1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the PredicateInfo class. 10 // 11 //===----------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/PredicateInfo.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/IR/AssemblyAnnotationWriter.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstIterator.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/DebugCounter.h" 36 #include "llvm/Support/FormattedStream.h" 37 #include "llvm/Transforms/Utils.h" 38 #include <algorithm> 39 #define DEBUG_TYPE "predicateinfo" 40 using namespace llvm; 41 using namespace PatternMatch; 42 using namespace llvm::PredicateInfoClasses; 43 44 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 45 "PredicateInfo Printer", false, false) 46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 48 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 49 "PredicateInfo Printer", false, false) 50 static cl::opt<bool> VerifyPredicateInfo( 51 "verify-predicateinfo", cl::init(false), cl::Hidden, 52 cl::desc("Verify PredicateInfo in legacy printer pass.")); 53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 54 "Controls which variables are renamed with predicateinfo"); 55 56 namespace { 57 // Given a predicate info that is a type of branching terminator, get the 58 // branching block. 59 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 60 assert(isa<PredicateWithEdge>(PB) && 61 "Only branches and switches should have PHIOnly defs that " 62 "require branch blocks."); 63 return cast<PredicateWithEdge>(PB)->From; 64 } 65 66 // Given a predicate info that is a type of branching terminator, get the 67 // branching terminator. 68 static Instruction *getBranchTerminator(const PredicateBase *PB) { 69 assert(isa<PredicateWithEdge>(PB) && 70 "Not a predicate info type we know how to get a terminator from."); 71 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 72 } 73 74 // Given a predicate info that is a type of branching terminator, get the 75 // edge this predicate info represents 76 const std::pair<BasicBlock *, BasicBlock *> 77 getBlockEdge(const PredicateBase *PB) { 78 assert(isa<PredicateWithEdge>(PB) && 79 "Not a predicate info type we know how to get an edge from."); 80 const auto *PEdge = cast<PredicateWithEdge>(PB); 81 return std::make_pair(PEdge->From, PEdge->To); 82 } 83 } 84 85 namespace llvm { 86 namespace PredicateInfoClasses { 87 enum LocalNum { 88 // Operations that must appear first in the block. 89 LN_First, 90 // Operations that are somewhere in the middle of the block, and are sorted on 91 // demand. 92 LN_Middle, 93 // Operations that must appear last in a block, like successor phi node uses. 94 LN_Last 95 }; 96 97 // Associate global and local DFS info with defs and uses, so we can sort them 98 // into a global domination ordering. 99 struct ValueDFS { 100 int DFSIn = 0; 101 int DFSOut = 0; 102 unsigned int LocalNum = LN_Middle; 103 // Only one of Def or Use will be set. 104 Value *Def = nullptr; 105 Use *U = nullptr; 106 // Neither PInfo nor EdgeOnly participate in the ordering 107 PredicateBase *PInfo = nullptr; 108 bool EdgeOnly = false; 109 }; 110 111 // Perform a strict weak ordering on instructions and arguments. 112 static bool valueComesBefore(OrderedInstructions &OI, const Value *A, 113 const Value *B) { 114 auto *ArgA = dyn_cast_or_null<Argument>(A); 115 auto *ArgB = dyn_cast_or_null<Argument>(B); 116 if (ArgA && !ArgB) 117 return true; 118 if (ArgB && !ArgA) 119 return false; 120 if (ArgA && ArgB) 121 return ArgA->getArgNo() < ArgB->getArgNo(); 122 return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B)); 123 } 124 125 // This compares ValueDFS structures, creating OrderedBasicBlocks where 126 // necessary to compare uses/defs in the same block. Doing so allows us to walk 127 // the minimum number of instructions necessary to compute our def/use ordering. 128 struct ValueDFS_Compare { 129 DominatorTree &DT; 130 OrderedInstructions &OI; 131 ValueDFS_Compare(DominatorTree &DT, OrderedInstructions &OI) 132 : DT(DT), OI(OI) {} 133 134 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 135 if (&A == &B) 136 return false; 137 // The only case we can't directly compare them is when they in the same 138 // block, and both have localnum == middle. In that case, we have to use 139 // comesbefore to see what the real ordering is, because they are in the 140 // same basic block. 141 142 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) && 143 "Equal DFS-in numbers imply equal out numbers"); 144 bool SameBlock = A.DFSIn == B.DFSIn; 145 146 // We want to put the def that will get used for a given set of phi uses, 147 // before those phi uses. 148 // So we sort by edge, then by def. 149 // Note that only phi nodes uses and defs can come last. 150 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 151 return comparePHIRelated(A, B); 152 153 bool isADef = A.Def; 154 bool isBDef = B.Def; 155 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 156 return std::tie(A.DFSIn, A.LocalNum, isADef) < 157 std::tie(B.DFSIn, B.LocalNum, isBDef); 158 return localComesBefore(A, B); 159 } 160 161 // For a phi use, or a non-materialized def, return the edge it represents. 162 const std::pair<BasicBlock *, BasicBlock *> 163 getBlockEdge(const ValueDFS &VD) const { 164 if (!VD.Def && VD.U) { 165 auto *PHI = cast<PHINode>(VD.U->getUser()); 166 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 167 } 168 // This is really a non-materialized def. 169 return ::getBlockEdge(VD.PInfo); 170 } 171 172 // For two phi related values, return the ordering. 173 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 174 BasicBlock *ASrc, *ADest, *BSrc, *BDest; 175 std::tie(ASrc, ADest) = getBlockEdge(A); 176 std::tie(BSrc, BDest) = getBlockEdge(B); 177 178 #ifndef NDEBUG 179 // This function should only be used for values in the same BB, check that. 180 DomTreeNode *DomASrc = DT.getNode(ASrc); 181 DomTreeNode *DomBSrc = DT.getNode(BSrc); 182 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn && 183 "DFS numbers for A should match the ones of the source block"); 184 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn && 185 "DFS numbers for B should match the ones of the source block"); 186 assert(A.DFSIn == B.DFSIn && "Values must be in the same block"); 187 #endif 188 (void)ASrc; 189 (void)BSrc; 190 191 // Use DFS numbers to compare destination blocks, to guarantee a 192 // deterministic order. 193 DomTreeNode *DomADest = DT.getNode(ADest); 194 DomTreeNode *DomBDest = DT.getNode(BDest); 195 unsigned AIn = DomADest->getDFSNumIn(); 196 unsigned BIn = DomBDest->getDFSNumIn(); 197 bool isADef = A.Def; 198 bool isBDef = B.Def; 199 assert((!A.Def || !A.U) && (!B.Def || !B.U) && 200 "Def and U cannot be set at the same time"); 201 // Now sort by edge destination and then defs before uses. 202 return std::tie(AIn, isADef) < std::tie(BIn, isBDef); 203 } 204 205 // Get the definition of an instruction that occurs in the middle of a block. 206 Value *getMiddleDef(const ValueDFS &VD) const { 207 if (VD.Def) 208 return VD.Def; 209 // It's possible for the defs and uses to be null. For branches, the local 210 // numbering will say the placed predicaeinfos should go first (IE 211 // LN_beginning), so we won't be in this function. For assumes, we will end 212 // up here, beause we need to order the def we will place relative to the 213 // assume. So for the purpose of ordering, we pretend the def is the assume 214 // because that is where we will insert the info. 215 if (!VD.U) { 216 assert(VD.PInfo && 217 "No def, no use, and no predicateinfo should not occur"); 218 assert(isa<PredicateAssume>(VD.PInfo) && 219 "Middle of block should only occur for assumes"); 220 return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 221 } 222 return nullptr; 223 } 224 225 // Return either the Def, if it's not null, or the user of the Use, if the def 226 // is null. 227 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 228 if (Def) 229 return cast<Instruction>(Def); 230 return cast<Instruction>(U->getUser()); 231 } 232 233 // This performs the necessary local basic block ordering checks to tell 234 // whether A comes before B, where both are in the same basic block. 235 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 236 auto *ADef = getMiddleDef(A); 237 auto *BDef = getMiddleDef(B); 238 239 // See if we have real values or uses. If we have real values, we are 240 // guaranteed they are instructions or arguments. No matter what, we are 241 // guaranteed they are in the same block if they are instructions. 242 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 243 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 244 245 if (ArgA || ArgB) 246 return valueComesBefore(OI, ArgA, ArgB); 247 248 auto *AInst = getDefOrUser(ADef, A.U); 249 auto *BInst = getDefOrUser(BDef, B.U); 250 return valueComesBefore(OI, AInst, BInst); 251 } 252 }; 253 254 } // namespace PredicateInfoClasses 255 256 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, 257 const ValueDFS &VDUse) const { 258 if (Stack.empty()) 259 return false; 260 // If it's a phi only use, make sure it's for this phi node edge, and that the 261 // use is in a phi node. If it's anything else, and the top of the stack is 262 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 263 // the defs they must go with so that we can know it's time to pop the stack 264 // when we hit the end of the phi uses for a given def. 265 if (Stack.back().EdgeOnly) { 266 if (!VDUse.U) 267 return false; 268 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 269 if (!PHI) 270 return false; 271 // Check edge 272 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 273 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 274 return false; 275 276 // Use dominates, which knows how to handle edge dominance. 277 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 278 } 279 280 return (VDUse.DFSIn >= Stack.back().DFSIn && 281 VDUse.DFSOut <= Stack.back().DFSOut); 282 } 283 284 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, 285 const ValueDFS &VD) { 286 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 287 Stack.pop_back(); 288 } 289 290 // Convert the uses of Op into a vector of uses, associating global and local 291 // DFS info with each one. 292 void PredicateInfo::convertUsesToDFSOrdered( 293 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 294 for (auto &U : Op->uses()) { 295 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 296 ValueDFS VD; 297 // Put the phi node uses in the incoming block. 298 BasicBlock *IBlock; 299 if (auto *PN = dyn_cast<PHINode>(I)) { 300 IBlock = PN->getIncomingBlock(U); 301 // Make phi node users appear last in the incoming block 302 // they are from. 303 VD.LocalNum = LN_Last; 304 } else { 305 // If it's not a phi node use, it is somewhere in the middle of the 306 // block. 307 IBlock = I->getParent(); 308 VD.LocalNum = LN_Middle; 309 } 310 DomTreeNode *DomNode = DT.getNode(IBlock); 311 // It's possible our use is in an unreachable block. Skip it if so. 312 if (!DomNode) 313 continue; 314 VD.DFSIn = DomNode->getDFSNumIn(); 315 VD.DFSOut = DomNode->getDFSNumOut(); 316 VD.U = &U; 317 DFSOrderedSet.push_back(VD); 318 } 319 } 320 } 321 322 // Collect relevant operations from Comparison that we may want to insert copies 323 // for. 324 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 325 auto *Op0 = Comparison->getOperand(0); 326 auto *Op1 = Comparison->getOperand(1); 327 if (Op0 == Op1) 328 return; 329 CmpOperands.push_back(Comparison); 330 // Only want real values, not constants. Additionally, operands with one use 331 // are only being used in the comparison, which means they will not be useful 332 // for us to consider for predicateinfo. 333 // 334 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 335 CmpOperands.push_back(Op0); 336 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 337 CmpOperands.push_back(Op1); 338 } 339 340 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 341 void PredicateInfo::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, 342 PredicateBase *PB) { 343 auto &OperandInfo = getOrCreateValueInfo(Op); 344 if (OperandInfo.Infos.empty()) 345 OpsToRename.push_back(Op); 346 AllInfos.push_back(PB); 347 OperandInfo.Infos.push_back(PB); 348 } 349 350 // Process an assume instruction and place relevant operations we want to rename 351 // into OpsToRename. 352 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, 353 SmallVectorImpl<Value *> &OpsToRename) { 354 // See if we have a comparison we support 355 SmallVector<Value *, 8> CmpOperands; 356 SmallVector<Value *, 2> ConditionsToProcess; 357 CmpInst::Predicate Pred; 358 Value *Operand = II->getOperand(0); 359 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 360 m_Cmp(Pred, m_Value(), m_Value())) 361 .match(II->getOperand(0))) { 362 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 363 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 364 ConditionsToProcess.push_back(Operand); 365 } else if (isa<CmpInst>(Operand)) { 366 367 ConditionsToProcess.push_back(Operand); 368 } 369 for (auto Cond : ConditionsToProcess) { 370 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 371 collectCmpOps(Cmp, CmpOperands); 372 // Now add our copy infos for our operands 373 for (auto *Op : CmpOperands) { 374 auto *PA = new PredicateAssume(Op, II, Cmp); 375 addInfoFor(OpsToRename, Op, PA); 376 } 377 CmpOperands.clear(); 378 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 379 // Otherwise, it should be an AND. 380 assert(BinOp->getOpcode() == Instruction::And && 381 "Should have been an AND"); 382 auto *PA = new PredicateAssume(BinOp, II, BinOp); 383 addInfoFor(OpsToRename, BinOp, PA); 384 } else { 385 llvm_unreachable("Unknown type of condition"); 386 } 387 } 388 } 389 390 // Process a block terminating branch, and place relevant operations to be 391 // renamed into OpsToRename. 392 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, 393 SmallVectorImpl<Value *> &OpsToRename) { 394 BasicBlock *FirstBB = BI->getSuccessor(0); 395 BasicBlock *SecondBB = BI->getSuccessor(1); 396 SmallVector<BasicBlock *, 2> SuccsToProcess; 397 SuccsToProcess.push_back(FirstBB); 398 SuccsToProcess.push_back(SecondBB); 399 SmallVector<Value *, 2> ConditionsToProcess; 400 401 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 402 for (auto *Succ : SuccsToProcess) { 403 // Don't try to insert on a self-edge. This is mainly because we will 404 // eliminate during renaming anyway. 405 if (Succ == BranchBB) 406 continue; 407 bool TakenEdge = (Succ == FirstBB); 408 // For and, only insert on the true edge 409 // For or, only insert on the false edge 410 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 411 continue; 412 PredicateBase *PB = 413 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 414 addInfoFor(OpsToRename, Op, PB); 415 if (!Succ->getSinglePredecessor()) 416 EdgeUsesOnly.insert({BranchBB, Succ}); 417 } 418 }; 419 420 // Match combinations of conditions. 421 CmpInst::Predicate Pred; 422 bool isAnd = false; 423 bool isOr = false; 424 SmallVector<Value *, 8> CmpOperands; 425 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 426 m_Cmp(Pred, m_Value(), m_Value()))) || 427 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 428 m_Cmp(Pred, m_Value(), m_Value())))) { 429 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 430 if (BinOp->getOpcode() == Instruction::And) 431 isAnd = true; 432 else if (BinOp->getOpcode() == Instruction::Or) 433 isOr = true; 434 ConditionsToProcess.push_back(BinOp->getOperand(0)); 435 ConditionsToProcess.push_back(BinOp->getOperand(1)); 436 ConditionsToProcess.push_back(BI->getCondition()); 437 } else if (isa<CmpInst>(BI->getCondition())) { 438 ConditionsToProcess.push_back(BI->getCondition()); 439 } 440 for (auto Cond : ConditionsToProcess) { 441 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 442 collectCmpOps(Cmp, CmpOperands); 443 // Now add our copy infos for our operands 444 for (auto *Op : CmpOperands) 445 InsertHelper(Op, isAnd, isOr, Cmp); 446 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 447 // This must be an AND or an OR. 448 assert((BinOp->getOpcode() == Instruction::And || 449 BinOp->getOpcode() == Instruction::Or) && 450 "Should have been an AND or an OR"); 451 // The actual value of the binop is not subject to the same restrictions 452 // as the comparison. It's either true or false on the true/false branch. 453 InsertHelper(BinOp, false, false, BinOp); 454 } else { 455 llvm_unreachable("Unknown type of condition"); 456 } 457 CmpOperands.clear(); 458 } 459 } 460 // Process a block terminating switch, and place relevant operations to be 461 // renamed into OpsToRename. 462 void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB, 463 SmallVectorImpl<Value *> &OpsToRename) { 464 Value *Op = SI->getCondition(); 465 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 466 return; 467 468 // Remember how many outgoing edges there are to every successor. 469 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 470 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 471 BasicBlock *TargetBlock = SI->getSuccessor(i); 472 ++SwitchEdges[TargetBlock]; 473 } 474 475 // Now propagate info for each case value 476 for (auto C : SI->cases()) { 477 BasicBlock *TargetBlock = C.getCaseSuccessor(); 478 if (SwitchEdges.lookup(TargetBlock) == 1) { 479 PredicateSwitch *PS = new PredicateSwitch( 480 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 481 addInfoFor(OpsToRename, Op, PS); 482 if (!TargetBlock->getSinglePredecessor()) 483 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 484 } 485 } 486 } 487 488 // Build predicate info for our function 489 void PredicateInfo::buildPredicateInfo() { 490 DT.updateDFSNumbers(); 491 // Collect operands to rename from all conditional branch terminators, as well 492 // as assume statements. 493 SmallVector<Value *, 8> OpsToRename; 494 for (auto DTN : depth_first(DT.getRootNode())) { 495 BasicBlock *BranchBB = DTN->getBlock(); 496 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 497 if (!BI->isConditional()) 498 continue; 499 // Can't insert conditional information if they all go to the same place. 500 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 501 continue; 502 processBranch(BI, BranchBB, OpsToRename); 503 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 504 processSwitch(SI, BranchBB, OpsToRename); 505 } 506 } 507 for (auto &Assume : AC.assumptions()) { 508 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 509 if (DT.isReachableFromEntry(II->getParent())) 510 processAssume(II, II->getParent(), OpsToRename); 511 } 512 // Now rename all our operations. 513 renameUses(OpsToRename); 514 } 515 516 // Create a ssa_copy declaration with custom mangling, because 517 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly: 518 // all unnamed types get mangled to the same string. We use the pointer 519 // to the type as name here, as it guarantees unique names for different 520 // types and we remove the declarations when destroying PredicateInfo. 521 // It is a workaround for PR38117, because solving it in a fully general way is 522 // tricky (FIXME). 523 static Function *getCopyDeclaration(Module *M, Type *Ty) { 524 std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty); 525 return cast<Function>( 526 M->getOrInsertFunction(Name, 527 getType(M->getContext(), Intrinsic::ssa_copy, Ty)) 528 .getCallee()); 529 } 530 531 // Given the renaming stack, make all the operands currently on the stack real 532 // by inserting them into the IR. Return the last operation's value. 533 Value *PredicateInfo::materializeStack(unsigned int &Counter, 534 ValueDFSStack &RenameStack, 535 Value *OrigOp) { 536 // Find the first thing we have to materialize 537 auto RevIter = RenameStack.rbegin(); 538 for (; RevIter != RenameStack.rend(); ++RevIter) 539 if (RevIter->Def) 540 break; 541 542 size_t Start = RevIter - RenameStack.rbegin(); 543 // The maximum number of things we should be trying to materialize at once 544 // right now is 4, depending on if we had an assume, a branch, and both used 545 // and of conditions. 546 for (auto RenameIter = RenameStack.end() - Start; 547 RenameIter != RenameStack.end(); ++RenameIter) { 548 auto *Op = 549 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 550 ValueDFS &Result = *RenameIter; 551 auto *ValInfo = Result.PInfo; 552 // For edge predicates, we can just place the operand in the block before 553 // the terminator. For assume, we have to place it right before the assume 554 // to ensure we dominate all of our uses. Always insert right before the 555 // relevant instruction (terminator, assume), so that we insert in proper 556 // order in the case of multiple predicateinfo in the same block. 557 if (isa<PredicateWithEdge>(ValInfo)) { 558 IRBuilder<> B(getBranchTerminator(ValInfo)); 559 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 560 if (IF->users().empty()) 561 CreatedDeclarations.insert(IF); 562 CallInst *PIC = 563 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 564 PredicateMap.insert({PIC, ValInfo}); 565 Result.Def = PIC; 566 } else { 567 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 568 assert(PAssume && 569 "Should not have gotten here without it being an assume"); 570 IRBuilder<> B(PAssume->AssumeInst); 571 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 572 if (IF->users().empty()) 573 CreatedDeclarations.insert(IF); 574 CallInst *PIC = B.CreateCall(IF, Op); 575 PredicateMap.insert({PIC, ValInfo}); 576 Result.Def = PIC; 577 } 578 } 579 return RenameStack.back().Def; 580 } 581 582 // Instead of the standard SSA renaming algorithm, which is O(Number of 583 // instructions), and walks the entire dominator tree, we walk only the defs + 584 // uses. The standard SSA renaming algorithm does not really rely on the 585 // dominator tree except to order the stack push/pops of the renaming stacks, so 586 // that defs end up getting pushed before hitting the correct uses. This does 587 // not require the dominator tree, only the *order* of the dominator tree. The 588 // complete and correct ordering of the defs and uses, in dominator tree is 589 // contained in the DFS numbering of the dominator tree. So we sort the defs and 590 // uses into the DFS ordering, and then just use the renaming stack as per 591 // normal, pushing when we hit a def (which is a predicateinfo instruction), 592 // popping when we are out of the dfs scope for that def, and replacing any uses 593 // with top of stack if it exists. In order to handle liveness without 594 // propagating liveness info, we don't actually insert the predicateinfo 595 // instruction def until we see a use that it would dominate. Once we see such 596 // a use, we materialize the predicateinfo instruction in the right place and 597 // use it. 598 // 599 // TODO: Use this algorithm to perform fast single-variable renaming in 600 // promotememtoreg and memoryssa. 601 void PredicateInfo::renameUses(SmallVectorImpl<Value *> &OpsToRename) { 602 ValueDFS_Compare Compare(DT, OI); 603 // Compute liveness, and rename in O(uses) per Op. 604 for (auto *Op : OpsToRename) { 605 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 606 unsigned Counter = 0; 607 SmallVector<ValueDFS, 16> OrderedUses; 608 const auto &ValueInfo = getValueInfo(Op); 609 // Insert the possible copies into the def/use list. 610 // They will become real copies if we find a real use for them, and never 611 // created otherwise. 612 for (auto &PossibleCopy : ValueInfo.Infos) { 613 ValueDFS VD; 614 // Determine where we are going to place the copy by the copy type. 615 // The predicate info for branches always come first, they will get 616 // materialized in the split block at the top of the block. 617 // The predicate info for assumes will be somewhere in the middle, 618 // it will get materialized in front of the assume. 619 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 620 VD.LocalNum = LN_Middle; 621 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 622 if (!DomNode) 623 continue; 624 VD.DFSIn = DomNode->getDFSNumIn(); 625 VD.DFSOut = DomNode->getDFSNumOut(); 626 VD.PInfo = PossibleCopy; 627 OrderedUses.push_back(VD); 628 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 629 // If we can only do phi uses, we treat it like it's in the branch 630 // block, and handle it specially. We know that it goes last, and only 631 // dominate phi uses. 632 auto BlockEdge = getBlockEdge(PossibleCopy); 633 if (EdgeUsesOnly.count(BlockEdge)) { 634 VD.LocalNum = LN_Last; 635 auto *DomNode = DT.getNode(BlockEdge.first); 636 if (DomNode) { 637 VD.DFSIn = DomNode->getDFSNumIn(); 638 VD.DFSOut = DomNode->getDFSNumOut(); 639 VD.PInfo = PossibleCopy; 640 VD.EdgeOnly = true; 641 OrderedUses.push_back(VD); 642 } 643 } else { 644 // Otherwise, we are in the split block (even though we perform 645 // insertion in the branch block). 646 // Insert a possible copy at the split block and before the branch. 647 VD.LocalNum = LN_First; 648 auto *DomNode = DT.getNode(BlockEdge.second); 649 if (DomNode) { 650 VD.DFSIn = DomNode->getDFSNumIn(); 651 VD.DFSOut = DomNode->getDFSNumOut(); 652 VD.PInfo = PossibleCopy; 653 OrderedUses.push_back(VD); 654 } 655 } 656 } 657 } 658 659 convertUsesToDFSOrdered(Op, OrderedUses); 660 // Here we require a stable sort because we do not bother to try to 661 // assign an order to the operands the uses represent. Thus, two 662 // uses in the same instruction do not have a strict sort order 663 // currently and will be considered equal. We could get rid of the 664 // stable sort by creating one if we wanted. 665 llvm::stable_sort(OrderedUses, Compare); 666 SmallVector<ValueDFS, 8> RenameStack; 667 // For each use, sorted into dfs order, push values and replaces uses with 668 // top of stack, which will represent the reaching def. 669 for (auto &VD : OrderedUses) { 670 // We currently do not materialize copy over copy, but we should decide if 671 // we want to. 672 bool PossibleCopy = VD.PInfo != nullptr; 673 if (RenameStack.empty()) { 674 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 675 } else { 676 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 677 << RenameStack.back().DFSIn << "," 678 << RenameStack.back().DFSOut << ")\n"); 679 } 680 681 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 682 << VD.DFSOut << ")\n"); 683 684 bool ShouldPush = (VD.Def || PossibleCopy); 685 bool OutOfScope = !stackIsInScope(RenameStack, VD); 686 if (OutOfScope || ShouldPush) { 687 // Sync to our current scope. 688 popStackUntilDFSScope(RenameStack, VD); 689 if (ShouldPush) { 690 RenameStack.push_back(VD); 691 } 692 } 693 // If we get to this point, and the stack is empty we must have a use 694 // with no renaming needed, just skip it. 695 if (RenameStack.empty()) 696 continue; 697 // Skip values, only want to rename the uses 698 if (VD.Def || PossibleCopy) 699 continue; 700 if (!DebugCounter::shouldExecute(RenameCounter)) { 701 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 702 continue; 703 } 704 ValueDFS &Result = RenameStack.back(); 705 706 // If the possible copy dominates something, materialize our stack up to 707 // this point. This ensures every comparison that affects our operation 708 // ends up with predicateinfo. 709 if (!Result.Def) 710 Result.Def = materializeStack(Counter, RenameStack, Op); 711 712 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 713 << *VD.U->get() << " in " << *(VD.U->getUser()) 714 << "\n"); 715 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 716 "Predicateinfo def should have dominated this use"); 717 VD.U->set(Result.Def); 718 } 719 } 720 } 721 722 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { 723 auto OIN = ValueInfoNums.find(Operand); 724 if (OIN == ValueInfoNums.end()) { 725 // This will grow it 726 ValueInfos.resize(ValueInfos.size() + 1); 727 // This will use the new size and give us a 0 based number of the info 728 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 729 assert(InsertResult.second && "Value info number already existed?"); 730 return ValueInfos[InsertResult.first->second]; 731 } 732 return ValueInfos[OIN->second]; 733 } 734 735 const PredicateInfo::ValueInfo & 736 PredicateInfo::getValueInfo(Value *Operand) const { 737 auto OINI = ValueInfoNums.lookup(Operand); 738 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 739 assert(OINI < ValueInfos.size() && 740 "Value Info Number greater than size of Value Info Table"); 741 return ValueInfos[OINI]; 742 } 743 744 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 745 AssumptionCache &AC) 746 : F(F), DT(DT), AC(AC), OI(&DT) { 747 // Push an empty operand info so that we can detect 0 as not finding one 748 ValueInfos.resize(1); 749 buildPredicateInfo(); 750 } 751 752 // Remove all declarations we created . The PredicateInfo consumers are 753 // responsible for remove the ssa_copy calls created. 754 PredicateInfo::~PredicateInfo() { 755 // Collect function pointers in set first, as SmallSet uses a SmallVector 756 // internally and we have to remove the asserting value handles first. 757 SmallPtrSet<Function *, 20> FunctionPtrs; 758 for (auto &F : CreatedDeclarations) 759 FunctionPtrs.insert(&*F); 760 CreatedDeclarations.clear(); 761 762 for (Function *F : FunctionPtrs) { 763 assert(F->user_begin() == F->user_end() && 764 "PredicateInfo consumer did not remove all SSA copies."); 765 F->eraseFromParent(); 766 } 767 } 768 769 void PredicateInfo::verifyPredicateInfo() const {} 770 771 char PredicateInfoPrinterLegacyPass::ID = 0; 772 773 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 774 : FunctionPass(ID) { 775 initializePredicateInfoPrinterLegacyPassPass( 776 *PassRegistry::getPassRegistry()); 777 } 778 779 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 780 AU.setPreservesAll(); 781 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 782 AU.addRequired<AssumptionCacheTracker>(); 783 } 784 785 // Replace ssa_copy calls created by PredicateInfo with their operand. 786 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 787 for (auto I = inst_begin(F), E = inst_end(F); I != E;) { 788 Instruction *Inst = &*I++; 789 const auto *PI = PredInfo.getPredicateInfoFor(Inst); 790 auto *II = dyn_cast<IntrinsicInst>(Inst); 791 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 792 continue; 793 794 Inst->replaceAllUsesWith(II->getOperand(0)); 795 Inst->eraseFromParent(); 796 } 797 } 798 799 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 800 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 801 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 802 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 803 PredInfo->print(dbgs()); 804 if (VerifyPredicateInfo) 805 PredInfo->verifyPredicateInfo(); 806 807 replaceCreatedSSACopys(*PredInfo, F); 808 return false; 809 } 810 811 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 812 FunctionAnalysisManager &AM) { 813 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 814 auto &AC = AM.getResult<AssumptionAnalysis>(F); 815 OS << "PredicateInfo for function: " << F.getName() << "\n"; 816 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 817 PredInfo->print(OS); 818 819 replaceCreatedSSACopys(*PredInfo, F); 820 return PreservedAnalyses::all(); 821 } 822 823 /// An assembly annotator class to print PredicateInfo information in 824 /// comments. 825 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 826 friend class PredicateInfo; 827 const PredicateInfo *PredInfo; 828 829 public: 830 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 831 832 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 833 formatted_raw_ostream &OS) {} 834 835 virtual void emitInstructionAnnot(const Instruction *I, 836 formatted_raw_ostream &OS) { 837 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 838 OS << "; Has predicate info\n"; 839 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 840 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 841 << " Comparison:" << *PB->Condition << " Edge: ["; 842 PB->From->printAsOperand(OS); 843 OS << ","; 844 PB->To->printAsOperand(OS); 845 OS << "] }\n"; 846 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 847 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 848 << " Switch:" << *PS->Switch << " Edge: ["; 849 PS->From->printAsOperand(OS); 850 OS << ","; 851 PS->To->printAsOperand(OS); 852 OS << "] }\n"; 853 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 854 OS << "; assume predicate info {" 855 << " Comparison:" << *PA->Condition << " }\n"; 856 } 857 } 858 } 859 }; 860 861 void PredicateInfo::print(raw_ostream &OS) const { 862 PredicateInfoAnnotatedWriter Writer(this); 863 F.print(OS, &Writer); 864 } 865 866 void PredicateInfo::dump() const { 867 PredicateInfoAnnotatedWriter Writer(this); 868 F.print(dbgs(), &Writer); 869 } 870 871 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 872 FunctionAnalysisManager &AM) { 873 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 874 auto &AC = AM.getResult<AssumptionAnalysis>(F); 875 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 876 877 return PreservedAnalyses::all(); 878 } 879 } 880