1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LowerSwitch transformation rewrites switch instructions with a sequence 10 // of branches, which allows targets to get away with not implementing the 11 // switch instruction until it is convenient. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/LowerSwitch.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/LazyValueInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/PassManager.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <limits> 46 #include <vector> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "lower-switch" 51 52 namespace { 53 54 struct IntRange { 55 int64_t Low, High; 56 }; 57 58 } // end anonymous namespace 59 60 namespace { 61 // Return true iff R is covered by Ranges. 62 bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) { 63 // Note: Ranges must be sorted, non-overlapping and non-adjacent. 64 65 // Find the first range whose High field is >= R.High, 66 // then check if the Low field is <= R.Low. If so, we 67 // have a Range that covers R. 68 auto I = llvm::lower_bound( 69 Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; }); 70 return I != Ranges.end() && I->Low <= R.Low; 71 } 72 73 struct CaseRange { 74 ConstantInt *Low; 75 ConstantInt *High; 76 BasicBlock *BB; 77 78 CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) 79 : Low(low), High(high), BB(bb) {} 80 }; 81 82 using CaseVector = std::vector<CaseRange>; 83 using CaseItr = std::vector<CaseRange>::iterator; 84 85 /// The comparison function for sorting the switch case values in the vector. 86 /// WARNING: Case ranges should be disjoint! 87 struct CaseCmp { 88 bool operator()(const CaseRange &C1, const CaseRange &C2) { 89 const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low); 90 const ConstantInt *CI2 = cast<const ConstantInt>(C2.High); 91 return CI1->getValue().slt(CI2->getValue()); 92 } 93 }; 94 95 /// Used for debugging purposes. 96 LLVM_ATTRIBUTE_USED 97 raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { 98 O << "["; 99 100 for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { 101 O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]"; 102 if (++B != E) 103 O << ", "; 104 } 105 106 return O << "]"; 107 } 108 109 /// Update the first occurrence of the "switch statement" BB in the PHI 110 /// node with the "new" BB. The other occurrences will: 111 /// 112 /// 1) Be updated by subsequent calls to this function. Switch statements may 113 /// have more than one outcoming edge into the same BB if they all have the same 114 /// value. When the switch statement is converted these incoming edges are now 115 /// coming from multiple BBs. 116 /// 2) Removed if subsequent incoming values now share the same case, i.e., 117 /// multiple outcome edges are condensed into one. This is necessary to keep the 118 /// number of phi values equal to the number of branches to SuccBB. 119 void FixPhis( 120 BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, 121 const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) { 122 for (BasicBlock::iterator I = SuccBB->begin(), 123 IE = SuccBB->getFirstNonPHI()->getIterator(); 124 I != IE; ++I) { 125 PHINode *PN = cast<PHINode>(I); 126 127 // Only update the first occurrence. 128 unsigned Idx = 0, E = PN->getNumIncomingValues(); 129 unsigned LocalNumMergedCases = NumMergedCases; 130 for (; Idx != E; ++Idx) { 131 if (PN->getIncomingBlock(Idx) == OrigBB) { 132 PN->setIncomingBlock(Idx, NewBB); 133 break; 134 } 135 } 136 137 // Remove additional occurrences coming from condensed cases and keep the 138 // number of incoming values equal to the number of branches to SuccBB. 139 SmallVector<unsigned, 8> Indices; 140 for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) 141 if (PN->getIncomingBlock(Idx) == OrigBB) { 142 Indices.push_back(Idx); 143 LocalNumMergedCases--; 144 } 145 // Remove incoming values in the reverse order to prevent invalidating 146 // *successive* index. 147 for (unsigned III : llvm::reverse(Indices)) 148 PN->removeIncomingValue(III); 149 } 150 } 151 152 /// Create a new leaf block for the binary lookup tree. It checks if the 153 /// switch's value == the case's value. If not, then it jumps to the default 154 /// branch. At this point in the tree, the value can't be another valid case 155 /// value, so the jump to the "default" branch is warranted. 156 BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, 157 ConstantInt *UpperBound, BasicBlock *OrigBlock, 158 BasicBlock *Default) { 159 Function *F = OrigBlock->getParent(); 160 BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); 161 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf); 162 163 // Emit comparison 164 ICmpInst *Comp = nullptr; 165 if (Leaf.Low == Leaf.High) { 166 // Make the seteq instruction... 167 Comp = 168 new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); 169 } else { 170 // Make range comparison 171 if (Leaf.Low == LowerBound) { 172 // Val >= Min && Val <= Hi --> Val <= Hi 173 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, 174 "SwitchLeaf"); 175 } else if (Leaf.High == UpperBound) { 176 // Val <= Max && Val >= Lo --> Val >= Lo 177 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, 178 "SwitchLeaf"); 179 } else if (Leaf.Low->isZero()) { 180 // Val >= 0 && Val <= Hi --> Val <=u Hi 181 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, 182 "SwitchLeaf"); 183 } else { 184 // Emit V-Lo <=u Hi-Lo 185 Constant *NegLo = ConstantExpr::getNeg(Leaf.Low); 186 Instruction *Add = BinaryOperator::CreateAdd( 187 Val, NegLo, Val->getName() + ".off", NewLeaf); 188 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); 189 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, 190 "SwitchLeaf"); 191 } 192 } 193 194 // Make the conditional branch... 195 BasicBlock *Succ = Leaf.BB; 196 BranchInst::Create(Succ, Default, Comp, NewLeaf); 197 198 // If there were any PHI nodes in this successor, rewrite one entry 199 // from OrigBlock to come from NewLeaf. 200 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 201 PHINode *PN = cast<PHINode>(I); 202 // Remove all but one incoming entries from the cluster 203 uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue(); 204 for (uint64_t j = 0; j < Range; ++j) { 205 PN->removeIncomingValue(OrigBlock); 206 } 207 208 int BlockIdx = PN->getBasicBlockIndex(OrigBlock); 209 assert(BlockIdx != -1 && "Switch didn't go to this successor??"); 210 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); 211 } 212 213 return NewLeaf; 214 } 215 216 /// Convert the switch statement into a binary lookup of the case values. 217 /// The function recursively builds this tree. LowerBound and UpperBound are 218 /// used to keep track of the bounds for Val that have already been checked by 219 /// a block emitted by one of the previous calls to switchConvert in the call 220 /// stack. 221 BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, 222 ConstantInt *UpperBound, Value *Val, 223 BasicBlock *Predecessor, BasicBlock *OrigBlock, 224 BasicBlock *Default, 225 const std::vector<IntRange> &UnreachableRanges) { 226 assert(LowerBound && UpperBound && "Bounds must be initialized"); 227 unsigned Size = End - Begin; 228 229 if (Size == 1) { 230 // Check if the Case Range is perfectly squeezed in between 231 // already checked Upper and Lower bounds. If it is then we can avoid 232 // emitting the code that checks if the value actually falls in the range 233 // because the bounds already tell us so. 234 if (Begin->Low == LowerBound && Begin->High == UpperBound) { 235 unsigned NumMergedCases = 0; 236 NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue(); 237 FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); 238 return Begin->BB; 239 } 240 return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock, 241 Default); 242 } 243 244 unsigned Mid = Size / 2; 245 std::vector<CaseRange> LHS(Begin, Begin + Mid); 246 LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); 247 std::vector<CaseRange> RHS(Begin + Mid, End); 248 LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); 249 250 CaseRange &Pivot = *(Begin + Mid); 251 LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " 252 << Pivot.High->getValue() << "]\n"); 253 254 // NewLowerBound here should never be the integer minimal value. 255 // This is because it is computed from a case range that is never 256 // the smallest, so there is always a case range that has at least 257 // a smaller value. 258 ConstantInt *NewLowerBound = Pivot.Low; 259 260 // Because NewLowerBound is never the smallest representable integer 261 // it is safe here to subtract one. 262 ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), 263 NewLowerBound->getValue() - 1); 264 265 if (!UnreachableRanges.empty()) { 266 // Check if the gap between LHS's highest and NewLowerBound is unreachable. 267 int64_t GapLow = LHS.back().High->getSExtValue() + 1; 268 int64_t GapHigh = NewLowerBound->getSExtValue() - 1; 269 IntRange Gap = { GapLow, GapHigh }; 270 if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) 271 NewUpperBound = LHS.back().High; 272 } 273 274 LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", " 275 << NewUpperBound->getSExtValue() << "]\n" 276 << "RHS Bounds ==> [" << NewLowerBound->getSExtValue() 277 << ", " << UpperBound->getSExtValue() << "]\n"); 278 279 // Create a new node that checks if the value is < pivot. Go to the 280 // left branch if it is and right branch if not. 281 Function* F = OrigBlock->getParent(); 282 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); 283 284 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, 285 Val, Pivot.Low, "Pivot"); 286 287 BasicBlock *LBranch = 288 SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val, 289 NewNode, OrigBlock, Default, UnreachableRanges); 290 BasicBlock *RBranch = 291 SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val, 292 NewNode, OrigBlock, Default, UnreachableRanges); 293 294 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode); 295 NewNode->getInstList().push_back(Comp); 296 297 BranchInst::Create(LBranch, RBranch, Comp, NewNode); 298 return NewNode; 299 } 300 301 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. 302 /// \post \p Cases wouldn't contain references to \p SI's default BB. 303 /// \returns Number of \p SI's cases that do not reference \p SI's default BB. 304 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { 305 unsigned NumSimpleCases = 0; 306 307 // Start with "simple" cases 308 for (auto Case : SI->cases()) { 309 if (Case.getCaseSuccessor() == SI->getDefaultDest()) 310 continue; 311 Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), 312 Case.getCaseSuccessor())); 313 ++NumSimpleCases; 314 } 315 316 llvm::sort(Cases, CaseCmp()); 317 318 // Merge case into clusters 319 if (Cases.size() >= 2) { 320 CaseItr I = Cases.begin(); 321 for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { 322 int64_t nextValue = J->Low->getSExtValue(); 323 int64_t currentValue = I->High->getSExtValue(); 324 BasicBlock* nextBB = J->BB; 325 BasicBlock* currentBB = I->BB; 326 327 // If the two neighboring cases go to the same destination, merge them 328 // into a single case. 329 assert(nextValue > currentValue && "Cases should be strictly ascending"); 330 if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { 331 I->High = J->High; 332 // FIXME: Combine branch weights. 333 } else if (++I != J) { 334 *I = *J; 335 } 336 } 337 Cases.erase(std::next(I), Cases.end()); 338 } 339 340 return NumSimpleCases; 341 } 342 343 /// Replace the specified switch instruction with a sequence of chained if-then 344 /// insts in a balanced binary search. 345 void ProcessSwitchInst(SwitchInst *SI, 346 SmallPtrSetImpl<BasicBlock *> &DeleteList, 347 AssumptionCache *AC, LazyValueInfo *LVI) { 348 BasicBlock *OrigBlock = SI->getParent(); 349 Function *F = OrigBlock->getParent(); 350 Value *Val = SI->getCondition(); // The value we are switching on... 351 BasicBlock* Default = SI->getDefaultDest(); 352 353 // Don't handle unreachable blocks. If there are successors with phis, this 354 // would leave them behind with missing predecessors. 355 if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) || 356 OrigBlock->getSinglePredecessor() == OrigBlock) { 357 DeleteList.insert(OrigBlock); 358 return; 359 } 360 361 // Prepare cases vector. 362 CaseVector Cases; 363 const unsigned NumSimpleCases = Clusterify(Cases, SI); 364 LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 365 << ". Total non-default cases: " << NumSimpleCases 366 << "\nCase clusters: " << Cases << "\n"); 367 368 // If there is only the default destination, just branch. 369 if (Cases.empty()) { 370 BranchInst::Create(Default, OrigBlock); 371 // Remove all the references from Default's PHIs to OrigBlock, but one. 372 FixPhis(Default, OrigBlock, OrigBlock); 373 SI->eraseFromParent(); 374 return; 375 } 376 377 ConstantInt *LowerBound = nullptr; 378 ConstantInt *UpperBound = nullptr; 379 bool DefaultIsUnreachableFromSwitch = false; 380 381 if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { 382 // Make the bounds tightly fitted around the case value range, because we 383 // know that the value passed to the switch must be exactly one of the case 384 // values. 385 LowerBound = Cases.front().Low; 386 UpperBound = Cases.back().High; 387 DefaultIsUnreachableFromSwitch = true; 388 } else { 389 // Constraining the range of the value being switched over helps eliminating 390 // unreachable BBs and minimizing the number of `add` instructions 391 // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after 392 // LowerSwitch isn't as good, and also much more expensive in terms of 393 // compile time for the following reasons: 394 // 1. it processes many kinds of instructions, not just switches; 395 // 2. even if limited to icmp instructions only, it will have to process 396 // roughly C icmp's per switch, where C is the number of cases in the 397 // switch, while LowerSwitch only needs to call LVI once per switch. 398 const DataLayout &DL = F->getParent()->getDataLayout(); 399 KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI); 400 // TODO Shouldn't this create a signed range? 401 ConstantRange KnownBitsRange = 402 ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); 403 const ConstantRange LVIRange = LVI->getConstantRange(Val, SI); 404 ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange); 405 // We delegate removal of unreachable non-default cases to other passes. In 406 // the unlikely event that some of them survived, we just conservatively 407 // maintain the invariant that all the cases lie between the bounds. This 408 // may, however, still render the default case effectively unreachable. 409 APInt Low = Cases.front().Low->getValue(); 410 APInt High = Cases.back().High->getValue(); 411 APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low); 412 APInt Max = APIntOps::smax(ValRange.getSignedMax(), High); 413 414 LowerBound = ConstantInt::get(SI->getContext(), Min); 415 UpperBound = ConstantInt::get(SI->getContext(), Max); 416 DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); 417 } 418 419 std::vector<IntRange> UnreachableRanges; 420 421 if (DefaultIsUnreachableFromSwitch) { 422 DenseMap<BasicBlock *, unsigned> Popularity; 423 unsigned MaxPop = 0; 424 BasicBlock *PopSucc = nullptr; 425 426 IntRange R = {std::numeric_limits<int64_t>::min(), 427 std::numeric_limits<int64_t>::max()}; 428 UnreachableRanges.push_back(R); 429 for (const auto &I : Cases) { 430 int64_t Low = I.Low->getSExtValue(); 431 int64_t High = I.High->getSExtValue(); 432 433 IntRange &LastRange = UnreachableRanges.back(); 434 if (LastRange.Low == Low) { 435 // There is nothing left of the previous range. 436 UnreachableRanges.pop_back(); 437 } else { 438 // Terminate the previous range. 439 assert(Low > LastRange.Low); 440 LastRange.High = Low - 1; 441 } 442 if (High != std::numeric_limits<int64_t>::max()) { 443 IntRange R = { High + 1, std::numeric_limits<int64_t>::max() }; 444 UnreachableRanges.push_back(R); 445 } 446 447 // Count popularity. 448 int64_t N = High - Low + 1; 449 unsigned &Pop = Popularity[I.BB]; 450 if ((Pop += N) > MaxPop) { 451 MaxPop = Pop; 452 PopSucc = I.BB; 453 } 454 } 455 #ifndef NDEBUG 456 /* UnreachableRanges should be sorted and the ranges non-adjacent. */ 457 for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); 458 I != E; ++I) { 459 assert(I->Low <= I->High); 460 auto Next = I + 1; 461 if (Next != E) { 462 assert(Next->Low > I->High); 463 } 464 } 465 #endif 466 467 // As the default block in the switch is unreachable, update the PHI nodes 468 // (remove all of the references to the default block) to reflect this. 469 const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; 470 for (unsigned I = 0; I < NumDefaultEdges; ++I) 471 Default->removePredecessor(OrigBlock); 472 473 // Use the most popular block as the new default, reducing the number of 474 // cases. 475 assert(MaxPop > 0 && PopSucc); 476 Default = PopSucc; 477 llvm::erase_if(Cases, 478 [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); 479 480 // If there are no cases left, just branch. 481 if (Cases.empty()) { 482 BranchInst::Create(Default, OrigBlock); 483 SI->eraseFromParent(); 484 // As all the cases have been replaced with a single branch, only keep 485 // one entry in the PHI nodes. 486 for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I) 487 PopSucc->removePredecessor(OrigBlock); 488 return; 489 } 490 491 // If the condition was a PHI node with the switch block as a predecessor 492 // removing predecessors may have caused the condition to be erased. 493 // Getting the condition value again here protects against that. 494 Val = SI->getCondition(); 495 } 496 497 // Create a new, empty default block so that the new hierarchy of 498 // if-then statements go to this and the PHI nodes are happy. 499 BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); 500 F->getBasicBlockList().insert(Default->getIterator(), NewDefault); 501 BranchInst::Create(Default, NewDefault); 502 503 BasicBlock *SwitchBlock = 504 SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, 505 OrigBlock, OrigBlock, NewDefault, UnreachableRanges); 506 507 // If there are entries in any PHI nodes for the default edge, make sure 508 // to update them as well. 509 FixPhis(Default, OrigBlock, NewDefault); 510 511 // Branch to our shiny new if-then stuff... 512 BranchInst::Create(SwitchBlock, OrigBlock); 513 514 // We are now done with the switch instruction, delete it. 515 BasicBlock *OldDefault = SI->getDefaultDest(); 516 OrigBlock->getInstList().erase(SI); 517 518 // If the Default block has no more predecessors just add it to DeleteList. 519 if (pred_empty(OldDefault)) 520 DeleteList.insert(OldDefault); 521 } 522 523 bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { 524 bool Changed = false; 525 SmallPtrSet<BasicBlock *, 8> DeleteList; 526 527 // We use make_early_inc_range here so that we don't traverse new blocks. 528 for (BasicBlock &Cur : llvm::make_early_inc_range(F)) { 529 // If the block is a dead Default block that will be deleted later, don't 530 // waste time processing it. 531 if (DeleteList.count(&Cur)) 532 continue; 533 534 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) { 535 Changed = true; 536 ProcessSwitchInst(SI, DeleteList, AC, LVI); 537 } 538 } 539 540 for (BasicBlock *BB : DeleteList) { 541 LVI->eraseBlock(BB); 542 DeleteDeadBlock(BB); 543 } 544 545 return Changed; 546 } 547 548 /// Replace all SwitchInst instructions with chained branch instructions. 549 class LowerSwitchLegacyPass : public FunctionPass { 550 public: 551 // Pass identification, replacement for typeid 552 static char ID; 553 554 LowerSwitchLegacyPass() : FunctionPass(ID) { 555 initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); 556 } 557 558 bool runOnFunction(Function &F) override; 559 560 void getAnalysisUsage(AnalysisUsage &AU) const override { 561 AU.addRequired<LazyValueInfoWrapperPass>(); 562 } 563 }; 564 565 } // end anonymous namespace 566 567 char LowerSwitchLegacyPass::ID = 0; 568 569 // Publicly exposed interface to pass... 570 char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; 571 572 INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch", 573 "Lower SwitchInst's to branches", false, false) 574 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 575 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 576 INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch", 577 "Lower SwitchInst's to branches", false, false) 578 579 // createLowerSwitchPass - Interface to this file... 580 FunctionPass *llvm::createLowerSwitchPass() { 581 return new LowerSwitchLegacyPass(); 582 } 583 584 bool LowerSwitchLegacyPass::runOnFunction(Function &F) { 585 LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 586 auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); 587 AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; 588 return LowerSwitch(F, LVI, AC); 589 } 590 591 PreservedAnalyses LowerSwitchPass::run(Function &F, 592 FunctionAnalysisManager &AM) { 593 LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); 594 AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F); 595 return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() 596 : PreservedAnalyses::all(); 597 } 598