1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LowerSwitch transformation rewrites switch instructions with a sequence 10 // of branches, which allows targets to get away with not implementing the 11 // switch instruction until it is convenient. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/LowerSwitch.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/LazyValueInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/PassManager.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <limits> 46 #include <vector> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "lower-switch" 51 52 namespace { 53 54 struct IntRange { 55 int64_t Low, High; 56 }; 57 58 } // end anonymous namespace 59 60 namespace { 61 // Return true iff R is covered by Ranges. 62 bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) { 63 // Note: Ranges must be sorted, non-overlapping and non-adjacent. 64 65 // Find the first range whose High field is >= R.High, 66 // then check if the Low field is <= R.Low. If so, we 67 // have a Range that covers R. 68 auto I = llvm::lower_bound( 69 Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; }); 70 return I != Ranges.end() && I->Low <= R.Low; 71 } 72 73 struct CaseRange { 74 ConstantInt *Low; 75 ConstantInt *High; 76 BasicBlock *BB; 77 78 CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) 79 : Low(low), High(high), BB(bb) {} 80 }; 81 82 using CaseVector = std::vector<CaseRange>; 83 using CaseItr = std::vector<CaseRange>::iterator; 84 85 /// The comparison function for sorting the switch case values in the vector. 86 /// WARNING: Case ranges should be disjoint! 87 struct CaseCmp { 88 bool operator()(const CaseRange &C1, const CaseRange &C2) { 89 const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low); 90 const ConstantInt *CI2 = cast<const ConstantInt>(C2.High); 91 return CI1->getValue().slt(CI2->getValue()); 92 } 93 }; 94 95 /// Used for debugging purposes. 96 LLVM_ATTRIBUTE_USED 97 raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { 98 O << "["; 99 100 for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { 101 O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]"; 102 if (++B != E) 103 O << ", "; 104 } 105 106 return O << "]"; 107 } 108 109 /// Update the first occurrence of the "switch statement" BB in the PHI 110 /// node with the "new" BB. The other occurrences will: 111 /// 112 /// 1) Be updated by subsequent calls to this function. Switch statements may 113 /// have more than one outcoming edge into the same BB if they all have the same 114 /// value. When the switch statement is converted these incoming edges are now 115 /// coming from multiple BBs. 116 /// 2) Removed if subsequent incoming values now share the same case, i.e., 117 /// multiple outcome edges are condensed into one. This is necessary to keep the 118 /// number of phi values equal to the number of branches to SuccBB. 119 void FixPhis( 120 BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, 121 const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) { 122 for (auto &I : SuccBB->phis()) { 123 PHINode *PN = cast<PHINode>(&I); 124 125 // Only update the first occurrence if NewBB exists. 126 unsigned Idx = 0, E = PN->getNumIncomingValues(); 127 unsigned LocalNumMergedCases = NumMergedCases; 128 for (; Idx != E && NewBB; ++Idx) { 129 if (PN->getIncomingBlock(Idx) == OrigBB) { 130 PN->setIncomingBlock(Idx, NewBB); 131 break; 132 } 133 } 134 135 // Skip the updated incoming block so that it will not be removed. 136 if (NewBB) 137 ++Idx; 138 139 // Remove additional occurrences coming from condensed cases and keep the 140 // number of incoming values equal to the number of branches to SuccBB. 141 SmallVector<unsigned, 8> Indices; 142 for (; LocalNumMergedCases > 0 && Idx < E; ++Idx) 143 if (PN->getIncomingBlock(Idx) == OrigBB) { 144 Indices.push_back(Idx); 145 LocalNumMergedCases--; 146 } 147 // Remove incoming values in the reverse order to prevent invalidating 148 // *successive* index. 149 for (unsigned III : llvm::reverse(Indices)) 150 PN->removeIncomingValue(III); 151 } 152 } 153 154 /// Create a new leaf block for the binary lookup tree. It checks if the 155 /// switch's value == the case's value. If not, then it jumps to the default 156 /// branch. At this point in the tree, the value can't be another valid case 157 /// value, so the jump to the "default" branch is warranted. 158 BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, 159 ConstantInt *UpperBound, BasicBlock *OrigBlock, 160 BasicBlock *Default) { 161 Function *F = OrigBlock->getParent(); 162 BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); 163 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf); 164 165 // Emit comparison 166 ICmpInst *Comp = nullptr; 167 if (Leaf.Low == Leaf.High) { 168 // Make the seteq instruction... 169 Comp = 170 new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); 171 } else { 172 // Make range comparison 173 if (Leaf.Low == LowerBound) { 174 // Val >= Min && Val <= Hi --> Val <= Hi 175 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, 176 "SwitchLeaf"); 177 } else if (Leaf.High == UpperBound) { 178 // Val <= Max && Val >= Lo --> Val >= Lo 179 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, 180 "SwitchLeaf"); 181 } else if (Leaf.Low->isZero()) { 182 // Val >= 0 && Val <= Hi --> Val <=u Hi 183 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, 184 "SwitchLeaf"); 185 } else { 186 // Emit V-Lo <=u Hi-Lo 187 Constant *NegLo = ConstantExpr::getNeg(Leaf.Low); 188 Instruction *Add = BinaryOperator::CreateAdd( 189 Val, NegLo, Val->getName() + ".off", NewLeaf); 190 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); 191 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, 192 "SwitchLeaf"); 193 } 194 } 195 196 // Make the conditional branch... 197 BasicBlock *Succ = Leaf.BB; 198 BranchInst::Create(Succ, Default, Comp, NewLeaf); 199 200 // Update the PHI incoming value/block for the default. 201 for (auto &I : Default->phis()) { 202 PHINode *PN = cast<PHINode>(&I); 203 auto *V = PN->getIncomingValueForBlock(OrigBlock); 204 PN->addIncoming(V, NewLeaf); 205 } 206 207 // If there were any PHI nodes in this successor, rewrite one entry 208 // from OrigBlock to come from NewLeaf. 209 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 210 PHINode *PN = cast<PHINode>(I); 211 // Remove all but one incoming entries from the cluster 212 uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue(); 213 for (uint64_t j = 0; j < Range; ++j) { 214 PN->removeIncomingValue(OrigBlock); 215 } 216 217 int BlockIdx = PN->getBasicBlockIndex(OrigBlock); 218 assert(BlockIdx != -1 && "Switch didn't go to this successor??"); 219 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); 220 } 221 222 return NewLeaf; 223 } 224 225 /// Convert the switch statement into a binary lookup of the case values. 226 /// The function recursively builds this tree. LowerBound and UpperBound are 227 /// used to keep track of the bounds for Val that have already been checked by 228 /// a block emitted by one of the previous calls to switchConvert in the call 229 /// stack. 230 BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, 231 ConstantInt *UpperBound, Value *Val, 232 BasicBlock *Predecessor, BasicBlock *OrigBlock, 233 BasicBlock *Default, 234 const std::vector<IntRange> &UnreachableRanges) { 235 assert(LowerBound && UpperBound && "Bounds must be initialized"); 236 unsigned Size = End - Begin; 237 238 if (Size == 1) { 239 // Check if the Case Range is perfectly squeezed in between 240 // already checked Upper and Lower bounds. If it is then we can avoid 241 // emitting the code that checks if the value actually falls in the range 242 // because the bounds already tell us so. 243 if (Begin->Low == LowerBound && Begin->High == UpperBound) { 244 unsigned NumMergedCases = 0; 245 NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue(); 246 FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); 247 return Begin->BB; 248 } 249 return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock, 250 Default); 251 } 252 253 unsigned Mid = Size / 2; 254 std::vector<CaseRange> LHS(Begin, Begin + Mid); 255 LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); 256 std::vector<CaseRange> RHS(Begin + Mid, End); 257 LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); 258 259 CaseRange &Pivot = *(Begin + Mid); 260 LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " 261 << Pivot.High->getValue() << "]\n"); 262 263 // NewLowerBound here should never be the integer minimal value. 264 // This is because it is computed from a case range that is never 265 // the smallest, so there is always a case range that has at least 266 // a smaller value. 267 ConstantInt *NewLowerBound = Pivot.Low; 268 269 // Because NewLowerBound is never the smallest representable integer 270 // it is safe here to subtract one. 271 ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), 272 NewLowerBound->getValue() - 1); 273 274 if (!UnreachableRanges.empty()) { 275 // Check if the gap between LHS's highest and NewLowerBound is unreachable. 276 int64_t GapLow = LHS.back().High->getSExtValue() + 1; 277 int64_t GapHigh = NewLowerBound->getSExtValue() - 1; 278 IntRange Gap = { GapLow, GapHigh }; 279 if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) 280 NewUpperBound = LHS.back().High; 281 } 282 283 LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", " 284 << NewUpperBound->getSExtValue() << "]\n" 285 << "RHS Bounds ==> [" << NewLowerBound->getSExtValue() 286 << ", " << UpperBound->getSExtValue() << "]\n"); 287 288 // Create a new node that checks if the value is < pivot. Go to the 289 // left branch if it is and right branch if not. 290 Function* F = OrigBlock->getParent(); 291 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); 292 293 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, 294 Val, Pivot.Low, "Pivot"); 295 296 BasicBlock *LBranch = 297 SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val, 298 NewNode, OrigBlock, Default, UnreachableRanges); 299 BasicBlock *RBranch = 300 SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val, 301 NewNode, OrigBlock, Default, UnreachableRanges); 302 303 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode); 304 NewNode->getInstList().push_back(Comp); 305 306 BranchInst::Create(LBranch, RBranch, Comp, NewNode); 307 return NewNode; 308 } 309 310 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. 311 /// \post \p Cases wouldn't contain references to \p SI's default BB. 312 /// \returns Number of \p SI's cases that do not reference \p SI's default BB. 313 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { 314 unsigned NumSimpleCases = 0; 315 316 // Start with "simple" cases 317 for (auto Case : SI->cases()) { 318 if (Case.getCaseSuccessor() == SI->getDefaultDest()) 319 continue; 320 Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), 321 Case.getCaseSuccessor())); 322 ++NumSimpleCases; 323 } 324 325 llvm::sort(Cases, CaseCmp()); 326 327 // Merge case into clusters 328 if (Cases.size() >= 2) { 329 CaseItr I = Cases.begin(); 330 for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { 331 int64_t nextValue = J->Low->getSExtValue(); 332 int64_t currentValue = I->High->getSExtValue(); 333 BasicBlock* nextBB = J->BB; 334 BasicBlock* currentBB = I->BB; 335 336 // If the two neighboring cases go to the same destination, merge them 337 // into a single case. 338 assert(nextValue > currentValue && "Cases should be strictly ascending"); 339 if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { 340 I->High = J->High; 341 // FIXME: Combine branch weights. 342 } else if (++I != J) { 343 *I = *J; 344 } 345 } 346 Cases.erase(std::next(I), Cases.end()); 347 } 348 349 return NumSimpleCases; 350 } 351 352 /// Replace the specified switch instruction with a sequence of chained if-then 353 /// insts in a balanced binary search. 354 void ProcessSwitchInst(SwitchInst *SI, 355 SmallPtrSetImpl<BasicBlock *> &DeleteList, 356 AssumptionCache *AC, LazyValueInfo *LVI) { 357 BasicBlock *OrigBlock = SI->getParent(); 358 Function *F = OrigBlock->getParent(); 359 Value *Val = SI->getCondition(); // The value we are switching on... 360 BasicBlock* Default = SI->getDefaultDest(); 361 362 // Don't handle unreachable blocks. If there are successors with phis, this 363 // would leave them behind with missing predecessors. 364 if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) || 365 OrigBlock->getSinglePredecessor() == OrigBlock) { 366 DeleteList.insert(OrigBlock); 367 return; 368 } 369 370 // Prepare cases vector. 371 CaseVector Cases; 372 const unsigned NumSimpleCases = Clusterify(Cases, SI); 373 LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 374 << ". Total non-default cases: " << NumSimpleCases 375 << "\nCase clusters: " << Cases << "\n"); 376 377 // If there is only the default destination, just branch. 378 if (Cases.empty()) { 379 BranchInst::Create(Default, OrigBlock); 380 // Remove all the references from Default's PHIs to OrigBlock, but one. 381 FixPhis(Default, OrigBlock, OrigBlock); 382 SI->eraseFromParent(); 383 return; 384 } 385 386 ConstantInt *LowerBound = nullptr; 387 ConstantInt *UpperBound = nullptr; 388 bool DefaultIsUnreachableFromSwitch = false; 389 390 if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { 391 // Make the bounds tightly fitted around the case value range, because we 392 // know that the value passed to the switch must be exactly one of the case 393 // values. 394 LowerBound = Cases.front().Low; 395 UpperBound = Cases.back().High; 396 DefaultIsUnreachableFromSwitch = true; 397 } else { 398 // Constraining the range of the value being switched over helps eliminating 399 // unreachable BBs and minimizing the number of `add` instructions 400 // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after 401 // LowerSwitch isn't as good, and also much more expensive in terms of 402 // compile time for the following reasons: 403 // 1. it processes many kinds of instructions, not just switches; 404 // 2. even if limited to icmp instructions only, it will have to process 405 // roughly C icmp's per switch, where C is the number of cases in the 406 // switch, while LowerSwitch only needs to call LVI once per switch. 407 const DataLayout &DL = F->getParent()->getDataLayout(); 408 KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI); 409 // TODO Shouldn't this create a signed range? 410 ConstantRange KnownBitsRange = 411 ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); 412 const ConstantRange LVIRange = LVI->getConstantRange(Val, SI); 413 ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange); 414 // We delegate removal of unreachable non-default cases to other passes. In 415 // the unlikely event that some of them survived, we just conservatively 416 // maintain the invariant that all the cases lie between the bounds. This 417 // may, however, still render the default case effectively unreachable. 418 APInt Low = Cases.front().Low->getValue(); 419 APInt High = Cases.back().High->getValue(); 420 APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low); 421 APInt Max = APIntOps::smax(ValRange.getSignedMax(), High); 422 423 LowerBound = ConstantInt::get(SI->getContext(), Min); 424 UpperBound = ConstantInt::get(SI->getContext(), Max); 425 DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); 426 } 427 428 std::vector<IntRange> UnreachableRanges; 429 430 if (DefaultIsUnreachableFromSwitch) { 431 DenseMap<BasicBlock *, unsigned> Popularity; 432 unsigned MaxPop = 0; 433 BasicBlock *PopSucc = nullptr; 434 435 IntRange R = {std::numeric_limits<int64_t>::min(), 436 std::numeric_limits<int64_t>::max()}; 437 UnreachableRanges.push_back(R); 438 for (const auto &I : Cases) { 439 int64_t Low = I.Low->getSExtValue(); 440 int64_t High = I.High->getSExtValue(); 441 442 IntRange &LastRange = UnreachableRanges.back(); 443 if (LastRange.Low == Low) { 444 // There is nothing left of the previous range. 445 UnreachableRanges.pop_back(); 446 } else { 447 // Terminate the previous range. 448 assert(Low > LastRange.Low); 449 LastRange.High = Low - 1; 450 } 451 if (High != std::numeric_limits<int64_t>::max()) { 452 IntRange R = { High + 1, std::numeric_limits<int64_t>::max() }; 453 UnreachableRanges.push_back(R); 454 } 455 456 // Count popularity. 457 int64_t N = High - Low + 1; 458 unsigned &Pop = Popularity[I.BB]; 459 if ((Pop += N) > MaxPop) { 460 MaxPop = Pop; 461 PopSucc = I.BB; 462 } 463 } 464 #ifndef NDEBUG 465 /* UnreachableRanges should be sorted and the ranges non-adjacent. */ 466 for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); 467 I != E; ++I) { 468 assert(I->Low <= I->High); 469 auto Next = I + 1; 470 if (Next != E) { 471 assert(Next->Low > I->High); 472 } 473 } 474 #endif 475 476 // As the default block in the switch is unreachable, update the PHI nodes 477 // (remove all of the references to the default block) to reflect this. 478 const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; 479 for (unsigned I = 0; I < NumDefaultEdges; ++I) 480 Default->removePredecessor(OrigBlock); 481 482 // Use the most popular block as the new default, reducing the number of 483 // cases. 484 assert(MaxPop > 0 && PopSucc); 485 Default = PopSucc; 486 llvm::erase_if(Cases, 487 [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); 488 489 // If there are no cases left, just branch. 490 if (Cases.empty()) { 491 BranchInst::Create(Default, OrigBlock); 492 SI->eraseFromParent(); 493 // As all the cases have been replaced with a single branch, only keep 494 // one entry in the PHI nodes. 495 for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I) 496 PopSucc->removePredecessor(OrigBlock); 497 return; 498 } 499 500 // If the condition was a PHI node with the switch block as a predecessor 501 // removing predecessors may have caused the condition to be erased. 502 // Getting the condition value again here protects against that. 503 Val = SI->getCondition(); 504 } 505 506 BasicBlock *SwitchBlock = 507 SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, 508 OrigBlock, OrigBlock, Default, UnreachableRanges); 509 510 // We have added incoming values for newly-created predecessors in 511 // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to 512 // remove the incoming values from OrigBlock. There might be a special case 513 // that SwitchBlock is the same as Default, under which the PHIs in Default 514 // are fixed inside SwitchConvert(). 515 if (SwitchBlock != Default) 516 FixPhis(Default, OrigBlock, nullptr); 517 518 // Branch to our shiny new if-then stuff... 519 BranchInst::Create(SwitchBlock, OrigBlock); 520 521 // We are now done with the switch instruction, delete it. 522 BasicBlock *OldDefault = SI->getDefaultDest(); 523 OrigBlock->getInstList().erase(SI); 524 525 // If the Default block has no more predecessors just add it to DeleteList. 526 if (pred_empty(OldDefault)) 527 DeleteList.insert(OldDefault); 528 } 529 530 bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { 531 bool Changed = false; 532 SmallPtrSet<BasicBlock *, 8> DeleteList; 533 534 // We use make_early_inc_range here so that we don't traverse new blocks. 535 for (BasicBlock &Cur : llvm::make_early_inc_range(F)) { 536 // If the block is a dead Default block that will be deleted later, don't 537 // waste time processing it. 538 if (DeleteList.count(&Cur)) 539 continue; 540 541 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) { 542 Changed = true; 543 ProcessSwitchInst(SI, DeleteList, AC, LVI); 544 } 545 } 546 547 for (BasicBlock *BB : DeleteList) { 548 LVI->eraseBlock(BB); 549 DeleteDeadBlock(BB); 550 } 551 552 return Changed; 553 } 554 555 /// Replace all SwitchInst instructions with chained branch instructions. 556 class LowerSwitchLegacyPass : public FunctionPass { 557 public: 558 // Pass identification, replacement for typeid 559 static char ID; 560 561 LowerSwitchLegacyPass() : FunctionPass(ID) { 562 initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); 563 } 564 565 bool runOnFunction(Function &F) override; 566 567 void getAnalysisUsage(AnalysisUsage &AU) const override { 568 AU.addRequired<LazyValueInfoWrapperPass>(); 569 } 570 }; 571 572 } // end anonymous namespace 573 574 char LowerSwitchLegacyPass::ID = 0; 575 576 // Publicly exposed interface to pass... 577 char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; 578 579 INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch", 580 "Lower SwitchInst's to branches", false, false) 581 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 582 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 583 INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch", 584 "Lower SwitchInst's to branches", false, false) 585 586 // createLowerSwitchPass - Interface to this file... 587 FunctionPass *llvm::createLowerSwitchPass() { 588 return new LowerSwitchLegacyPass(); 589 } 590 591 bool LowerSwitchLegacyPass::runOnFunction(Function &F) { 592 LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 593 auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); 594 AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; 595 return LowerSwitch(F, LVI, AC); 596 } 597 598 PreservedAnalyses LowerSwitchPass::run(Function &F, 599 FunctionAnalysisManager &AM) { 600 LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); 601 AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F); 602 return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() 603 : PreservedAnalyses::all(); 604 } 605