1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the PredicateInfo class. 10 // 11 //===----------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/PredicateInfo.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/IR/AssemblyAnnotationWriter.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstIterator.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/FormattedStream.h" 36 #include "llvm/Transforms/Utils.h" 37 #include <algorithm> 38 #define DEBUG_TYPE "predicateinfo" 39 using namespace llvm; 40 using namespace PatternMatch; 41 using namespace llvm::PredicateInfoClasses; 42 43 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 44 "PredicateInfo Printer", false, false) 45 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 46 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 47 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 48 "PredicateInfo Printer", false, false) 49 static cl::opt<bool> VerifyPredicateInfo( 50 "verify-predicateinfo", cl::init(false), cl::Hidden, 51 cl::desc("Verify PredicateInfo in legacy printer pass.")); 52 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 53 "Controls which variables are renamed with predicateinfo"); 54 55 namespace { 56 // Given a predicate info that is a type of branching terminator, get the 57 // branching block. 58 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 59 assert(isa<PredicateWithEdge>(PB) && 60 "Only branches and switches should have PHIOnly defs that " 61 "require branch blocks."); 62 return cast<PredicateWithEdge>(PB)->From; 63 } 64 65 // Given a predicate info that is a type of branching terminator, get the 66 // branching terminator. 67 static Instruction *getBranchTerminator(const PredicateBase *PB) { 68 assert(isa<PredicateWithEdge>(PB) && 69 "Not a predicate info type we know how to get a terminator from."); 70 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 71 } 72 73 // Given a predicate info that is a type of branching terminator, get the 74 // edge this predicate info represents 75 const std::pair<BasicBlock *, BasicBlock *> 76 getBlockEdge(const PredicateBase *PB) { 77 assert(isa<PredicateWithEdge>(PB) && 78 "Not a predicate info type we know how to get an edge from."); 79 const auto *PEdge = cast<PredicateWithEdge>(PB); 80 return std::make_pair(PEdge->From, PEdge->To); 81 } 82 } 83 84 namespace llvm { 85 namespace PredicateInfoClasses { 86 enum LocalNum { 87 // Operations that must appear first in the block. 88 LN_First, 89 // Operations that are somewhere in the middle of the block, and are sorted on 90 // demand. 91 LN_Middle, 92 // Operations that must appear last in a block, like successor phi node uses. 93 LN_Last 94 }; 95 96 // Associate global and local DFS info with defs and uses, so we can sort them 97 // into a global domination ordering. 98 struct ValueDFS { 99 int DFSIn = 0; 100 int DFSOut = 0; 101 unsigned int LocalNum = LN_Middle; 102 // Only one of Def or Use will be set. 103 Value *Def = nullptr; 104 Use *U = nullptr; 105 // Neither PInfo nor EdgeOnly participate in the ordering 106 PredicateBase *PInfo = nullptr; 107 bool EdgeOnly = false; 108 }; 109 110 // Perform a strict weak ordering on instructions and arguments. 111 static bool valueComesBefore(OrderedInstructions &OI, const Value *A, 112 const Value *B) { 113 auto *ArgA = dyn_cast_or_null<Argument>(A); 114 auto *ArgB = dyn_cast_or_null<Argument>(B); 115 if (ArgA && !ArgB) 116 return true; 117 if (ArgB && !ArgA) 118 return false; 119 if (ArgA && ArgB) 120 return ArgA->getArgNo() < ArgB->getArgNo(); 121 return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B)); 122 } 123 124 // This compares ValueDFS structures, creating OrderedBasicBlocks where 125 // necessary to compare uses/defs in the same block. Doing so allows us to walk 126 // the minimum number of instructions necessary to compute our def/use ordering. 127 struct ValueDFS_Compare { 128 OrderedInstructions &OI; 129 ValueDFS_Compare(OrderedInstructions &OI) : OI(OI) {} 130 131 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 132 if (&A == &B) 133 return false; 134 // The only case we can't directly compare them is when they in the same 135 // block, and both have localnum == middle. In that case, we have to use 136 // comesbefore to see what the real ordering is, because they are in the 137 // same basic block. 138 139 bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut); 140 141 // We want to put the def that will get used for a given set of phi uses, 142 // before those phi uses. 143 // So we sort by edge, then by def. 144 // Note that only phi nodes uses and defs can come last. 145 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 146 return comparePHIRelated(A, B); 147 148 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 149 return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) < 150 std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U); 151 return localComesBefore(A, B); 152 } 153 154 // For a phi use, or a non-materialized def, return the edge it represents. 155 const std::pair<BasicBlock *, BasicBlock *> 156 getBlockEdge(const ValueDFS &VD) const { 157 if (!VD.Def && VD.U) { 158 auto *PHI = cast<PHINode>(VD.U->getUser()); 159 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 160 } 161 // This is really a non-materialized def. 162 return ::getBlockEdge(VD.PInfo); 163 } 164 165 // For two phi related values, return the ordering. 166 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 167 auto &ABlockEdge = getBlockEdge(A); 168 auto &BBlockEdge = getBlockEdge(B); 169 // Now sort by block edge and then defs before uses. 170 return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U); 171 } 172 173 // Get the definition of an instruction that occurs in the middle of a block. 174 Value *getMiddleDef(const ValueDFS &VD) const { 175 if (VD.Def) 176 return VD.Def; 177 // It's possible for the defs and uses to be null. For branches, the local 178 // numbering will say the placed predicaeinfos should go first (IE 179 // LN_beginning), so we won't be in this function. For assumes, we will end 180 // up here, beause we need to order the def we will place relative to the 181 // assume. So for the purpose of ordering, we pretend the def is the assume 182 // because that is where we will insert the info. 183 if (!VD.U) { 184 assert(VD.PInfo && 185 "No def, no use, and no predicateinfo should not occur"); 186 assert(isa<PredicateAssume>(VD.PInfo) && 187 "Middle of block should only occur for assumes"); 188 return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 189 } 190 return nullptr; 191 } 192 193 // Return either the Def, if it's not null, or the user of the Use, if the def 194 // is null. 195 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 196 if (Def) 197 return cast<Instruction>(Def); 198 return cast<Instruction>(U->getUser()); 199 } 200 201 // This performs the necessary local basic block ordering checks to tell 202 // whether A comes before B, where both are in the same basic block. 203 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 204 auto *ADef = getMiddleDef(A); 205 auto *BDef = getMiddleDef(B); 206 207 // See if we have real values or uses. If we have real values, we are 208 // guaranteed they are instructions or arguments. No matter what, we are 209 // guaranteed they are in the same block if they are instructions. 210 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 211 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 212 213 if (ArgA || ArgB) 214 return valueComesBefore(OI, ArgA, ArgB); 215 216 auto *AInst = getDefOrUser(ADef, A.U); 217 auto *BInst = getDefOrUser(BDef, B.U); 218 return valueComesBefore(OI, AInst, BInst); 219 } 220 }; 221 222 } // namespace PredicateInfoClasses 223 224 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, 225 const ValueDFS &VDUse) const { 226 if (Stack.empty()) 227 return false; 228 // If it's a phi only use, make sure it's for this phi node edge, and that the 229 // use is in a phi node. If it's anything else, and the top of the stack is 230 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 231 // the defs they must go with so that we can know it's time to pop the stack 232 // when we hit the end of the phi uses for a given def. 233 if (Stack.back().EdgeOnly) { 234 if (!VDUse.U) 235 return false; 236 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 237 if (!PHI) 238 return false; 239 // Check edge 240 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 241 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 242 return false; 243 244 // Use dominates, which knows how to handle edge dominance. 245 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 246 } 247 248 return (VDUse.DFSIn >= Stack.back().DFSIn && 249 VDUse.DFSOut <= Stack.back().DFSOut); 250 } 251 252 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, 253 const ValueDFS &VD) { 254 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 255 Stack.pop_back(); 256 } 257 258 // Convert the uses of Op into a vector of uses, associating global and local 259 // DFS info with each one. 260 void PredicateInfo::convertUsesToDFSOrdered( 261 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 262 for (auto &U : Op->uses()) { 263 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 264 ValueDFS VD; 265 // Put the phi node uses in the incoming block. 266 BasicBlock *IBlock; 267 if (auto *PN = dyn_cast<PHINode>(I)) { 268 IBlock = PN->getIncomingBlock(U); 269 // Make phi node users appear last in the incoming block 270 // they are from. 271 VD.LocalNum = LN_Last; 272 } else { 273 // If it's not a phi node use, it is somewhere in the middle of the 274 // block. 275 IBlock = I->getParent(); 276 VD.LocalNum = LN_Middle; 277 } 278 DomTreeNode *DomNode = DT.getNode(IBlock); 279 // It's possible our use is in an unreachable block. Skip it if so. 280 if (!DomNode) 281 continue; 282 VD.DFSIn = DomNode->getDFSNumIn(); 283 VD.DFSOut = DomNode->getDFSNumOut(); 284 VD.U = &U; 285 DFSOrderedSet.push_back(VD); 286 } 287 } 288 } 289 290 // Collect relevant operations from Comparison that we may want to insert copies 291 // for. 292 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 293 auto *Op0 = Comparison->getOperand(0); 294 auto *Op1 = Comparison->getOperand(1); 295 if (Op0 == Op1) 296 return; 297 CmpOperands.push_back(Comparison); 298 // Only want real values, not constants. Additionally, operands with one use 299 // are only being used in the comparison, which means they will not be useful 300 // for us to consider for predicateinfo. 301 // 302 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 303 CmpOperands.push_back(Op0); 304 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 305 CmpOperands.push_back(Op1); 306 } 307 308 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 309 void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op, 310 PredicateBase *PB) { 311 OpsToRename.insert(Op); 312 auto &OperandInfo = getOrCreateValueInfo(Op); 313 AllInfos.push_back(PB); 314 OperandInfo.Infos.push_back(PB); 315 } 316 317 // Process an assume instruction and place relevant operations we want to rename 318 // into OpsToRename. 319 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, 320 SmallPtrSetImpl<Value *> &OpsToRename) { 321 // See if we have a comparison we support 322 SmallVector<Value *, 8> CmpOperands; 323 SmallVector<Value *, 2> ConditionsToProcess; 324 CmpInst::Predicate Pred; 325 Value *Operand = II->getOperand(0); 326 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 327 m_Cmp(Pred, m_Value(), m_Value())) 328 .match(II->getOperand(0))) { 329 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 330 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 331 ConditionsToProcess.push_back(Operand); 332 } else if (isa<CmpInst>(Operand)) { 333 334 ConditionsToProcess.push_back(Operand); 335 } 336 for (auto Cond : ConditionsToProcess) { 337 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 338 collectCmpOps(Cmp, CmpOperands); 339 // Now add our copy infos for our operands 340 for (auto *Op : CmpOperands) { 341 auto *PA = new PredicateAssume(Op, II, Cmp); 342 addInfoFor(OpsToRename, Op, PA); 343 } 344 CmpOperands.clear(); 345 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 346 // Otherwise, it should be an AND. 347 assert(BinOp->getOpcode() == Instruction::And && 348 "Should have been an AND"); 349 auto *PA = new PredicateAssume(BinOp, II, BinOp); 350 addInfoFor(OpsToRename, BinOp, PA); 351 } else { 352 llvm_unreachable("Unknown type of condition"); 353 } 354 } 355 } 356 357 // Process a block terminating branch, and place relevant operations to be 358 // renamed into OpsToRename. 359 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, 360 SmallPtrSetImpl<Value *> &OpsToRename) { 361 BasicBlock *FirstBB = BI->getSuccessor(0); 362 BasicBlock *SecondBB = BI->getSuccessor(1); 363 SmallVector<BasicBlock *, 2> SuccsToProcess; 364 SuccsToProcess.push_back(FirstBB); 365 SuccsToProcess.push_back(SecondBB); 366 SmallVector<Value *, 2> ConditionsToProcess; 367 368 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 369 for (auto *Succ : SuccsToProcess) { 370 // Don't try to insert on a self-edge. This is mainly because we will 371 // eliminate during renaming anyway. 372 if (Succ == BranchBB) 373 continue; 374 bool TakenEdge = (Succ == FirstBB); 375 // For and, only insert on the true edge 376 // For or, only insert on the false edge 377 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 378 continue; 379 PredicateBase *PB = 380 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 381 addInfoFor(OpsToRename, Op, PB); 382 if (!Succ->getSinglePredecessor()) 383 EdgeUsesOnly.insert({BranchBB, Succ}); 384 } 385 }; 386 387 // Match combinations of conditions. 388 CmpInst::Predicate Pred; 389 bool isAnd = false; 390 bool isOr = false; 391 SmallVector<Value *, 8> CmpOperands; 392 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 393 m_Cmp(Pred, m_Value(), m_Value()))) || 394 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 395 m_Cmp(Pred, m_Value(), m_Value())))) { 396 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 397 if (BinOp->getOpcode() == Instruction::And) 398 isAnd = true; 399 else if (BinOp->getOpcode() == Instruction::Or) 400 isOr = true; 401 ConditionsToProcess.push_back(BinOp->getOperand(0)); 402 ConditionsToProcess.push_back(BinOp->getOperand(1)); 403 ConditionsToProcess.push_back(BI->getCondition()); 404 } else if (isa<CmpInst>(BI->getCondition())) { 405 ConditionsToProcess.push_back(BI->getCondition()); 406 } 407 for (auto Cond : ConditionsToProcess) { 408 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 409 collectCmpOps(Cmp, CmpOperands); 410 // Now add our copy infos for our operands 411 for (auto *Op : CmpOperands) 412 InsertHelper(Op, isAnd, isOr, Cmp); 413 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 414 // This must be an AND or an OR. 415 assert((BinOp->getOpcode() == Instruction::And || 416 BinOp->getOpcode() == Instruction::Or) && 417 "Should have been an AND or an OR"); 418 // The actual value of the binop is not subject to the same restrictions 419 // as the comparison. It's either true or false on the true/false branch. 420 InsertHelper(BinOp, false, false, BinOp); 421 } else { 422 llvm_unreachable("Unknown type of condition"); 423 } 424 CmpOperands.clear(); 425 } 426 } 427 // Process a block terminating switch, and place relevant operations to be 428 // renamed into OpsToRename. 429 void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB, 430 SmallPtrSetImpl<Value *> &OpsToRename) { 431 Value *Op = SI->getCondition(); 432 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 433 return; 434 435 // Remember how many outgoing edges there are to every successor. 436 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 437 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 438 BasicBlock *TargetBlock = SI->getSuccessor(i); 439 ++SwitchEdges[TargetBlock]; 440 } 441 442 // Now propagate info for each case value 443 for (auto C : SI->cases()) { 444 BasicBlock *TargetBlock = C.getCaseSuccessor(); 445 if (SwitchEdges.lookup(TargetBlock) == 1) { 446 PredicateSwitch *PS = new PredicateSwitch( 447 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 448 addInfoFor(OpsToRename, Op, PS); 449 if (!TargetBlock->getSinglePredecessor()) 450 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 451 } 452 } 453 } 454 455 // Build predicate info for our function 456 void PredicateInfo::buildPredicateInfo() { 457 DT.updateDFSNumbers(); 458 // Collect operands to rename from all conditional branch terminators, as well 459 // as assume statements. 460 SmallPtrSet<Value *, 8> OpsToRename; 461 for (auto DTN : depth_first(DT.getRootNode())) { 462 BasicBlock *BranchBB = DTN->getBlock(); 463 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 464 if (!BI->isConditional()) 465 continue; 466 // Can't insert conditional information if they all go to the same place. 467 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 468 continue; 469 processBranch(BI, BranchBB, OpsToRename); 470 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 471 processSwitch(SI, BranchBB, OpsToRename); 472 } 473 } 474 for (auto &Assume : AC.assumptions()) { 475 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 476 if (DT.isReachableFromEntry(II->getParent())) 477 processAssume(II, II->getParent(), OpsToRename); 478 } 479 // Now rename all our operations. 480 renameUses(OpsToRename); 481 } 482 483 // Create a ssa_copy declaration with custom mangling, because 484 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly: 485 // all unnamed types get mangled to the same string. We use the pointer 486 // to the type as name here, as it guarantees unique names for different 487 // types and we remove the declarations when destroying PredicateInfo. 488 // It is a workaround for PR38117, because solving it in a fully general way is 489 // tricky (FIXME). 490 static Function *getCopyDeclaration(Module *M, Type *Ty) { 491 std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty); 492 return cast<Function>( 493 M->getOrInsertFunction(Name, 494 getType(M->getContext(), Intrinsic::ssa_copy, Ty)) 495 .getCallee()); 496 } 497 498 // Given the renaming stack, make all the operands currently on the stack real 499 // by inserting them into the IR. Return the last operation's value. 500 Value *PredicateInfo::materializeStack(unsigned int &Counter, 501 ValueDFSStack &RenameStack, 502 Value *OrigOp) { 503 // Find the first thing we have to materialize 504 auto RevIter = RenameStack.rbegin(); 505 for (; RevIter != RenameStack.rend(); ++RevIter) 506 if (RevIter->Def) 507 break; 508 509 size_t Start = RevIter - RenameStack.rbegin(); 510 // The maximum number of things we should be trying to materialize at once 511 // right now is 4, depending on if we had an assume, a branch, and both used 512 // and of conditions. 513 for (auto RenameIter = RenameStack.end() - Start; 514 RenameIter != RenameStack.end(); ++RenameIter) { 515 auto *Op = 516 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 517 ValueDFS &Result = *RenameIter; 518 auto *ValInfo = Result.PInfo; 519 // For edge predicates, we can just place the operand in the block before 520 // the terminator. For assume, we have to place it right before the assume 521 // to ensure we dominate all of our uses. Always insert right before the 522 // relevant instruction (terminator, assume), so that we insert in proper 523 // order in the case of multiple predicateinfo in the same block. 524 if (isa<PredicateWithEdge>(ValInfo)) { 525 IRBuilder<> B(getBranchTerminator(ValInfo)); 526 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 527 if (empty(IF->users())) 528 CreatedDeclarations.insert(IF); 529 CallInst *PIC = 530 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 531 PredicateMap.insert({PIC, ValInfo}); 532 Result.Def = PIC; 533 } else { 534 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 535 assert(PAssume && 536 "Should not have gotten here without it being an assume"); 537 IRBuilder<> B(PAssume->AssumeInst); 538 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 539 if (empty(IF->users())) 540 CreatedDeclarations.insert(IF); 541 CallInst *PIC = B.CreateCall(IF, Op); 542 PredicateMap.insert({PIC, ValInfo}); 543 Result.Def = PIC; 544 } 545 } 546 return RenameStack.back().Def; 547 } 548 549 // Instead of the standard SSA renaming algorithm, which is O(Number of 550 // instructions), and walks the entire dominator tree, we walk only the defs + 551 // uses. The standard SSA renaming algorithm does not really rely on the 552 // dominator tree except to order the stack push/pops of the renaming stacks, so 553 // that defs end up getting pushed before hitting the correct uses. This does 554 // not require the dominator tree, only the *order* of the dominator tree. The 555 // complete and correct ordering of the defs and uses, in dominator tree is 556 // contained in the DFS numbering of the dominator tree. So we sort the defs and 557 // uses into the DFS ordering, and then just use the renaming stack as per 558 // normal, pushing when we hit a def (which is a predicateinfo instruction), 559 // popping when we are out of the dfs scope for that def, and replacing any uses 560 // with top of stack if it exists. In order to handle liveness without 561 // propagating liveness info, we don't actually insert the predicateinfo 562 // instruction def until we see a use that it would dominate. Once we see such 563 // a use, we materialize the predicateinfo instruction in the right place and 564 // use it. 565 // 566 // TODO: Use this algorithm to perform fast single-variable renaming in 567 // promotememtoreg and memoryssa. 568 void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpSet) { 569 // Sort OpsToRename since we are going to iterate it. 570 SmallVector<Value *, 8> OpsToRename(OpSet.begin(), OpSet.end()); 571 auto Comparator = [&](const Value *A, const Value *B) { 572 return valueComesBefore(OI, A, B); 573 }; 574 llvm::sort(OpsToRename, Comparator); 575 ValueDFS_Compare Compare(OI); 576 // Compute liveness, and rename in O(uses) per Op. 577 for (auto *Op : OpsToRename) { 578 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 579 unsigned Counter = 0; 580 SmallVector<ValueDFS, 16> OrderedUses; 581 const auto &ValueInfo = getValueInfo(Op); 582 // Insert the possible copies into the def/use list. 583 // They will become real copies if we find a real use for them, and never 584 // created otherwise. 585 for (auto &PossibleCopy : ValueInfo.Infos) { 586 ValueDFS VD; 587 // Determine where we are going to place the copy by the copy type. 588 // The predicate info for branches always come first, they will get 589 // materialized in the split block at the top of the block. 590 // The predicate info for assumes will be somewhere in the middle, 591 // it will get materialized in front of the assume. 592 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 593 VD.LocalNum = LN_Middle; 594 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 595 if (!DomNode) 596 continue; 597 VD.DFSIn = DomNode->getDFSNumIn(); 598 VD.DFSOut = DomNode->getDFSNumOut(); 599 VD.PInfo = PossibleCopy; 600 OrderedUses.push_back(VD); 601 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 602 // If we can only do phi uses, we treat it like it's in the branch 603 // block, and handle it specially. We know that it goes last, and only 604 // dominate phi uses. 605 auto BlockEdge = getBlockEdge(PossibleCopy); 606 if (EdgeUsesOnly.count(BlockEdge)) { 607 VD.LocalNum = LN_Last; 608 auto *DomNode = DT.getNode(BlockEdge.first); 609 if (DomNode) { 610 VD.DFSIn = DomNode->getDFSNumIn(); 611 VD.DFSOut = DomNode->getDFSNumOut(); 612 VD.PInfo = PossibleCopy; 613 VD.EdgeOnly = true; 614 OrderedUses.push_back(VD); 615 } 616 } else { 617 // Otherwise, we are in the split block (even though we perform 618 // insertion in the branch block). 619 // Insert a possible copy at the split block and before the branch. 620 VD.LocalNum = LN_First; 621 auto *DomNode = DT.getNode(BlockEdge.second); 622 if (DomNode) { 623 VD.DFSIn = DomNode->getDFSNumIn(); 624 VD.DFSOut = DomNode->getDFSNumOut(); 625 VD.PInfo = PossibleCopy; 626 OrderedUses.push_back(VD); 627 } 628 } 629 } 630 } 631 632 convertUsesToDFSOrdered(Op, OrderedUses); 633 // Here we require a stable sort because we do not bother to try to 634 // assign an order to the operands the uses represent. Thus, two 635 // uses in the same instruction do not have a strict sort order 636 // currently and will be considered equal. We could get rid of the 637 // stable sort by creating one if we wanted. 638 llvm::stable_sort(OrderedUses, Compare); 639 SmallVector<ValueDFS, 8> RenameStack; 640 // For each use, sorted into dfs order, push values and replaces uses with 641 // top of stack, which will represent the reaching def. 642 for (auto &VD : OrderedUses) { 643 // We currently do not materialize copy over copy, but we should decide if 644 // we want to. 645 bool PossibleCopy = VD.PInfo != nullptr; 646 if (RenameStack.empty()) { 647 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 648 } else { 649 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 650 << RenameStack.back().DFSIn << "," 651 << RenameStack.back().DFSOut << ")\n"); 652 } 653 654 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 655 << VD.DFSOut << ")\n"); 656 657 bool ShouldPush = (VD.Def || PossibleCopy); 658 bool OutOfScope = !stackIsInScope(RenameStack, VD); 659 if (OutOfScope || ShouldPush) { 660 // Sync to our current scope. 661 popStackUntilDFSScope(RenameStack, VD); 662 if (ShouldPush) { 663 RenameStack.push_back(VD); 664 } 665 } 666 // If we get to this point, and the stack is empty we must have a use 667 // with no renaming needed, just skip it. 668 if (RenameStack.empty()) 669 continue; 670 // Skip values, only want to rename the uses 671 if (VD.Def || PossibleCopy) 672 continue; 673 if (!DebugCounter::shouldExecute(RenameCounter)) { 674 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 675 continue; 676 } 677 ValueDFS &Result = RenameStack.back(); 678 679 // If the possible copy dominates something, materialize our stack up to 680 // this point. This ensures every comparison that affects our operation 681 // ends up with predicateinfo. 682 if (!Result.Def) 683 Result.Def = materializeStack(Counter, RenameStack, Op); 684 685 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 686 << *VD.U->get() << " in " << *(VD.U->getUser()) 687 << "\n"); 688 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 689 "Predicateinfo def should have dominated this use"); 690 VD.U->set(Result.Def); 691 } 692 } 693 } 694 695 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { 696 auto OIN = ValueInfoNums.find(Operand); 697 if (OIN == ValueInfoNums.end()) { 698 // This will grow it 699 ValueInfos.resize(ValueInfos.size() + 1); 700 // This will use the new size and give us a 0 based number of the info 701 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 702 assert(InsertResult.second && "Value info number already existed?"); 703 return ValueInfos[InsertResult.first->second]; 704 } 705 return ValueInfos[OIN->second]; 706 } 707 708 const PredicateInfo::ValueInfo & 709 PredicateInfo::getValueInfo(Value *Operand) const { 710 auto OINI = ValueInfoNums.lookup(Operand); 711 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 712 assert(OINI < ValueInfos.size() && 713 "Value Info Number greater than size of Value Info Table"); 714 return ValueInfos[OINI]; 715 } 716 717 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 718 AssumptionCache &AC) 719 : F(F), DT(DT), AC(AC), OI(&DT) { 720 // Push an empty operand info so that we can detect 0 as not finding one 721 ValueInfos.resize(1); 722 buildPredicateInfo(); 723 } 724 725 // Remove all declarations we created . The PredicateInfo consumers are 726 // responsible for remove the ssa_copy calls created. 727 PredicateInfo::~PredicateInfo() { 728 // Collect function pointers in set first, as SmallSet uses a SmallVector 729 // internally and we have to remove the asserting value handles first. 730 SmallPtrSet<Function *, 20> FunctionPtrs; 731 for (auto &F : CreatedDeclarations) 732 FunctionPtrs.insert(&*F); 733 CreatedDeclarations.clear(); 734 735 for (Function *F : FunctionPtrs) { 736 assert(F->user_begin() == F->user_end() && 737 "PredicateInfo consumer did not remove all SSA copies."); 738 F->eraseFromParent(); 739 } 740 } 741 742 void PredicateInfo::verifyPredicateInfo() const {} 743 744 char PredicateInfoPrinterLegacyPass::ID = 0; 745 746 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 747 : FunctionPass(ID) { 748 initializePredicateInfoPrinterLegacyPassPass( 749 *PassRegistry::getPassRegistry()); 750 } 751 752 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 753 AU.setPreservesAll(); 754 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 755 AU.addRequired<AssumptionCacheTracker>(); 756 } 757 758 // Replace ssa_copy calls created by PredicateInfo with their operand. 759 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 760 for (auto I = inst_begin(F), E = inst_end(F); I != E;) { 761 Instruction *Inst = &*I++; 762 const auto *PI = PredInfo.getPredicateInfoFor(Inst); 763 auto *II = dyn_cast<IntrinsicInst>(Inst); 764 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 765 continue; 766 767 Inst->replaceAllUsesWith(II->getOperand(0)); 768 Inst->eraseFromParent(); 769 } 770 } 771 772 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 773 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 774 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 775 auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); 776 PredInfo->print(dbgs()); 777 if (VerifyPredicateInfo) 778 PredInfo->verifyPredicateInfo(); 779 780 replaceCreatedSSACopys(*PredInfo, F); 781 return false; 782 } 783 784 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 785 FunctionAnalysisManager &AM) { 786 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 787 auto &AC = AM.getResult<AssumptionAnalysis>(F); 788 OS << "PredicateInfo for function: " << F.getName() << "\n"; 789 auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); 790 PredInfo->print(OS); 791 792 replaceCreatedSSACopys(*PredInfo, F); 793 return PreservedAnalyses::all(); 794 } 795 796 /// An assembly annotator class to print PredicateInfo information in 797 /// comments. 798 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 799 friend class PredicateInfo; 800 const PredicateInfo *PredInfo; 801 802 public: 803 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 804 805 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 806 formatted_raw_ostream &OS) {} 807 808 virtual void emitInstructionAnnot(const Instruction *I, 809 formatted_raw_ostream &OS) { 810 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 811 OS << "; Has predicate info\n"; 812 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 813 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 814 << " Comparison:" << *PB->Condition << " Edge: ["; 815 PB->From->printAsOperand(OS); 816 OS << ","; 817 PB->To->printAsOperand(OS); 818 OS << "] }\n"; 819 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 820 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 821 << " Switch:" << *PS->Switch << " Edge: ["; 822 PS->From->printAsOperand(OS); 823 OS << ","; 824 PS->To->printAsOperand(OS); 825 OS << "] }\n"; 826 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 827 OS << "; assume predicate info {" 828 << " Comparison:" << *PA->Condition << " }\n"; 829 } 830 } 831 } 832 }; 833 834 void PredicateInfo::print(raw_ostream &OS) const { 835 PredicateInfoAnnotatedWriter Writer(this); 836 F.print(OS, &Writer); 837 } 838 839 void PredicateInfo::dump() const { 840 PredicateInfoAnnotatedWriter Writer(this); 841 F.print(dbgs(), &Writer); 842 } 843 844 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 845 FunctionAnalysisManager &AM) { 846 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 847 auto &AC = AM.getResult<AssumptionAnalysis>(F); 848 make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 849 850 return PreservedAnalyses::all(); 851 } 852 } 853