1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LowerSwitch transformation rewrites switch instructions with a sequence 10 // of branches, which allows targets to get away with not implementing the 11 // switch instruction until it is convenient. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/LowerSwitch.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/LazyValueInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/PassManager.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <limits> 46 #include <vector> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "lower-switch" 51 52 namespace { 53 54 struct IntRange { 55 APInt Low, High; 56 }; 57 58 } // end anonymous namespace 59 60 namespace { 61 // Return true iff R is covered by Ranges. 62 bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) { 63 // Note: Ranges must be sorted, non-overlapping and non-adjacent. 64 65 // Find the first range whose High field is >= R.High, 66 // then check if the Low field is <= R.Low. If so, we 67 // have a Range that covers R. 68 auto I = llvm::lower_bound( 69 Ranges, R, [](IntRange A, IntRange B) { return A.High.slt(B.High); }); 70 return I != Ranges.end() && I->Low.sle(R.Low); 71 } 72 73 struct CaseRange { 74 ConstantInt *Low; 75 ConstantInt *High; 76 BasicBlock *BB; 77 78 CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) 79 : Low(low), High(high), BB(bb) {} 80 }; 81 82 using CaseVector = std::vector<CaseRange>; 83 using CaseItr = std::vector<CaseRange>::iterator; 84 85 /// The comparison function for sorting the switch case values in the vector. 86 /// WARNING: Case ranges should be disjoint! 87 struct CaseCmp { 88 bool operator()(const CaseRange &C1, const CaseRange &C2) { 89 const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low); 90 const ConstantInt *CI2 = cast<const ConstantInt>(C2.High); 91 return CI1->getValue().slt(CI2->getValue()); 92 } 93 }; 94 95 /// Used for debugging purposes. 96 LLVM_ATTRIBUTE_USED 97 raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { 98 O << "["; 99 100 for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { 101 O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]"; 102 if (++B != E) 103 O << ", "; 104 } 105 106 return O << "]"; 107 } 108 109 /// Update the first occurrence of the "switch statement" BB in the PHI 110 /// node with the "new" BB. The other occurrences will: 111 /// 112 /// 1) Be updated by subsequent calls to this function. Switch statements may 113 /// have more than one outcoming edge into the same BB if they all have the same 114 /// value. When the switch statement is converted these incoming edges are now 115 /// coming from multiple BBs. 116 /// 2) Removed if subsequent incoming values now share the same case, i.e., 117 /// multiple outcome edges are condensed into one. This is necessary to keep the 118 /// number of phi values equal to the number of branches to SuccBB. 119 void FixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, 120 const APInt &NumMergedCases) { 121 for (auto &I : SuccBB->phis()) { 122 PHINode *PN = cast<PHINode>(&I); 123 124 // Only update the first occurrence if NewBB exists. 125 unsigned Idx = 0, E = PN->getNumIncomingValues(); 126 APInt LocalNumMergedCases = NumMergedCases; 127 for (; Idx != E && NewBB; ++Idx) { 128 if (PN->getIncomingBlock(Idx) == OrigBB) { 129 PN->setIncomingBlock(Idx, NewBB); 130 break; 131 } 132 } 133 134 // Skip the updated incoming block so that it will not be removed. 135 if (NewBB) 136 ++Idx; 137 138 // Remove additional occurrences coming from condensed cases and keep the 139 // number of incoming values equal to the number of branches to SuccBB. 140 SmallVector<unsigned, 8> Indices; 141 for (; LocalNumMergedCases.ugt(0) && Idx < E; ++Idx) 142 if (PN->getIncomingBlock(Idx) == OrigBB) { 143 Indices.push_back(Idx); 144 LocalNumMergedCases -= 1; 145 } 146 // Remove incoming values in the reverse order to prevent invalidating 147 // *successive* index. 148 for (unsigned III : llvm::reverse(Indices)) 149 PN->removeIncomingValue(III); 150 } 151 } 152 153 /// Create a new leaf block for the binary lookup tree. It checks if the 154 /// switch's value == the case's value. If not, then it jumps to the default 155 /// branch. At this point in the tree, the value can't be another valid case 156 /// value, so the jump to the "default" branch is warranted. 157 BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, 158 ConstantInt *UpperBound, BasicBlock *OrigBlock, 159 BasicBlock *Default) { 160 Function *F = OrigBlock->getParent(); 161 BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); 162 F->insert(++OrigBlock->getIterator(), NewLeaf); 163 164 // Emit comparison 165 ICmpInst *Comp = nullptr; 166 if (Leaf.Low == Leaf.High) { 167 // Make the seteq instruction... 168 Comp = 169 new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); 170 } else { 171 // Make range comparison 172 if (Leaf.Low == LowerBound) { 173 // Val >= Min && Val <= Hi --> Val <= Hi 174 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, 175 "SwitchLeaf"); 176 } else if (Leaf.High == UpperBound) { 177 // Val <= Max && Val >= Lo --> Val >= Lo 178 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, 179 "SwitchLeaf"); 180 } else if (Leaf.Low->isZero()) { 181 // Val >= 0 && Val <= Hi --> Val <=u Hi 182 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, 183 "SwitchLeaf"); 184 } else { 185 // Emit V-Lo <=u Hi-Lo 186 Constant *NegLo = ConstantExpr::getNeg(Leaf.Low); 187 Instruction *Add = BinaryOperator::CreateAdd( 188 Val, NegLo, Val->getName() + ".off", NewLeaf); 189 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); 190 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, 191 "SwitchLeaf"); 192 } 193 } 194 195 // Make the conditional branch... 196 BasicBlock *Succ = Leaf.BB; 197 BranchInst::Create(Succ, Default, Comp, NewLeaf); 198 199 // Update the PHI incoming value/block for the default. 200 for (auto &I : Default->phis()) { 201 PHINode *PN = cast<PHINode>(&I); 202 auto *V = PN->getIncomingValueForBlock(OrigBlock); 203 PN->addIncoming(V, NewLeaf); 204 } 205 206 // If there were any PHI nodes in this successor, rewrite one entry 207 // from OrigBlock to come from NewLeaf. 208 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 209 PHINode *PN = cast<PHINode>(I); 210 // Remove all but one incoming entries from the cluster 211 APInt Range = Leaf.High->getValue() - Leaf.Low->getValue(); 212 for (APInt j(Range.getBitWidth(), 0, true); j.slt(Range); ++j) { 213 PN->removeIncomingValue(OrigBlock); 214 } 215 216 int BlockIdx = PN->getBasicBlockIndex(OrigBlock); 217 assert(BlockIdx != -1 && "Switch didn't go to this successor??"); 218 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); 219 } 220 221 return NewLeaf; 222 } 223 224 /// Convert the switch statement into a binary lookup of the case values. 225 /// The function recursively builds this tree. LowerBound and UpperBound are 226 /// used to keep track of the bounds for Val that have already been checked by 227 /// a block emitted by one of the previous calls to switchConvert in the call 228 /// stack. 229 BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, 230 ConstantInt *UpperBound, Value *Val, 231 BasicBlock *Predecessor, BasicBlock *OrigBlock, 232 BasicBlock *Default, 233 const std::vector<IntRange> &UnreachableRanges) { 234 assert(LowerBound && UpperBound && "Bounds must be initialized"); 235 unsigned Size = End - Begin; 236 237 if (Size == 1) { 238 // Check if the Case Range is perfectly squeezed in between 239 // already checked Upper and Lower bounds. If it is then we can avoid 240 // emitting the code that checks if the value actually falls in the range 241 // because the bounds already tell us so. 242 if (Begin->Low == LowerBound && Begin->High == UpperBound) { 243 APInt NumMergedCases = UpperBound->getValue() - LowerBound->getValue(); 244 FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); 245 return Begin->BB; 246 } 247 return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock, 248 Default); 249 } 250 251 unsigned Mid = Size / 2; 252 std::vector<CaseRange> LHS(Begin, Begin + Mid); 253 LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); 254 std::vector<CaseRange> RHS(Begin + Mid, End); 255 LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); 256 257 CaseRange &Pivot = *(Begin + Mid); 258 LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " 259 << Pivot.High->getValue() << "]\n"); 260 261 // NewLowerBound here should never be the integer minimal value. 262 // This is because it is computed from a case range that is never 263 // the smallest, so there is always a case range that has at least 264 // a smaller value. 265 ConstantInt *NewLowerBound = Pivot.Low; 266 267 // Because NewLowerBound is never the smallest representable integer 268 // it is safe here to subtract one. 269 ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), 270 NewLowerBound->getValue() - 1); 271 272 if (!UnreachableRanges.empty()) { 273 // Check if the gap between LHS's highest and NewLowerBound is unreachable. 274 APInt GapLow = LHS.back().High->getValue() + 1; 275 APInt GapHigh = NewLowerBound->getValue() - 1; 276 IntRange Gap = {GapLow, GapHigh}; 277 if (GapHigh.sge(GapLow) && IsInRanges(Gap, UnreachableRanges)) 278 NewUpperBound = LHS.back().High; 279 } 280 281 LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getValue() << ", " 282 << NewUpperBound->getValue() << "]\n" 283 << "RHS Bounds ==> [" << NewLowerBound->getValue() << ", " 284 << UpperBound->getValue() << "]\n"); 285 286 // Create a new node that checks if the value is < pivot. Go to the 287 // left branch if it is and right branch if not. 288 Function *F = OrigBlock->getParent(); 289 BasicBlock *NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); 290 291 ICmpInst *Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot"); 292 293 BasicBlock *LBranch = 294 SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val, 295 NewNode, OrigBlock, Default, UnreachableRanges); 296 BasicBlock *RBranch = 297 SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val, 298 NewNode, OrigBlock, Default, UnreachableRanges); 299 300 F->insert(++OrigBlock->getIterator(), NewNode); 301 Comp->insertInto(NewNode, NewNode->end()); 302 303 BranchInst::Create(LBranch, RBranch, Comp, NewNode); 304 return NewNode; 305 } 306 307 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. 308 /// \post \p Cases wouldn't contain references to \p SI's default BB. 309 /// \returns Number of \p SI's cases that do not reference \p SI's default BB. 310 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { 311 unsigned NumSimpleCases = 0; 312 313 // Start with "simple" cases 314 for (auto Case : SI->cases()) { 315 if (Case.getCaseSuccessor() == SI->getDefaultDest()) 316 continue; 317 Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), 318 Case.getCaseSuccessor())); 319 ++NumSimpleCases; 320 } 321 322 llvm::sort(Cases, CaseCmp()); 323 324 // Merge case into clusters 325 if (Cases.size() >= 2) { 326 CaseItr I = Cases.begin(); 327 for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { 328 const APInt &nextValue = J->Low->getValue(); 329 const APInt ¤tValue = I->High->getValue(); 330 BasicBlock *nextBB = J->BB; 331 BasicBlock *currentBB = I->BB; 332 333 // If the two neighboring cases go to the same destination, merge them 334 // into a single case. 335 assert(nextValue.sgt(currentValue) && 336 "Cases should be strictly ascending"); 337 if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { 338 I->High = J->High; 339 // FIXME: Combine branch weights. 340 } else if (++I != J) { 341 *I = *J; 342 } 343 } 344 Cases.erase(std::next(I), Cases.end()); 345 } 346 347 return NumSimpleCases; 348 } 349 350 /// Replace the specified switch instruction with a sequence of chained if-then 351 /// insts in a balanced binary search. 352 void ProcessSwitchInst(SwitchInst *SI, 353 SmallPtrSetImpl<BasicBlock *> &DeleteList, 354 AssumptionCache *AC, LazyValueInfo *LVI) { 355 BasicBlock *OrigBlock = SI->getParent(); 356 Function *F = OrigBlock->getParent(); 357 Value *Val = SI->getCondition(); // The value we are switching on... 358 BasicBlock *Default = SI->getDefaultDest(); 359 360 // Don't handle unreachable blocks. If there are successors with phis, this 361 // would leave them behind with missing predecessors. 362 if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) || 363 OrigBlock->getSinglePredecessor() == OrigBlock) { 364 DeleteList.insert(OrigBlock); 365 return; 366 } 367 368 // Prepare cases vector. 369 CaseVector Cases; 370 const unsigned NumSimpleCases = Clusterify(Cases, SI); 371 IntegerType *IT = cast<IntegerType>(SI->getCondition()->getType()); 372 const unsigned BitWidth = IT->getBitWidth(); 373 // Explictly use higher precision to prevent unsigned overflow where 374 // `UnsignedMax - 0 + 1 == 0` 375 APInt UnsignedZero(BitWidth + 1, 0); 376 APInt UnsignedMax = APInt::getMaxValue(BitWidth); 377 LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 378 << ". Total non-default cases: " << NumSimpleCases 379 << "\nCase clusters: " << Cases << "\n"); 380 381 // If there is only the default destination, just branch. 382 if (Cases.empty()) { 383 BranchInst::Create(Default, OrigBlock); 384 // Remove all the references from Default's PHIs to OrigBlock, but one. 385 FixPhis(Default, OrigBlock, OrigBlock, UnsignedMax); 386 SI->eraseFromParent(); 387 return; 388 } 389 390 ConstantInt *LowerBound = nullptr; 391 ConstantInt *UpperBound = nullptr; 392 bool DefaultIsUnreachableFromSwitch = false; 393 394 if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { 395 // Make the bounds tightly fitted around the case value range, because we 396 // know that the value passed to the switch must be exactly one of the case 397 // values. 398 LowerBound = Cases.front().Low; 399 UpperBound = Cases.back().High; 400 DefaultIsUnreachableFromSwitch = true; 401 } else { 402 // Constraining the range of the value being switched over helps eliminating 403 // unreachable BBs and minimizing the number of `add` instructions 404 // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after 405 // LowerSwitch isn't as good, and also much more expensive in terms of 406 // compile time for the following reasons: 407 // 1. it processes many kinds of instructions, not just switches; 408 // 2. even if limited to icmp instructions only, it will have to process 409 // roughly C icmp's per switch, where C is the number of cases in the 410 // switch, while LowerSwitch only needs to call LVI once per switch. 411 const DataLayout &DL = F->getParent()->getDataLayout(); 412 KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI); 413 // TODO Shouldn't this create a signed range? 414 ConstantRange KnownBitsRange = 415 ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); 416 const ConstantRange LVIRange = LVI->getConstantRange(Val, SI); 417 ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange); 418 // We delegate removal of unreachable non-default cases to other passes. In 419 // the unlikely event that some of them survived, we just conservatively 420 // maintain the invariant that all the cases lie between the bounds. This 421 // may, however, still render the default case effectively unreachable. 422 const APInt &Low = Cases.front().Low->getValue(); 423 const APInt &High = Cases.back().High->getValue(); 424 APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low); 425 APInt Max = APIntOps::smax(ValRange.getSignedMax(), High); 426 427 LowerBound = ConstantInt::get(SI->getContext(), Min); 428 UpperBound = ConstantInt::get(SI->getContext(), Max); 429 DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); 430 } 431 432 std::vector<IntRange> UnreachableRanges; 433 434 if (DefaultIsUnreachableFromSwitch) { 435 DenseMap<BasicBlock *, APInt> Popularity; 436 APInt MaxPop(UnsignedZero); 437 BasicBlock *PopSucc = nullptr; 438 439 APInt SignedMax = APInt::getSignedMaxValue(BitWidth); 440 APInt SignedMin = APInt::getSignedMinValue(BitWidth); 441 IntRange R = {SignedMin, SignedMax}; 442 UnreachableRanges.push_back(R); 443 for (const auto &I : Cases) { 444 const APInt &Low = I.Low->getValue(); 445 const APInt &High = I.High->getValue(); 446 447 IntRange &LastRange = UnreachableRanges.back(); 448 if (LastRange.Low.eq(Low)) { 449 // There is nothing left of the previous range. 450 UnreachableRanges.pop_back(); 451 } else { 452 // Terminate the previous range. 453 assert(Low.sgt(LastRange.Low)); 454 LastRange.High = Low - 1; 455 } 456 if (High.ne(SignedMax)) { 457 IntRange R = {High + 1, SignedMax}; 458 UnreachableRanges.push_back(R); 459 } 460 461 // Count popularity. 462 assert(High.sge(Low) && "Popularity shouldn't be negative."); 463 APInt N = High.sext(BitWidth + 1) - Low.sext(BitWidth + 1) + 1; 464 // Explict insert to make sure the bitwidth of APInts match 465 APInt &Pop = Popularity.insert({I.BB, APInt(UnsignedZero)}).first->second; 466 if ((Pop += N).ugt(MaxPop)) { 467 MaxPop = Pop; 468 PopSucc = I.BB; 469 } 470 } 471 #ifndef NDEBUG 472 /* UnreachableRanges should be sorted and the ranges non-adjacent. */ 473 for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); 474 I != E; ++I) { 475 assert(I->Low.sle(I->High)); 476 auto Next = I + 1; 477 if (Next != E) { 478 assert(Next->Low.sgt(I->High)); 479 } 480 } 481 #endif 482 483 // As the default block in the switch is unreachable, update the PHI nodes 484 // (remove all of the references to the default block) to reflect this. 485 const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; 486 for (unsigned I = 0; I < NumDefaultEdges; ++I) 487 Default->removePredecessor(OrigBlock); 488 489 // Use the most popular block as the new default, reducing the number of 490 // cases. 491 Default = PopSucc; 492 llvm::erase_if(Cases, 493 [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); 494 495 // If there are no cases left, just branch. 496 if (Cases.empty()) { 497 BranchInst::Create(Default, OrigBlock); 498 SI->eraseFromParent(); 499 // As all the cases have been replaced with a single branch, only keep 500 // one entry in the PHI nodes. 501 if (!MaxPop.isZero()) 502 for (APInt I(UnsignedZero); I.ult(MaxPop - 1); ++I) 503 PopSucc->removePredecessor(OrigBlock); 504 return; 505 } 506 507 // If the condition was a PHI node with the switch block as a predecessor 508 // removing predecessors may have caused the condition to be erased. 509 // Getting the condition value again here protects against that. 510 Val = SI->getCondition(); 511 } 512 513 BasicBlock *SwitchBlock = 514 SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, 515 OrigBlock, OrigBlock, Default, UnreachableRanges); 516 517 // We have added incoming values for newly-created predecessors in 518 // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to 519 // remove the incoming values from OrigBlock. There might be a special case 520 // that SwitchBlock is the same as Default, under which the PHIs in Default 521 // are fixed inside SwitchConvert(). 522 if (SwitchBlock != Default) 523 FixPhis(Default, OrigBlock, nullptr, UnsignedMax); 524 525 // Branch to our shiny new if-then stuff... 526 BranchInst::Create(SwitchBlock, OrigBlock); 527 528 // We are now done with the switch instruction, delete it. 529 BasicBlock *OldDefault = SI->getDefaultDest(); 530 SI->eraseFromParent(); 531 532 // If the Default block has no more predecessors just add it to DeleteList. 533 if (pred_empty(OldDefault)) 534 DeleteList.insert(OldDefault); 535 } 536 537 bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { 538 bool Changed = false; 539 SmallPtrSet<BasicBlock *, 8> DeleteList; 540 541 // We use make_early_inc_range here so that we don't traverse new blocks. 542 for (BasicBlock &Cur : llvm::make_early_inc_range(F)) { 543 // If the block is a dead Default block that will be deleted later, don't 544 // waste time processing it. 545 if (DeleteList.count(&Cur)) 546 continue; 547 548 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) { 549 Changed = true; 550 ProcessSwitchInst(SI, DeleteList, AC, LVI); 551 } 552 } 553 554 for (BasicBlock *BB : DeleteList) { 555 LVI->eraseBlock(BB); 556 DeleteDeadBlock(BB); 557 } 558 559 return Changed; 560 } 561 562 /// Replace all SwitchInst instructions with chained branch instructions. 563 class LowerSwitchLegacyPass : public FunctionPass { 564 public: 565 // Pass identification, replacement for typeid 566 static char ID; 567 568 LowerSwitchLegacyPass() : FunctionPass(ID) { 569 initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); 570 } 571 572 bool runOnFunction(Function &F) override; 573 574 void getAnalysisUsage(AnalysisUsage &AU) const override { 575 AU.addRequired<LazyValueInfoWrapperPass>(); 576 } 577 }; 578 579 } // end anonymous namespace 580 581 char LowerSwitchLegacyPass::ID = 0; 582 583 // Publicly exposed interface to pass... 584 char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; 585 586 INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch", 587 "Lower SwitchInst's to branches", false, false) 588 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 589 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 590 INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch", 591 "Lower SwitchInst's to branches", false, false) 592 593 // createLowerSwitchPass - Interface to this file... 594 FunctionPass *llvm::createLowerSwitchPass() { 595 return new LowerSwitchLegacyPass(); 596 } 597 598 bool LowerSwitchLegacyPass::runOnFunction(Function &F) { 599 LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 600 auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); 601 AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; 602 return LowerSwitch(F, LVI, AC); 603 } 604 605 PreservedAnalyses LowerSwitchPass::run(Function &F, 606 FunctionAnalysisManager &AM) { 607 LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); 608 AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F); 609 return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() 610 : PreservedAnalyses::all(); 611 } 612