1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the PredicateInfo class. 10 // 11 //===----------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/PredicateInfo.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/IR/AssemblyAnnotationWriter.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstIterator.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/DebugCounter.h" 37 #include "llvm/Support/FormattedStream.h" 38 #include "llvm/Transforms/Utils.h" 39 #include <algorithm> 40 #define DEBUG_TYPE "predicateinfo" 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 45 "PredicateInfo Printer", false, false) 46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 48 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 49 "PredicateInfo Printer", false, false) 50 static cl::opt<bool> VerifyPredicateInfo( 51 "verify-predicateinfo", cl::init(false), cl::Hidden, 52 cl::desc("Verify PredicateInfo in legacy printer pass.")); 53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 54 "Controls which variables are renamed with predicateinfo"); 55 56 // Maximum number of conditions considered for renaming for each branch/assume. 57 // This limits renaming of deep and/or chains. 58 static const unsigned MaxCondsPerBranch = 8; 59 60 namespace { 61 // Given a predicate info that is a type of branching terminator, get the 62 // branching block. 63 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 64 assert(isa<PredicateWithEdge>(PB) && 65 "Only branches and switches should have PHIOnly defs that " 66 "require branch blocks."); 67 return cast<PredicateWithEdge>(PB)->From; 68 } 69 70 // Given a predicate info that is a type of branching terminator, get the 71 // branching terminator. 72 static Instruction *getBranchTerminator(const PredicateBase *PB) { 73 assert(isa<PredicateWithEdge>(PB) && 74 "Not a predicate info type we know how to get a terminator from."); 75 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 76 } 77 78 // Given a predicate info that is a type of branching terminator, get the 79 // edge this predicate info represents 80 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) { 81 assert(isa<PredicateWithEdge>(PB) && 82 "Not a predicate info type we know how to get an edge from."); 83 const auto *PEdge = cast<PredicateWithEdge>(PB); 84 return std::make_pair(PEdge->From, PEdge->To); 85 } 86 } 87 88 namespace llvm { 89 enum LocalNum { 90 // Operations that must appear first in the block. 91 LN_First, 92 // Operations that are somewhere in the middle of the block, and are sorted on 93 // demand. 94 LN_Middle, 95 // Operations that must appear last in a block, like successor phi node uses. 96 LN_Last 97 }; 98 99 // Associate global and local DFS info with defs and uses, so we can sort them 100 // into a global domination ordering. 101 struct ValueDFS { 102 int DFSIn = 0; 103 int DFSOut = 0; 104 unsigned int LocalNum = LN_Middle; 105 // Only one of Def or Use will be set. 106 Value *Def = nullptr; 107 Use *U = nullptr; 108 // Neither PInfo nor EdgeOnly participate in the ordering 109 PredicateBase *PInfo = nullptr; 110 bool EdgeOnly = false; 111 }; 112 113 // Perform a strict weak ordering on instructions and arguments. 114 static bool valueComesBefore(const Value *A, const Value *B) { 115 auto *ArgA = dyn_cast_or_null<Argument>(A); 116 auto *ArgB = dyn_cast_or_null<Argument>(B); 117 if (ArgA && !ArgB) 118 return true; 119 if (ArgB && !ArgA) 120 return false; 121 if (ArgA && ArgB) 122 return ArgA->getArgNo() < ArgB->getArgNo(); 123 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B)); 124 } 125 126 // This compares ValueDFS structures. Doing so allows us to walk the minimum 127 // number of instructions necessary to compute our def/use ordering. 128 struct ValueDFS_Compare { 129 DominatorTree &DT; 130 ValueDFS_Compare(DominatorTree &DT) : DT(DT) {} 131 132 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 133 if (&A == &B) 134 return false; 135 // The only case we can't directly compare them is when they in the same 136 // block, and both have localnum == middle. In that case, we have to use 137 // comesbefore to see what the real ordering is, because they are in the 138 // same basic block. 139 140 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) && 141 "Equal DFS-in numbers imply equal out numbers"); 142 bool SameBlock = A.DFSIn == B.DFSIn; 143 144 // We want to put the def that will get used for a given set of phi uses, 145 // before those phi uses. 146 // So we sort by edge, then by def. 147 // Note that only phi nodes uses and defs can come last. 148 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 149 return comparePHIRelated(A, B); 150 151 bool isADef = A.Def; 152 bool isBDef = B.Def; 153 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 154 return std::tie(A.DFSIn, A.LocalNum, isADef) < 155 std::tie(B.DFSIn, B.LocalNum, isBDef); 156 return localComesBefore(A, B); 157 } 158 159 // For a phi use, or a non-materialized def, return the edge it represents. 160 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const { 161 if (!VD.Def && VD.U) { 162 auto *PHI = cast<PHINode>(VD.U->getUser()); 163 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 164 } 165 // This is really a non-materialized def. 166 return ::getBlockEdge(VD.PInfo); 167 } 168 169 // For two phi related values, return the ordering. 170 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 171 BasicBlock *ASrc, *ADest, *BSrc, *BDest; 172 std::tie(ASrc, ADest) = getBlockEdge(A); 173 std::tie(BSrc, BDest) = getBlockEdge(B); 174 175 #ifndef NDEBUG 176 // This function should only be used for values in the same BB, check that. 177 DomTreeNode *DomASrc = DT.getNode(ASrc); 178 DomTreeNode *DomBSrc = DT.getNode(BSrc); 179 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn && 180 "DFS numbers for A should match the ones of the source block"); 181 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn && 182 "DFS numbers for B should match the ones of the source block"); 183 assert(A.DFSIn == B.DFSIn && "Values must be in the same block"); 184 #endif 185 (void)ASrc; 186 (void)BSrc; 187 188 // Use DFS numbers to compare destination blocks, to guarantee a 189 // deterministic order. 190 DomTreeNode *DomADest = DT.getNode(ADest); 191 DomTreeNode *DomBDest = DT.getNode(BDest); 192 unsigned AIn = DomADest->getDFSNumIn(); 193 unsigned BIn = DomBDest->getDFSNumIn(); 194 bool isADef = A.Def; 195 bool isBDef = B.Def; 196 assert((!A.Def || !A.U) && (!B.Def || !B.U) && 197 "Def and U cannot be set at the same time"); 198 // Now sort by edge destination and then defs before uses. 199 return std::tie(AIn, isADef) < std::tie(BIn, isBDef); 200 } 201 202 // Get the definition of an instruction that occurs in the middle of a block. 203 Value *getMiddleDef(const ValueDFS &VD) const { 204 if (VD.Def) 205 return VD.Def; 206 // It's possible for the defs and uses to be null. For branches, the local 207 // numbering will say the placed predicaeinfos should go first (IE 208 // LN_beginning), so we won't be in this function. For assumes, we will end 209 // up here, beause we need to order the def we will place relative to the 210 // assume. So for the purpose of ordering, we pretend the def is right 211 // after the assume, because that is where we will insert the info. 212 if (!VD.U) { 213 assert(VD.PInfo && 214 "No def, no use, and no predicateinfo should not occur"); 215 assert(isa<PredicateAssume>(VD.PInfo) && 216 "Middle of block should only occur for assumes"); 217 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode(); 218 } 219 return nullptr; 220 } 221 222 // Return either the Def, if it's not null, or the user of the Use, if the def 223 // is null. 224 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 225 if (Def) 226 return cast<Instruction>(Def); 227 return cast<Instruction>(U->getUser()); 228 } 229 230 // This performs the necessary local basic block ordering checks to tell 231 // whether A comes before B, where both are in the same basic block. 232 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 233 auto *ADef = getMiddleDef(A); 234 auto *BDef = getMiddleDef(B); 235 236 // See if we have real values or uses. If we have real values, we are 237 // guaranteed they are instructions or arguments. No matter what, we are 238 // guaranteed they are in the same block if they are instructions. 239 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 240 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 241 242 if (ArgA || ArgB) 243 return valueComesBefore(ArgA, ArgB); 244 245 auto *AInst = getDefOrUser(ADef, A.U); 246 auto *BInst = getDefOrUser(BDef, B.U); 247 return valueComesBefore(AInst, BInst); 248 } 249 }; 250 251 class PredicateInfoBuilder { 252 // Used to store information about each value we might rename. 253 struct ValueInfo { 254 SmallVector<PredicateBase *, 4> Infos; 255 }; 256 257 PredicateInfo &PI; 258 Function &F; 259 DominatorTree &DT; 260 AssumptionCache &AC; 261 262 // This stores info about each operand or comparison result we make copies 263 // of. The real ValueInfos start at index 1, index 0 is unused so that we 264 // can more easily detect invalid indexing. 265 SmallVector<ValueInfo, 32> ValueInfos; 266 267 // This gives the index into the ValueInfos array for a given Value. Because 268 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell 269 // whether it returned a valid result. 270 DenseMap<Value *, unsigned int> ValueInfoNums; 271 272 // The set of edges along which we can only handle phi uses, due to critical 273 // edges. 274 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly; 275 276 ValueInfo &getOrCreateValueInfo(Value *); 277 const ValueInfo &getValueInfo(Value *) const; 278 279 void processAssume(IntrinsicInst *, BasicBlock *, 280 SmallVectorImpl<Value *> &OpsToRename); 281 void processBranch(BranchInst *, BasicBlock *, 282 SmallVectorImpl<Value *> &OpsToRename); 283 void processSwitch(SwitchInst *, BasicBlock *, 284 SmallVectorImpl<Value *> &OpsToRename); 285 void renameUses(SmallVectorImpl<Value *> &OpsToRename); 286 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, 287 PredicateBase *PB); 288 289 typedef SmallVectorImpl<ValueDFS> ValueDFSStack; 290 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &); 291 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *); 292 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const; 293 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &); 294 295 public: 296 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT, 297 AssumptionCache &AC) 298 : PI(PI), F(F), DT(DT), AC(AC) { 299 // Push an empty operand info so that we can detect 0 as not finding one 300 ValueInfos.resize(1); 301 } 302 303 void buildPredicateInfo(); 304 }; 305 306 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack, 307 const ValueDFS &VDUse) const { 308 if (Stack.empty()) 309 return false; 310 // If it's a phi only use, make sure it's for this phi node edge, and that the 311 // use is in a phi node. If it's anything else, and the top of the stack is 312 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 313 // the defs they must go with so that we can know it's time to pop the stack 314 // when we hit the end of the phi uses for a given def. 315 if (Stack.back().EdgeOnly) { 316 if (!VDUse.U) 317 return false; 318 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 319 if (!PHI) 320 return false; 321 // Check edge 322 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 323 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 324 return false; 325 326 // Use dominates, which knows how to handle edge dominance. 327 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 328 } 329 330 return (VDUse.DFSIn >= Stack.back().DFSIn && 331 VDUse.DFSOut <= Stack.back().DFSOut); 332 } 333 334 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack, 335 const ValueDFS &VD) { 336 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 337 Stack.pop_back(); 338 } 339 340 // Convert the uses of Op into a vector of uses, associating global and local 341 // DFS info with each one. 342 void PredicateInfoBuilder::convertUsesToDFSOrdered( 343 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 344 for (auto &U : Op->uses()) { 345 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 346 ValueDFS VD; 347 // Put the phi node uses in the incoming block. 348 BasicBlock *IBlock; 349 if (auto *PN = dyn_cast<PHINode>(I)) { 350 IBlock = PN->getIncomingBlock(U); 351 // Make phi node users appear last in the incoming block 352 // they are from. 353 VD.LocalNum = LN_Last; 354 } else { 355 // If it's not a phi node use, it is somewhere in the middle of the 356 // block. 357 IBlock = I->getParent(); 358 VD.LocalNum = LN_Middle; 359 } 360 DomTreeNode *DomNode = DT.getNode(IBlock); 361 // It's possible our use is in an unreachable block. Skip it if so. 362 if (!DomNode) 363 continue; 364 VD.DFSIn = DomNode->getDFSNumIn(); 365 VD.DFSOut = DomNode->getDFSNumOut(); 366 VD.U = &U; 367 DFSOrderedSet.push_back(VD); 368 } 369 } 370 } 371 372 bool shouldRename(Value *V) { 373 // Only want real values, not constants. Additionally, operands with one use 374 // are only being used in the comparison, which means they will not be useful 375 // for us to consider for predicateinfo. 376 return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse(); 377 } 378 379 // Collect relevant operations from Comparison that we may want to insert copies 380 // for. 381 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 382 auto *Op0 = Comparison->getOperand(0); 383 auto *Op1 = Comparison->getOperand(1); 384 if (Op0 == Op1) 385 return; 386 387 CmpOperands.push_back(Op0); 388 CmpOperands.push_back(Op1); 389 } 390 391 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 392 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, 393 Value *Op, PredicateBase *PB) { 394 auto &OperandInfo = getOrCreateValueInfo(Op); 395 if (OperandInfo.Infos.empty()) 396 OpsToRename.push_back(Op); 397 PI.AllInfos.push_back(PB); 398 OperandInfo.Infos.push_back(PB); 399 } 400 401 // Process an assume instruction and place relevant operations we want to rename 402 // into OpsToRename. 403 void PredicateInfoBuilder::processAssume( 404 IntrinsicInst *II, BasicBlock *AssumeBB, 405 SmallVectorImpl<Value *> &OpsToRename) { 406 SmallVector<Value *, 4> Worklist; 407 SmallPtrSet<Value *, 4> Visited; 408 Worklist.push_back(II->getOperand(0)); 409 while (!Worklist.empty()) { 410 Value *Cond = Worklist.pop_back_val(); 411 if (!Visited.insert(Cond).second) 412 continue; 413 if (Visited.size() > MaxCondsPerBranch) 414 break; 415 416 Value *Op0, *Op1; 417 if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 418 Worklist.push_back(Op1); 419 Worklist.push_back(Op0); 420 } 421 422 SmallVector<Value *, 4> Values; 423 Values.push_back(Cond); 424 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) 425 collectCmpOps(Cmp, Values); 426 427 for (Value *V : Values) { 428 if (shouldRename(V)) { 429 auto *PA = new PredicateAssume(V, II, Cond); 430 addInfoFor(OpsToRename, V, PA); 431 } 432 } 433 } 434 } 435 436 // Process a block terminating branch, and place relevant operations to be 437 // renamed into OpsToRename. 438 void PredicateInfoBuilder::processBranch( 439 BranchInst *BI, BasicBlock *BranchBB, 440 SmallVectorImpl<Value *> &OpsToRename) { 441 BasicBlock *FirstBB = BI->getSuccessor(0); 442 BasicBlock *SecondBB = BI->getSuccessor(1); 443 444 for (BasicBlock *Succ : {FirstBB, SecondBB}) { 445 bool TakenEdge = Succ == FirstBB; 446 // Don't try to insert on a self-edge. This is mainly because we will 447 // eliminate during renaming anyway. 448 if (Succ == BranchBB) 449 continue; 450 451 SmallVector<Value *, 4> Worklist; 452 SmallPtrSet<Value *, 4> Visited; 453 Worklist.push_back(BI->getCondition()); 454 while (!Worklist.empty()) { 455 Value *Cond = Worklist.pop_back_val(); 456 if (!Visited.insert(Cond).second) 457 continue; 458 if (Visited.size() > MaxCondsPerBranch) 459 break; 460 461 Value *Op0, *Op1; 462 if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) 463 : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 464 Worklist.push_back(Op1); 465 Worklist.push_back(Op0); 466 } 467 468 SmallVector<Value *, 4> Values; 469 Values.push_back(Cond); 470 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) 471 collectCmpOps(Cmp, Values); 472 473 for (Value *V : Values) { 474 if (shouldRename(V)) { 475 PredicateBase *PB = 476 new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge); 477 addInfoFor(OpsToRename, V, PB); 478 if (!Succ->getSinglePredecessor()) 479 EdgeUsesOnly.insert({BranchBB, Succ}); 480 } 481 } 482 } 483 } 484 } 485 // Process a block terminating switch, and place relevant operations to be 486 // renamed into OpsToRename. 487 void PredicateInfoBuilder::processSwitch( 488 SwitchInst *SI, BasicBlock *BranchBB, 489 SmallVectorImpl<Value *> &OpsToRename) { 490 Value *Op = SI->getCondition(); 491 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 492 return; 493 494 // Remember how many outgoing edges there are to every successor. 495 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 496 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 497 BasicBlock *TargetBlock = SI->getSuccessor(i); 498 ++SwitchEdges[TargetBlock]; 499 } 500 501 // Now propagate info for each case value 502 for (auto C : SI->cases()) { 503 BasicBlock *TargetBlock = C.getCaseSuccessor(); 504 if (SwitchEdges.lookup(TargetBlock) == 1) { 505 PredicateSwitch *PS = new PredicateSwitch( 506 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 507 addInfoFor(OpsToRename, Op, PS); 508 if (!TargetBlock->getSinglePredecessor()) 509 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 510 } 511 } 512 } 513 514 // Build predicate info for our function 515 void PredicateInfoBuilder::buildPredicateInfo() { 516 DT.updateDFSNumbers(); 517 // Collect operands to rename from all conditional branch terminators, as well 518 // as assume statements. 519 SmallVector<Value *, 8> OpsToRename; 520 for (auto DTN : depth_first(DT.getRootNode())) { 521 BasicBlock *BranchBB = DTN->getBlock(); 522 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 523 if (!BI->isConditional()) 524 continue; 525 // Can't insert conditional information if they all go to the same place. 526 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 527 continue; 528 processBranch(BI, BranchBB, OpsToRename); 529 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 530 processSwitch(SI, BranchBB, OpsToRename); 531 } 532 } 533 for (auto &Assume : AC.assumptions()) { 534 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 535 if (DT.isReachableFromEntry(II->getParent())) 536 processAssume(II, II->getParent(), OpsToRename); 537 } 538 // Now rename all our operations. 539 renameUses(OpsToRename); 540 } 541 542 // Given the renaming stack, make all the operands currently on the stack real 543 // by inserting them into the IR. Return the last operation's value. 544 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter, 545 ValueDFSStack &RenameStack, 546 Value *OrigOp) { 547 // Find the first thing we have to materialize 548 auto RevIter = RenameStack.rbegin(); 549 for (; RevIter != RenameStack.rend(); ++RevIter) 550 if (RevIter->Def) 551 break; 552 553 size_t Start = RevIter - RenameStack.rbegin(); 554 // The maximum number of things we should be trying to materialize at once 555 // right now is 4, depending on if we had an assume, a branch, and both used 556 // and of conditions. 557 for (auto RenameIter = RenameStack.end() - Start; 558 RenameIter != RenameStack.end(); ++RenameIter) { 559 auto *Op = 560 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 561 ValueDFS &Result = *RenameIter; 562 auto *ValInfo = Result.PInfo; 563 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin() 564 ? OrigOp 565 : (RenameStack.end() - Start - 1)->Def; 566 // For edge predicates, we can just place the operand in the block before 567 // the terminator. For assume, we have to place it right before the assume 568 // to ensure we dominate all of our uses. Always insert right before the 569 // relevant instruction (terminator, assume), so that we insert in proper 570 // order in the case of multiple predicateinfo in the same block. 571 // The number of named values is used to detect if a new declaration was 572 // added. If so, that declaration is tracked so that it can be removed when 573 // the analysis is done. The corner case were a new declaration results in 574 // a name clash and the old name being renamed is not considered as that 575 // represents an invalid module. 576 if (isa<PredicateWithEdge>(ValInfo)) { 577 IRBuilder<> B(getBranchTerminator(ValInfo)); 578 auto NumDecls = F.getParent()->getNumNamedValues(); 579 Function *IF = Intrinsic::getDeclaration( 580 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 581 if (NumDecls != F.getParent()->getNumNamedValues()) 582 PI.CreatedDeclarations.insert(IF); 583 CallInst *PIC = 584 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 585 PI.PredicateMap.insert({PIC, ValInfo}); 586 Result.Def = PIC; 587 } else { 588 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 589 assert(PAssume && 590 "Should not have gotten here without it being an assume"); 591 // Insert the predicate directly after the assume. While it also holds 592 // directly before it, assume(i1 true) is not a useful fact. 593 IRBuilder<> B(PAssume->AssumeInst->getNextNode()); 594 auto NumDecls = F.getParent()->getNumNamedValues(); 595 Function *IF = Intrinsic::getDeclaration( 596 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 597 if (NumDecls != F.getParent()->getNumNamedValues()) 598 PI.CreatedDeclarations.insert(IF); 599 CallInst *PIC = B.CreateCall(IF, Op); 600 PI.PredicateMap.insert({PIC, ValInfo}); 601 Result.Def = PIC; 602 } 603 } 604 return RenameStack.back().Def; 605 } 606 607 // Instead of the standard SSA renaming algorithm, which is O(Number of 608 // instructions), and walks the entire dominator tree, we walk only the defs + 609 // uses. The standard SSA renaming algorithm does not really rely on the 610 // dominator tree except to order the stack push/pops of the renaming stacks, so 611 // that defs end up getting pushed before hitting the correct uses. This does 612 // not require the dominator tree, only the *order* of the dominator tree. The 613 // complete and correct ordering of the defs and uses, in dominator tree is 614 // contained in the DFS numbering of the dominator tree. So we sort the defs and 615 // uses into the DFS ordering, and then just use the renaming stack as per 616 // normal, pushing when we hit a def (which is a predicateinfo instruction), 617 // popping when we are out of the dfs scope for that def, and replacing any uses 618 // with top of stack if it exists. In order to handle liveness without 619 // propagating liveness info, we don't actually insert the predicateinfo 620 // instruction def until we see a use that it would dominate. Once we see such 621 // a use, we materialize the predicateinfo instruction in the right place and 622 // use it. 623 // 624 // TODO: Use this algorithm to perform fast single-variable renaming in 625 // promotememtoreg and memoryssa. 626 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) { 627 ValueDFS_Compare Compare(DT); 628 // Compute liveness, and rename in O(uses) per Op. 629 for (auto *Op : OpsToRename) { 630 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 631 unsigned Counter = 0; 632 SmallVector<ValueDFS, 16> OrderedUses; 633 const auto &ValueInfo = getValueInfo(Op); 634 // Insert the possible copies into the def/use list. 635 // They will become real copies if we find a real use for them, and never 636 // created otherwise. 637 for (auto &PossibleCopy : ValueInfo.Infos) { 638 ValueDFS VD; 639 // Determine where we are going to place the copy by the copy type. 640 // The predicate info for branches always come first, they will get 641 // materialized in the split block at the top of the block. 642 // The predicate info for assumes will be somewhere in the middle, 643 // it will get materialized in front of the assume. 644 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 645 VD.LocalNum = LN_Middle; 646 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 647 if (!DomNode) 648 continue; 649 VD.DFSIn = DomNode->getDFSNumIn(); 650 VD.DFSOut = DomNode->getDFSNumOut(); 651 VD.PInfo = PossibleCopy; 652 OrderedUses.push_back(VD); 653 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 654 // If we can only do phi uses, we treat it like it's in the branch 655 // block, and handle it specially. We know that it goes last, and only 656 // dominate phi uses. 657 auto BlockEdge = getBlockEdge(PossibleCopy); 658 if (EdgeUsesOnly.count(BlockEdge)) { 659 VD.LocalNum = LN_Last; 660 auto *DomNode = DT.getNode(BlockEdge.first); 661 if (DomNode) { 662 VD.DFSIn = DomNode->getDFSNumIn(); 663 VD.DFSOut = DomNode->getDFSNumOut(); 664 VD.PInfo = PossibleCopy; 665 VD.EdgeOnly = true; 666 OrderedUses.push_back(VD); 667 } 668 } else { 669 // Otherwise, we are in the split block (even though we perform 670 // insertion in the branch block). 671 // Insert a possible copy at the split block and before the branch. 672 VD.LocalNum = LN_First; 673 auto *DomNode = DT.getNode(BlockEdge.second); 674 if (DomNode) { 675 VD.DFSIn = DomNode->getDFSNumIn(); 676 VD.DFSOut = DomNode->getDFSNumOut(); 677 VD.PInfo = PossibleCopy; 678 OrderedUses.push_back(VD); 679 } 680 } 681 } 682 } 683 684 convertUsesToDFSOrdered(Op, OrderedUses); 685 // Here we require a stable sort because we do not bother to try to 686 // assign an order to the operands the uses represent. Thus, two 687 // uses in the same instruction do not have a strict sort order 688 // currently and will be considered equal. We could get rid of the 689 // stable sort by creating one if we wanted. 690 llvm::stable_sort(OrderedUses, Compare); 691 SmallVector<ValueDFS, 8> RenameStack; 692 // For each use, sorted into dfs order, push values and replaces uses with 693 // top of stack, which will represent the reaching def. 694 for (auto &VD : OrderedUses) { 695 // We currently do not materialize copy over copy, but we should decide if 696 // we want to. 697 bool PossibleCopy = VD.PInfo != nullptr; 698 if (RenameStack.empty()) { 699 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 700 } else { 701 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 702 << RenameStack.back().DFSIn << "," 703 << RenameStack.back().DFSOut << ")\n"); 704 } 705 706 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 707 << VD.DFSOut << ")\n"); 708 709 bool ShouldPush = (VD.Def || PossibleCopy); 710 bool OutOfScope = !stackIsInScope(RenameStack, VD); 711 if (OutOfScope || ShouldPush) { 712 // Sync to our current scope. 713 popStackUntilDFSScope(RenameStack, VD); 714 if (ShouldPush) { 715 RenameStack.push_back(VD); 716 } 717 } 718 // If we get to this point, and the stack is empty we must have a use 719 // with no renaming needed, just skip it. 720 if (RenameStack.empty()) 721 continue; 722 // Skip values, only want to rename the uses 723 if (VD.Def || PossibleCopy) 724 continue; 725 if (!DebugCounter::shouldExecute(RenameCounter)) { 726 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 727 continue; 728 } 729 ValueDFS &Result = RenameStack.back(); 730 731 // If the possible copy dominates something, materialize our stack up to 732 // this point. This ensures every comparison that affects our operation 733 // ends up with predicateinfo. 734 if (!Result.Def) 735 Result.Def = materializeStack(Counter, RenameStack, Op); 736 737 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 738 << *VD.U->get() << " in " << *(VD.U->getUser()) 739 << "\n"); 740 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 741 "Predicateinfo def should have dominated this use"); 742 VD.U->set(Result.Def); 743 } 744 } 745 } 746 747 PredicateInfoBuilder::ValueInfo & 748 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) { 749 auto OIN = ValueInfoNums.find(Operand); 750 if (OIN == ValueInfoNums.end()) { 751 // This will grow it 752 ValueInfos.resize(ValueInfos.size() + 1); 753 // This will use the new size and give us a 0 based number of the info 754 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 755 assert(InsertResult.second && "Value info number already existed?"); 756 return ValueInfos[InsertResult.first->second]; 757 } 758 return ValueInfos[OIN->second]; 759 } 760 761 const PredicateInfoBuilder::ValueInfo & 762 PredicateInfoBuilder::getValueInfo(Value *Operand) const { 763 auto OINI = ValueInfoNums.lookup(Operand); 764 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 765 assert(OINI < ValueInfos.size() && 766 "Value Info Number greater than size of Value Info Table"); 767 return ValueInfos[OINI]; 768 } 769 770 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 771 AssumptionCache &AC) 772 : F(F) { 773 PredicateInfoBuilder Builder(*this, F, DT, AC); 774 Builder.buildPredicateInfo(); 775 } 776 777 // Remove all declarations we created . The PredicateInfo consumers are 778 // responsible for remove the ssa_copy calls created. 779 PredicateInfo::~PredicateInfo() { 780 // Collect function pointers in set first, as SmallSet uses a SmallVector 781 // internally and we have to remove the asserting value handles first. 782 SmallPtrSet<Function *, 20> FunctionPtrs; 783 for (auto &F : CreatedDeclarations) 784 FunctionPtrs.insert(&*F); 785 CreatedDeclarations.clear(); 786 787 for (Function *F : FunctionPtrs) { 788 assert(F->user_begin() == F->user_end() && 789 "PredicateInfo consumer did not remove all SSA copies."); 790 F->eraseFromParent(); 791 } 792 } 793 794 Optional<PredicateConstraint> PredicateBase::getConstraint() const { 795 switch (Type) { 796 case PT_Assume: 797 case PT_Branch: { 798 bool TrueEdge = true; 799 if (auto *PBranch = dyn_cast<PredicateBranch>(this)) 800 TrueEdge = PBranch->TrueEdge; 801 802 if (Condition == RenamedOp) { 803 return {{CmpInst::ICMP_EQ, 804 TrueEdge ? ConstantInt::getTrue(Condition->getType()) 805 : ConstantInt::getFalse(Condition->getType())}}; 806 } 807 808 CmpInst *Cmp = dyn_cast<CmpInst>(Condition); 809 if (!Cmp) { 810 // TODO: Make this an assertion once RenamedOp is fully accurate. 811 return None; 812 } 813 814 CmpInst::Predicate Pred; 815 Value *OtherOp; 816 if (Cmp->getOperand(0) == RenamedOp) { 817 Pred = Cmp->getPredicate(); 818 OtherOp = Cmp->getOperand(1); 819 } else if (Cmp->getOperand(1) == RenamedOp) { 820 Pred = Cmp->getSwappedPredicate(); 821 OtherOp = Cmp->getOperand(0); 822 } else { 823 // TODO: Make this an assertion once RenamedOp is fully accurate. 824 return None; 825 } 826 827 // Invert predicate along false edge. 828 if (!TrueEdge) 829 Pred = CmpInst::getInversePredicate(Pred); 830 831 return {{Pred, OtherOp}}; 832 } 833 case PT_Switch: 834 if (Condition != RenamedOp) { 835 // TODO: Make this an assertion once RenamedOp is fully accurate. 836 return None; 837 } 838 839 return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}}; 840 } 841 llvm_unreachable("Unknown predicate type"); 842 } 843 844 void PredicateInfo::verifyPredicateInfo() const {} 845 846 char PredicateInfoPrinterLegacyPass::ID = 0; 847 848 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 849 : FunctionPass(ID) { 850 initializePredicateInfoPrinterLegacyPassPass( 851 *PassRegistry::getPassRegistry()); 852 } 853 854 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 855 AU.setPreservesAll(); 856 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 857 AU.addRequired<AssumptionCacheTracker>(); 858 } 859 860 // Replace ssa_copy calls created by PredicateInfo with their operand. 861 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 862 for (Instruction &Inst : llvm::make_early_inc_range(instructions(F))) { 863 const auto *PI = PredInfo.getPredicateInfoFor(&Inst); 864 auto *II = dyn_cast<IntrinsicInst>(&Inst); 865 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 866 continue; 867 868 Inst.replaceAllUsesWith(II->getOperand(0)); 869 Inst.eraseFromParent(); 870 } 871 } 872 873 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 874 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 875 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 876 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 877 PredInfo->print(dbgs()); 878 if (VerifyPredicateInfo) 879 PredInfo->verifyPredicateInfo(); 880 881 replaceCreatedSSACopys(*PredInfo, F); 882 return false; 883 } 884 885 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 886 FunctionAnalysisManager &AM) { 887 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 888 auto &AC = AM.getResult<AssumptionAnalysis>(F); 889 OS << "PredicateInfo for function: " << F.getName() << "\n"; 890 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 891 PredInfo->print(OS); 892 893 replaceCreatedSSACopys(*PredInfo, F); 894 return PreservedAnalyses::all(); 895 } 896 897 /// An assembly annotator class to print PredicateInfo information in 898 /// comments. 899 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 900 friend class PredicateInfo; 901 const PredicateInfo *PredInfo; 902 903 public: 904 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 905 906 void emitBasicBlockStartAnnot(const BasicBlock *BB, 907 formatted_raw_ostream &OS) override {} 908 909 void emitInstructionAnnot(const Instruction *I, 910 formatted_raw_ostream &OS) override { 911 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 912 OS << "; Has predicate info\n"; 913 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 914 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 915 << " Comparison:" << *PB->Condition << " Edge: ["; 916 PB->From->printAsOperand(OS); 917 OS << ","; 918 PB->To->printAsOperand(OS); 919 OS << "]"; 920 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 921 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 922 << " Switch:" << *PS->Switch << " Edge: ["; 923 PS->From->printAsOperand(OS); 924 OS << ","; 925 PS->To->printAsOperand(OS); 926 OS << "]"; 927 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 928 OS << "; assume predicate info {" 929 << " Comparison:" << *PA->Condition; 930 } 931 OS << ", RenamedOp: "; 932 PI->RenamedOp->printAsOperand(OS, false); 933 OS << " }\n"; 934 } 935 } 936 }; 937 938 void PredicateInfo::print(raw_ostream &OS) const { 939 PredicateInfoAnnotatedWriter Writer(this); 940 F.print(OS, &Writer); 941 } 942 943 void PredicateInfo::dump() const { 944 PredicateInfoAnnotatedWriter Writer(this); 945 F.print(dbgs(), &Writer); 946 } 947 948 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 949 FunctionAnalysisManager &AM) { 950 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 951 auto &AC = AM.getResult<AssumptionAnalysis>(F); 952 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 953 954 return PreservedAnalyses::all(); 955 } 956 } 957