNums.find(Operand); 781 if (OIN == ValueInfoNums.end()) { 782 // This will grow it 783 ValueInfos.resize(ValueInfos.size() + 1); 784 // This will use the new size and give us a 0 based number of the info 785 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 786 assert(InsertResult.second && "Value info number already existed?"); 787 return ValueInfos[InsertResult.first->second]; 788 } 789 return ValueInfos[OIN->second]; 790 } 791 792 const PredicateInfoBuilder::ValueInfo & 793 PredicateInfoBuilder::getValueInfo(Value *Operand) const { 794 auto OINI = ValueInfoNums.lookup(Operand); 795 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 796 assert(OINI < ValueInfos.size() && 797 "Value Info Number greater than size of Value Info Table"); 798 return ValueInfos[OINI]; 799 } 800 801 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 802 AssumptionCache &AC) 803 : F(F) { 804 PredicateInfoBuilder Builder(*this, F, DT, AC); 805 Builder.buildPredicateInfo(); 806 } 807 808 // Remove all declarations we created . The PredicateInfo consumers are 809 // responsible for remove the ssa_copy calls created. 810 PredicateInfo::~PredicateInfo() { 811 // Collect function pointers in set first, as SmallSet uses a SmallVector 812 // internally and we have to remove the asserting value handles first. 813 SmallPtrSet<Function *, 20> FunctionPtrs; 814 for (auto &F : CreatedDeclarations) 815 FunctionPtrs.insert(&*F); 816 CreatedDeclarations.clear(); 817 818 for (Function *F : FunctionPtrs) { 819 assert(F->user_begin() == F->user_end() && 820 "PredicateInfo consumer did not remove all SSA copies."); 821 F->eraseFromParent(); 822 } 823 } 824 825 void PredicateInfo::verifyPredicateInfo() const {} 826 827 char PredicateInfoPrinterLegacyPass::ID = 0; 828 829 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 830 : FunctionPass(ID) { 831 initializePredicateInfoPrinterLegacyPassPass( 832 *PassRegistry::getPassRegistry()); 833 } 834 835 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 836 AU.setPreservesAll(); 837 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 838 AU.addRequired<AssumptionCacheTracker>(); 839 } 840 841 // Replace ssa_copy calls created by PredicateInfo with their operand. 842 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 843 for (auto I = inst_begin(F), E = inst_end(F); I != E;) { 844 Instruction *Inst = &*I++; 845 const auto *PI = PredInfo.getPredicateInfoFor(Inst); 846 auto *II = dyn_cast<IntrinsicInst>(Inst); 847 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 848 continue; 849 850 Inst->replaceAllUsesWith(II->getOperand(0)); 851 Inst->eraseFromParent(); 852 } 853 } 854 855 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 856 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 857 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 858 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 859 PredInfo->print(dbgs()); 860 if (VerifyPredicateInfo) 861 PredInfo->verifyPredicateInfo(); 862 863 replaceCreatedSSACopys(*PredInfo, F); 864 return false; 865 } 866 867 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 868 FunctionAnalysisManager &AM) { 869 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 870 auto &AC = AM.getResult<AssumptionAnalysis>(F); 871 OS << "PredicateInfo for function: " << F.getName() << "\n"; 872 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 873 PredInfo->print(OS); 874 875 replaceCreatedSSACopys(*PredInfo, F); 876 return PreservedAnalyses::all(); 877 } 878 879 /// An assembly annotator class to print PredicateInfo information in 880 /// comments. 881 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 882 friend class PredicateInfo; 883 const PredicateInfo *PredInfo; 884 885 public: 886 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 887 888 void emitBasicBlockStartAnnot(const BasicBlock *BB, 889 formatted_raw_ostream &OS) override {} 890 891 void emitInstructionAnnot(const Instruction *I, 892 formatted_raw_ostream &OS) override { 893 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 894 OS << "; Has predicate info\n"; 895 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 896 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 897 << " Comparison:" << *PB->Condition << " Edge: ["; 898 PB->From->printAsOperand(OS); 899 OS << ","; 900 PB->To->printAsOperand(OS); 901 OS << "]"; 902 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 903 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 904 << " Switch:" << *PS->Switch << " Edge: ["; 905 PS->From->printAsOperand(OS); 906 OS << ","; 907 PS->To->printAsOperand(OS); 908 OS << "]"; 909 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 910 OS << "; assume predicate info {" 911 << " Comparison:" << *PA->Condition; 912 } 913 OS << ", RenamedOp: "; 914 PI->RenamedOp->printAsOperand(OS, false); 915 OS << " }\n"; 916 } 917 } 918 }; 919 920 void PredicateInfo::print(raw_ostream &OS) const { 921 PredicateInfoAnnotatedWriter Writer(this); 922 F.print(OS, &Writer); 923 } 924 925 void PredicateInfo::dump() const { 926 PredicateInfoAnnotatedWriter Writer(this); 927 F.print(dbgs(), &Writer); 928 } 929 930 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 931 FunctionAnalysisManager &AM) { 932 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 933 auto &AC = AM.getResult<AssumptionAnalysis>(F); 934 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 935 936 return PreservedAnalyses::all(); 937 } 938 } 939