1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LowerSwitch transformation rewrites switch instructions with a sequence 10 // of branches, which allows targets to get away with not implementing the 11 // switch instruction until it is convenient. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/ConstantRange.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Compiler.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <cstdint> 42 #include <iterator> 43 #include <limits> 44 #include <vector> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "lower-switch" 49 50 namespace { 51 52 struct IntRange { 53 int64_t Low, High; 54 }; 55 56 } // end anonymous namespace 57 58 // Return true iff R is covered by Ranges. 59 static bool IsInRanges(const IntRange &R, 60 const std::vector<IntRange> &Ranges) { 61 // Note: Ranges must be sorted, non-overlapping and non-adjacent. 62 63 // Find the first range whose High field is >= R.High, 64 // then check if the Low field is <= R.Low. If so, we 65 // have a Range that covers R. 66 auto I = llvm::lower_bound( 67 Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; }); 68 return I != Ranges.end() && I->Low <= R.Low; 69 } 70 71 namespace { 72 73 /// Replace all SwitchInst instructions with chained branch instructions. 74 class LowerSwitch : public FunctionPass { 75 public: 76 // Pass identification, replacement for typeid 77 static char ID; 78 79 LowerSwitch() : FunctionPass(ID) { 80 initializeLowerSwitchPass(*PassRegistry::getPassRegistry()); 81 } 82 83 bool runOnFunction(Function &F) override; 84 85 void getAnalysisUsage(AnalysisUsage &AU) const override { 86 AU.addRequired<LazyValueInfoWrapperPass>(); 87 } 88 89 struct CaseRange { 90 ConstantInt* Low; 91 ConstantInt* High; 92 BasicBlock* BB; 93 94 CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) 95 : Low(low), High(high), BB(bb) {} 96 }; 97 98 using CaseVector = std::vector<CaseRange>; 99 using CaseItr = std::vector<CaseRange>::iterator; 100 101 private: 102 void processSwitchInst(SwitchInst *SI, 103 SmallPtrSetImpl<BasicBlock *> &DeleteList, 104 AssumptionCache *AC, LazyValueInfo *LVI); 105 106 BasicBlock *switchConvert(CaseItr Begin, CaseItr End, 107 ConstantInt *LowerBound, ConstantInt *UpperBound, 108 Value *Val, BasicBlock *Predecessor, 109 BasicBlock *OrigBlock, BasicBlock *Default, 110 const std::vector<IntRange> &UnreachableRanges); 111 BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, 112 ConstantInt *LowerBound, ConstantInt *UpperBound, 113 BasicBlock *OrigBlock, BasicBlock *Default); 114 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI); 115 }; 116 117 /// The comparison function for sorting the switch case values in the vector. 118 /// WARNING: Case ranges should be disjoint! 119 struct CaseCmp { 120 bool operator()(const LowerSwitch::CaseRange& C1, 121 const LowerSwitch::CaseRange& C2) { 122 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); 123 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); 124 return CI1->getValue().slt(CI2->getValue()); 125 } 126 }; 127 128 } // end anonymous namespace 129 130 char LowerSwitch::ID = 0; 131 132 // Publicly exposed interface to pass... 133 char &llvm::LowerSwitchID = LowerSwitch::ID; 134 135 INITIALIZE_PASS_BEGIN(LowerSwitch, "lowerswitch", 136 "Lower SwitchInst's to branches", false, false) 137 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 138 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 139 INITIALIZE_PASS_END(LowerSwitch, "lowerswitch", 140 "Lower SwitchInst's to branches", false, false) 141 142 // createLowerSwitchPass - Interface to this file... 143 FunctionPass *llvm::createLowerSwitchPass() { 144 return new LowerSwitch(); 145 } 146 147 bool LowerSwitch::runOnFunction(Function &F) { 148 LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 149 auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); 150 AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; 151 // Prevent LazyValueInfo from using the DominatorTree as LowerSwitch does not 152 // preserve it and it becomes stale (when available) pretty much immediately. 153 // Currently the DominatorTree is only used by LowerSwitch indirectly via LVI 154 // and computeKnownBits to refine isValidAssumeForContext's results. Given 155 // that the latter can handle some of the simple cases w/o a DominatorTree, 156 // it's easier to refrain from using the tree than to keep it up to date. 157 LVI->disableDT(); 158 159 bool Changed = false; 160 SmallPtrSet<BasicBlock*, 8> DeleteList; 161 162 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 163 BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks 164 165 // If the block is a dead Default block that will be deleted later, don't 166 // waste time processing it. 167 if (DeleteList.count(Cur)) 168 continue; 169 170 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) { 171 Changed = true; 172 processSwitchInst(SI, DeleteList, AC, LVI); 173 } 174 } 175 176 for (BasicBlock* BB: DeleteList) { 177 LVI->eraseBlock(BB); 178 DeleteDeadBlock(BB); 179 } 180 181 return Changed; 182 } 183 184 /// Used for debugging purposes. 185 LLVM_ATTRIBUTE_USED 186 static raw_ostream &operator<<(raw_ostream &O, 187 const LowerSwitch::CaseVector &C) { 188 O << "["; 189 190 for (LowerSwitch::CaseVector::const_iterator B = C.begin(), E = C.end(); 191 B != E;) { 192 O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]"; 193 if (++B != E) 194 O << ", "; 195 } 196 197 return O << "]"; 198 } 199 200 /// Update the first occurrence of the "switch statement" BB in the PHI 201 /// node with the "new" BB. The other occurrences will: 202 /// 203 /// 1) Be updated by subsequent calls to this function. Switch statements may 204 /// have more than one outcoming edge into the same BB if they all have the same 205 /// value. When the switch statement is converted these incoming edges are now 206 /// coming from multiple BBs. 207 /// 2) Removed if subsequent incoming values now share the same case, i.e., 208 /// multiple outcome edges are condensed into one. This is necessary to keep the 209 /// number of phi values equal to the number of branches to SuccBB. 210 static void 211 fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, 212 const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) { 213 for (BasicBlock::iterator I = SuccBB->begin(), 214 IE = SuccBB->getFirstNonPHI()->getIterator(); 215 I != IE; ++I) { 216 PHINode *PN = cast<PHINode>(I); 217 218 // Only update the first occurrence. 219 unsigned Idx = 0, E = PN->getNumIncomingValues(); 220 unsigned LocalNumMergedCases = NumMergedCases; 221 for (; Idx != E; ++Idx) { 222 if (PN->getIncomingBlock(Idx) == OrigBB) { 223 PN->setIncomingBlock(Idx, NewBB); 224 break; 225 } 226 } 227 228 // Remove additional occurrences coming from condensed cases and keep the 229 // number of incoming values equal to the number of branches to SuccBB. 230 SmallVector<unsigned, 8> Indices; 231 for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) 232 if (PN->getIncomingBlock(Idx) == OrigBB) { 233 Indices.push_back(Idx); 234 LocalNumMergedCases--; 235 } 236 // Remove incoming values in the reverse order to prevent invalidating 237 // *successive* index. 238 for (unsigned III : llvm::reverse(Indices)) 239 PN->removeIncomingValue(III); 240 } 241 } 242 243 /// Convert the switch statement into a binary lookup of the case values. 244 /// The function recursively builds this tree. LowerBound and UpperBound are 245 /// used to keep track of the bounds for Val that have already been checked by 246 /// a block emitted by one of the previous calls to switchConvert in the call 247 /// stack. 248 BasicBlock * 249 LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, 250 ConstantInt *UpperBound, Value *Val, 251 BasicBlock *Predecessor, BasicBlock *OrigBlock, 252 BasicBlock *Default, 253 const std::vector<IntRange> &UnreachableRanges) { 254 assert(LowerBound && UpperBound && "Bounds must be initialized"); 255 unsigned Size = End - Begin; 256 257 if (Size == 1) { 258 // Check if the Case Range is perfectly squeezed in between 259 // already checked Upper and Lower bounds. If it is then we can avoid 260 // emitting the code that checks if the value actually falls in the range 261 // because the bounds already tell us so. 262 if (Begin->Low == LowerBound && Begin->High == UpperBound) { 263 unsigned NumMergedCases = 0; 264 NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue(); 265 fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); 266 return Begin->BB; 267 } 268 return newLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock, 269 Default); 270 } 271 272 unsigned Mid = Size / 2; 273 std::vector<CaseRange> LHS(Begin, Begin + Mid); 274 LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); 275 std::vector<CaseRange> RHS(Begin + Mid, End); 276 LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); 277 278 CaseRange &Pivot = *(Begin + Mid); 279 LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " 280 << Pivot.High->getValue() << "]\n"); 281 282 // NewLowerBound here should never be the integer minimal value. 283 // This is because it is computed from a case range that is never 284 // the smallest, so there is always a case range that has at least 285 // a smaller value. 286 ConstantInt *NewLowerBound = Pivot.Low; 287 288 // Because NewLowerBound is never the smallest representable integer 289 // it is safe here to subtract one. 290 ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), 291 NewLowerBound->getValue() - 1); 292 293 if (!UnreachableRanges.empty()) { 294 // Check if the gap between LHS's highest and NewLowerBound is unreachable. 295 int64_t GapLow = LHS.back().High->getSExtValue() + 1; 296 int64_t GapHigh = NewLowerBound->getSExtValue() - 1; 297 IntRange Gap = { GapLow, GapHigh }; 298 if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) 299 NewUpperBound = LHS.back().High; 300 } 301 302 LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", " 303 << NewUpperBound->getSExtValue() << "]\n" 304 << "RHS Bounds ==> [" << NewLowerBound->getSExtValue() 305 << ", " << UpperBound->getSExtValue() << "]\n"); 306 307 // Create a new node that checks if the value is < pivot. Go to the 308 // left branch if it is and right branch if not. 309 Function* F = OrigBlock->getParent(); 310 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); 311 312 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, 313 Val, Pivot.Low, "Pivot"); 314 315 BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound, 316 NewUpperBound, Val, NewNode, OrigBlock, 317 Default, UnreachableRanges); 318 BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound, 319 UpperBound, Val, NewNode, OrigBlock, 320 Default, UnreachableRanges); 321 322 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode); 323 NewNode->getInstList().push_back(Comp); 324 325 BranchInst::Create(LBranch, RBranch, Comp, NewNode); 326 return NewNode; 327 } 328 329 /// Create a new leaf block for the binary lookup tree. It checks if the 330 /// switch's value == the case's value. If not, then it jumps to the default 331 /// branch. At this point in the tree, the value can't be another valid case 332 /// value, so the jump to the "default" branch is warranted. 333 BasicBlock *LowerSwitch::newLeafBlock(CaseRange &Leaf, Value *Val, 334 ConstantInt *LowerBound, 335 ConstantInt *UpperBound, 336 BasicBlock *OrigBlock, 337 BasicBlock *Default) { 338 Function* F = OrigBlock->getParent(); 339 BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); 340 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf); 341 342 // Emit comparison 343 ICmpInst* Comp = nullptr; 344 if (Leaf.Low == Leaf.High) { 345 // Make the seteq instruction... 346 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, 347 Leaf.Low, "SwitchLeaf"); 348 } else { 349 // Make range comparison 350 if (Leaf.Low == LowerBound) { 351 // Val >= Min && Val <= Hi --> Val <= Hi 352 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, 353 "SwitchLeaf"); 354 } else if (Leaf.High == UpperBound) { 355 // Val <= Max && Val >= Lo --> Val >= Lo 356 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, 357 "SwitchLeaf"); 358 } else if (Leaf.Low->isZero()) { 359 // Val >= 0 && Val <= Hi --> Val <=u Hi 360 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, 361 "SwitchLeaf"); 362 } else { 363 // Emit V-Lo <=u Hi-Lo 364 Constant* NegLo = ConstantExpr::getNeg(Leaf.Low); 365 Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo, 366 Val->getName()+".off", 367 NewLeaf); 368 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); 369 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, 370 "SwitchLeaf"); 371 } 372 } 373 374 // Make the conditional branch... 375 BasicBlock* Succ = Leaf.BB; 376 BranchInst::Create(Succ, Default, Comp, NewLeaf); 377 378 // If there were any PHI nodes in this successor, rewrite one entry 379 // from OrigBlock to come from NewLeaf. 380 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 381 PHINode* PN = cast<PHINode>(I); 382 // Remove all but one incoming entries from the cluster 383 uint64_t Range = Leaf.High->getSExtValue() - 384 Leaf.Low->getSExtValue(); 385 for (uint64_t j = 0; j < Range; ++j) { 386 PN->removeIncomingValue(OrigBlock); 387 } 388 389 int BlockIdx = PN->getBasicBlockIndex(OrigBlock); 390 assert(BlockIdx != -1 && "Switch didn't go to this successor??"); 391 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); 392 } 393 394 return NewLeaf; 395 } 396 397 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. 398 /// \post \p Cases wouldn't contain references to \p SI's default BB. 399 /// \returns Number of \p SI's cases that do not reference \p SI's default BB. 400 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) { 401 unsigned NumSimpleCases = 0; 402 403 // Start with "simple" cases 404 for (auto Case : SI->cases()) { 405 if (Case.getCaseSuccessor() == SI->getDefaultDest()) 406 continue; 407 Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), 408 Case.getCaseSuccessor())); 409 ++NumSimpleCases; 410 } 411 412 llvm::sort(Cases, CaseCmp()); 413 414 // Merge case into clusters 415 if (Cases.size() >= 2) { 416 CaseItr I = Cases.begin(); 417 for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { 418 int64_t nextValue = J->Low->getSExtValue(); 419 int64_t currentValue = I->High->getSExtValue(); 420 BasicBlock* nextBB = J->BB; 421 BasicBlock* currentBB = I->BB; 422 423 // If the two neighboring cases go to the same destination, merge them 424 // into a single case. 425 assert(nextValue > currentValue && "Cases should be strictly ascending"); 426 if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { 427 I->High = J->High; 428 // FIXME: Combine branch weights. 429 } else if (++I != J) { 430 *I = *J; 431 } 432 } 433 Cases.erase(std::next(I), Cases.end()); 434 } 435 436 return NumSimpleCases; 437 } 438 439 /// Replace the specified switch instruction with a sequence of chained if-then 440 /// insts in a balanced binary search. 441 void LowerSwitch::processSwitchInst(SwitchInst *SI, 442 SmallPtrSetImpl<BasicBlock *> &DeleteList, 443 AssumptionCache *AC, LazyValueInfo *LVI) { 444 BasicBlock *OrigBlock = SI->getParent(); 445 Function *F = OrigBlock->getParent(); 446 Value *Val = SI->getCondition(); // The value we are switching on... 447 BasicBlock* Default = SI->getDefaultDest(); 448 449 // Don't handle unreachable blocks. If there are successors with phis, this 450 // would leave them behind with missing predecessors. 451 if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) || 452 OrigBlock->getSinglePredecessor() == OrigBlock) { 453 DeleteList.insert(OrigBlock); 454 return; 455 } 456 457 // Prepare cases vector. 458 CaseVector Cases; 459 const unsigned NumSimpleCases = Clusterify(Cases, SI); 460 LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 461 << ". Total non-default cases: " << NumSimpleCases 462 << "\nCase clusters: " << Cases << "\n"); 463 464 // If there is only the default destination, just branch. 465 if (Cases.empty()) { 466 BranchInst::Create(Default, OrigBlock); 467 // Remove all the references from Default's PHIs to OrigBlock, but one. 468 fixPhis(Default, OrigBlock, OrigBlock); 469 SI->eraseFromParent(); 470 return; 471 } 472 473 ConstantInt *LowerBound = nullptr; 474 ConstantInt *UpperBound = nullptr; 475 bool DefaultIsUnreachableFromSwitch = false; 476 477 if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { 478 // Make the bounds tightly fitted around the case value range, because we 479 // know that the value passed to the switch must be exactly one of the case 480 // values. 481 LowerBound = Cases.front().Low; 482 UpperBound = Cases.back().High; 483 DefaultIsUnreachableFromSwitch = true; 484 } else { 485 // Constraining the range of the value being switched over helps eliminating 486 // unreachable BBs and minimizing the number of `add` instructions 487 // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after 488 // LowerSwitch isn't as good, and also much more expensive in terms of 489 // compile time for the following reasons: 490 // 1. it processes many kinds of instructions, not just switches; 491 // 2. even if limited to icmp instructions only, it will have to process 492 // roughly C icmp's per switch, where C is the number of cases in the 493 // switch, while LowerSwitch only needs to call LVI once per switch. 494 const DataLayout &DL = F->getParent()->getDataLayout(); 495 KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI); 496 // TODO Shouldn't this create a signed range? 497 ConstantRange KnownBitsRange = 498 ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); 499 const ConstantRange LVIRange = LVI->getConstantRange(Val, OrigBlock, SI); 500 ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange); 501 // We delegate removal of unreachable non-default cases to other passes. In 502 // the unlikely event that some of them survived, we just conservatively 503 // maintain the invariant that all the cases lie between the bounds. This 504 // may, however, still render the default case effectively unreachable. 505 APInt Low = Cases.front().Low->getValue(); 506 APInt High = Cases.back().High->getValue(); 507 APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low); 508 APInt Max = APIntOps::smax(ValRange.getSignedMax(), High); 509 510 LowerBound = ConstantInt::get(SI->getContext(), Min); 511 UpperBound = ConstantInt::get(SI->getContext(), Max); 512 DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); 513 } 514 515 std::vector<IntRange> UnreachableRanges; 516 517 if (DefaultIsUnreachableFromSwitch) { 518 DenseMap<BasicBlock *, unsigned> Popularity; 519 unsigned MaxPop = 0; 520 BasicBlock *PopSucc = nullptr; 521 522 IntRange R = {std::numeric_limits<int64_t>::min(), 523 std::numeric_limits<int64_t>::max()}; 524 UnreachableRanges.push_back(R); 525 for (const auto &I : Cases) { 526 int64_t Low = I.Low->getSExtValue(); 527 int64_t High = I.High->getSExtValue(); 528 529 IntRange &LastRange = UnreachableRanges.back(); 530 if (LastRange.Low == Low) { 531 // There is nothing left of the previous range. 532 UnreachableRanges.pop_back(); 533 } else { 534 // Terminate the previous range. 535 assert(Low > LastRange.Low); 536 LastRange.High = Low - 1; 537 } 538 if (High != std::numeric_limits<int64_t>::max()) { 539 IntRange R = { High + 1, std::numeric_limits<int64_t>::max() }; 540 UnreachableRanges.push_back(R); 541 } 542 543 // Count popularity. 544 int64_t N = High - Low + 1; 545 unsigned &Pop = Popularity[I.BB]; 546 if ((Pop += N) > MaxPop) { 547 MaxPop = Pop; 548 PopSucc = I.BB; 549 } 550 } 551 #ifndef NDEBUG 552 /* UnreachableRanges should be sorted and the ranges non-adjacent. */ 553 for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); 554 I != E; ++I) { 555 assert(I->Low <= I->High); 556 auto Next = I + 1; 557 if (Next != E) { 558 assert(Next->Low > I->High); 559 } 560 } 561 #endif 562 563 // As the default block in the switch is unreachable, update the PHI nodes 564 // (remove all of the references to the default block) to reflect this. 565 const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; 566 for (unsigned I = 0; I < NumDefaultEdges; ++I) 567 Default->removePredecessor(OrigBlock); 568 569 // Use the most popular block as the new default, reducing the number of 570 // cases. 571 assert(MaxPop > 0 && PopSucc); 572 Default = PopSucc; 573 Cases.erase( 574 llvm::remove_if( 575 Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }), 576 Cases.end()); 577 578 // If there are no cases left, just branch. 579 if (Cases.empty()) { 580 BranchInst::Create(Default, OrigBlock); 581 SI->eraseFromParent(); 582 // As all the cases have been replaced with a single branch, only keep 583 // one entry in the PHI nodes. 584 for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I) 585 PopSucc->removePredecessor(OrigBlock); 586 return; 587 } 588 589 // If the condition was a PHI node with the switch block as a predecessor 590 // removing predecessors may have caused the condition to be erased. 591 // Getting the condition value again here protects against that. 592 Val = SI->getCondition(); 593 } 594 595 // Create a new, empty default block so that the new hierarchy of 596 // if-then statements go to this and the PHI nodes are happy. 597 BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); 598 F->getBasicBlockList().insert(Default->getIterator(), NewDefault); 599 BranchInst::Create(Default, NewDefault); 600 601 BasicBlock *SwitchBlock = 602 switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, 603 OrigBlock, OrigBlock, NewDefault, UnreachableRanges); 604 605 // If there are entries in any PHI nodes for the default edge, make sure 606 // to update them as well. 607 fixPhis(Default, OrigBlock, NewDefault); 608 609 // Branch to our shiny new if-then stuff... 610 BranchInst::Create(SwitchBlock, OrigBlock); 611 612 // We are now done with the switch instruction, delete it. 613 BasicBlock *OldDefault = SI->getDefaultDest(); 614 OrigBlock->getInstList().erase(SI); 615 616 // If the Default block has no more predecessors just add it to DeleteList. 617 if (pred_begin(OldDefault) == pred_end(OldDefault)) 618 DeleteList.insert(OldDefault); 619 } 620