xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LowerSwitch.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LowerSwitch transformation rewrites switch instructions with a sequence
10 // of branches, which allows targets to get away with not implementing the
11 // switch instruction until it is convenient.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/LowerSwitch.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/LazyValueInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <limits>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "lower-switch"
51 
52 namespace {
53 
54   struct IntRange {
55     int64_t Low, High;
56   };
57 
58 } // end anonymous namespace
59 
60 namespace {
61 // Return true iff R is covered by Ranges.
62 bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) {
63   // Note: Ranges must be sorted, non-overlapping and non-adjacent.
64 
65   // Find the first range whose High field is >= R.High,
66   // then check if the Low field is <= R.Low. If so, we
67   // have a Range that covers R.
68   auto I = llvm::lower_bound(
69       Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
70   return I != Ranges.end() && I->Low <= R.Low;
71 }
72 
73 struct CaseRange {
74   ConstantInt *Low;
75   ConstantInt *High;
76   BasicBlock *BB;
77 
78   CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
79       : Low(low), High(high), BB(bb) {}
80 };
81 
82 using CaseVector = std::vector<CaseRange>;
83 using CaseItr = std::vector<CaseRange>::iterator;
84 
85 /// The comparison function for sorting the switch case values in the vector.
86 /// WARNING: Case ranges should be disjoint!
87 struct CaseCmp {
88   bool operator()(const CaseRange &C1, const CaseRange &C2) {
89     const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low);
90     const ConstantInt *CI2 = cast<const ConstantInt>(C2.High);
91     return CI1->getValue().slt(CI2->getValue());
92   }
93 };
94 
95 /// Used for debugging purposes.
96 LLVM_ATTRIBUTE_USED
97 raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) {
98   O << "[";
99 
100   for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) {
101     O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
102     if (++B != E)
103       O << ", ";
104   }
105 
106   return O << "]";
107 }
108 
109 /// Update the first occurrence of the "switch statement" BB in the PHI
110 /// node with the "new" BB. The other occurrences will:
111 ///
112 /// 1) Be updated by subsequent calls to this function.  Switch statements may
113 /// have more than one outcoming edge into the same BB if they all have the same
114 /// value. When the switch statement is converted these incoming edges are now
115 /// coming from multiple BBs.
116 /// 2) Removed if subsequent incoming values now share the same case, i.e.,
117 /// multiple outcome edges are condensed into one. This is necessary to keep the
118 /// number of phi values equal to the number of branches to SuccBB.
119 void FixPhis(
120     BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
121     const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
122   for (BasicBlock::iterator I = SuccBB->begin(),
123                             IE = SuccBB->getFirstNonPHI()->getIterator();
124        I != IE; ++I) {
125     PHINode *PN = cast<PHINode>(I);
126 
127     // Only update the first occurrence.
128     unsigned Idx = 0, E = PN->getNumIncomingValues();
129     unsigned LocalNumMergedCases = NumMergedCases;
130     for (; Idx != E; ++Idx) {
131       if (PN->getIncomingBlock(Idx) == OrigBB) {
132         PN->setIncomingBlock(Idx, NewBB);
133         break;
134       }
135     }
136 
137     // Remove additional occurrences coming from condensed cases and keep the
138     // number of incoming values equal to the number of branches to SuccBB.
139     SmallVector<unsigned, 8> Indices;
140     for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
141       if (PN->getIncomingBlock(Idx) == OrigBB) {
142         Indices.push_back(Idx);
143         LocalNumMergedCases--;
144       }
145     // Remove incoming values in the reverse order to prevent invalidating
146     // *successive* index.
147     for (unsigned III : llvm::reverse(Indices))
148       PN->removeIncomingValue(III);
149   }
150 }
151 
152 /// Create a new leaf block for the binary lookup tree. It checks if the
153 /// switch's value == the case's value. If not, then it jumps to the default
154 /// branch. At this point in the tree, the value can't be another valid case
155 /// value, so the jump to the "default" branch is warranted.
156 BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound,
157                          ConstantInt *UpperBound, BasicBlock *OrigBlock,
158                          BasicBlock *Default) {
159   Function *F = OrigBlock->getParent();
160   BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
161   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
162 
163   // Emit comparison
164   ICmpInst *Comp = nullptr;
165   if (Leaf.Low == Leaf.High) {
166     // Make the seteq instruction...
167     Comp =
168         new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf");
169   } else {
170     // Make range comparison
171     if (Leaf.Low == LowerBound) {
172       // Val >= Min && Val <= Hi --> Val <= Hi
173       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
174                           "SwitchLeaf");
175     } else if (Leaf.High == UpperBound) {
176       // Val <= Max && Val >= Lo --> Val >= Lo
177       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
178                           "SwitchLeaf");
179     } else if (Leaf.Low->isZero()) {
180       // Val >= 0 && Val <= Hi --> Val <=u Hi
181       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
182                           "SwitchLeaf");
183     } else {
184       // Emit V-Lo <=u Hi-Lo
185       Constant *NegLo = ConstantExpr::getNeg(Leaf.Low);
186       Instruction *Add = BinaryOperator::CreateAdd(
187           Val, NegLo, Val->getName() + ".off", NewLeaf);
188       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
189       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
190                           "SwitchLeaf");
191     }
192   }
193 
194   // Make the conditional branch...
195   BasicBlock *Succ = Leaf.BB;
196   BranchInst::Create(Succ, Default, Comp, NewLeaf);
197 
198   // If there were any PHI nodes in this successor, rewrite one entry
199   // from OrigBlock to come from NewLeaf.
200   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
201     PHINode *PN = cast<PHINode>(I);
202     // Remove all but one incoming entries from the cluster
203     uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue();
204     for (uint64_t j = 0; j < Range; ++j) {
205       PN->removeIncomingValue(OrigBlock);
206     }
207 
208     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
209     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
210     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
211   }
212 
213   return NewLeaf;
214 }
215 
216 /// Convert the switch statement into a binary lookup of the case values.
217 /// The function recursively builds this tree. LowerBound and UpperBound are
218 /// used to keep track of the bounds for Val that have already been checked by
219 /// a block emitted by one of the previous calls to switchConvert in the call
220 /// stack.
221 BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
222                           ConstantInt *UpperBound, Value *Val,
223                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
224                           BasicBlock *Default,
225                           const std::vector<IntRange> &UnreachableRanges) {
226   assert(LowerBound && UpperBound && "Bounds must be initialized");
227   unsigned Size = End - Begin;
228 
229   if (Size == 1) {
230     // Check if the Case Range is perfectly squeezed in between
231     // already checked Upper and Lower bounds. If it is then we can avoid
232     // emitting the code that checks if the value actually falls in the range
233     // because the bounds already tell us so.
234     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
235       unsigned NumMergedCases = 0;
236       NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
237       FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
238       return Begin->BB;
239     }
240     return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
241                         Default);
242   }
243 
244   unsigned Mid = Size / 2;
245   std::vector<CaseRange> LHS(Begin, Begin + Mid);
246   LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
247   std::vector<CaseRange> RHS(Begin + Mid, End);
248   LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
249 
250   CaseRange &Pivot = *(Begin + Mid);
251   LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
252                     << Pivot.High->getValue() << "]\n");
253 
254   // NewLowerBound here should never be the integer minimal value.
255   // This is because it is computed from a case range that is never
256   // the smallest, so there is always a case range that has at least
257   // a smaller value.
258   ConstantInt *NewLowerBound = Pivot.Low;
259 
260   // Because NewLowerBound is never the smallest representable integer
261   // it is safe here to subtract one.
262   ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
263                                                 NewLowerBound->getValue() - 1);
264 
265   if (!UnreachableRanges.empty()) {
266     // Check if the gap between LHS's highest and NewLowerBound is unreachable.
267     int64_t GapLow = LHS.back().High->getSExtValue() + 1;
268     int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
269     IntRange Gap = { GapLow, GapHigh };
270     if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
271       NewUpperBound = LHS.back().High;
272   }
273 
274   LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
275                     << NewUpperBound->getSExtValue() << "]\n"
276                     << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
277                     << ", " << UpperBound->getSExtValue() << "]\n");
278 
279   // Create a new node that checks if the value is < pivot. Go to the
280   // left branch if it is and right branch if not.
281   Function* F = OrigBlock->getParent();
282   BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
283 
284   ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
285                                 Val, Pivot.Low, "Pivot");
286 
287   BasicBlock *LBranch =
288       SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val,
289                     NewNode, OrigBlock, Default, UnreachableRanges);
290   BasicBlock *RBranch =
291       SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val,
292                     NewNode, OrigBlock, Default, UnreachableRanges);
293 
294   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
295   NewNode->getInstList().push_back(Comp);
296 
297   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
298   return NewNode;
299 }
300 
301 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
302 /// \post \p Cases wouldn't contain references to \p SI's default BB.
303 /// \returns Number of \p SI's cases that do not reference \p SI's default BB.
304 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) {
305   unsigned NumSimpleCases = 0;
306 
307   // Start with "simple" cases
308   for (auto Case : SI->cases()) {
309     if (Case.getCaseSuccessor() == SI->getDefaultDest())
310       continue;
311     Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
312                               Case.getCaseSuccessor()));
313     ++NumSimpleCases;
314   }
315 
316   llvm::sort(Cases, CaseCmp());
317 
318   // Merge case into clusters
319   if (Cases.size() >= 2) {
320     CaseItr I = Cases.begin();
321     for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
322       int64_t nextValue = J->Low->getSExtValue();
323       int64_t currentValue = I->High->getSExtValue();
324       BasicBlock* nextBB = J->BB;
325       BasicBlock* currentBB = I->BB;
326 
327       // If the two neighboring cases go to the same destination, merge them
328       // into a single case.
329       assert(nextValue > currentValue && "Cases should be strictly ascending");
330       if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
331         I->High = J->High;
332         // FIXME: Combine branch weights.
333       } else if (++I != J) {
334         *I = *J;
335       }
336     }
337     Cases.erase(std::next(I), Cases.end());
338   }
339 
340   return NumSimpleCases;
341 }
342 
343 /// Replace the specified switch instruction with a sequence of chained if-then
344 /// insts in a balanced binary search.
345 void ProcessSwitchInst(SwitchInst *SI,
346                        SmallPtrSetImpl<BasicBlock *> &DeleteList,
347                        AssumptionCache *AC, LazyValueInfo *LVI) {
348   BasicBlock *OrigBlock = SI->getParent();
349   Function *F = OrigBlock->getParent();
350   Value *Val = SI->getCondition();  // The value we are switching on...
351   BasicBlock* Default = SI->getDefaultDest();
352 
353   // Don't handle unreachable blocks. If there are successors with phis, this
354   // would leave them behind with missing predecessors.
355   if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
356       OrigBlock->getSinglePredecessor() == OrigBlock) {
357     DeleteList.insert(OrigBlock);
358     return;
359   }
360 
361   // Prepare cases vector.
362   CaseVector Cases;
363   const unsigned NumSimpleCases = Clusterify(Cases, SI);
364   LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
365                     << ". Total non-default cases: " << NumSimpleCases
366                     << "\nCase clusters: " << Cases << "\n");
367 
368   // If there is only the default destination, just branch.
369   if (Cases.empty()) {
370     BranchInst::Create(Default, OrigBlock);
371     // Remove all the references from Default's PHIs to OrigBlock, but one.
372     FixPhis(Default, OrigBlock, OrigBlock);
373     SI->eraseFromParent();
374     return;
375   }
376 
377   ConstantInt *LowerBound = nullptr;
378   ConstantInt *UpperBound = nullptr;
379   bool DefaultIsUnreachableFromSwitch = false;
380 
381   if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
382     // Make the bounds tightly fitted around the case value range, because we
383     // know that the value passed to the switch must be exactly one of the case
384     // values.
385     LowerBound = Cases.front().Low;
386     UpperBound = Cases.back().High;
387     DefaultIsUnreachableFromSwitch = true;
388   } else {
389     // Constraining the range of the value being switched over helps eliminating
390     // unreachable BBs and minimizing the number of `add` instructions
391     // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
392     // LowerSwitch isn't as good, and also much more expensive in terms of
393     // compile time for the following reasons:
394     // 1. it processes many kinds of instructions, not just switches;
395     // 2. even if limited to icmp instructions only, it will have to process
396     //    roughly C icmp's per switch, where C is the number of cases in the
397     //    switch, while LowerSwitch only needs to call LVI once per switch.
398     const DataLayout &DL = F->getParent()->getDataLayout();
399     KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
400     // TODO Shouldn't this create a signed range?
401     ConstantRange KnownBitsRange =
402         ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
403     const ConstantRange LVIRange = LVI->getConstantRange(Val, SI);
404     ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
405     // We delegate removal of unreachable non-default cases to other passes. In
406     // the unlikely event that some of them survived, we just conservatively
407     // maintain the invariant that all the cases lie between the bounds. This
408     // may, however, still render the default case effectively unreachable.
409     APInt Low = Cases.front().Low->getValue();
410     APInt High = Cases.back().High->getValue();
411     APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
412     APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
413 
414     LowerBound = ConstantInt::get(SI->getContext(), Min);
415     UpperBound = ConstantInt::get(SI->getContext(), Max);
416     DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
417   }
418 
419   std::vector<IntRange> UnreachableRanges;
420 
421   if (DefaultIsUnreachableFromSwitch) {
422     DenseMap<BasicBlock *, unsigned> Popularity;
423     unsigned MaxPop = 0;
424     BasicBlock *PopSucc = nullptr;
425 
426     IntRange R = {std::numeric_limits<int64_t>::min(),
427                   std::numeric_limits<int64_t>::max()};
428     UnreachableRanges.push_back(R);
429     for (const auto &I : Cases) {
430       int64_t Low = I.Low->getSExtValue();
431       int64_t High = I.High->getSExtValue();
432 
433       IntRange &LastRange = UnreachableRanges.back();
434       if (LastRange.Low == Low) {
435         // There is nothing left of the previous range.
436         UnreachableRanges.pop_back();
437       } else {
438         // Terminate the previous range.
439         assert(Low > LastRange.Low);
440         LastRange.High = Low - 1;
441       }
442       if (High != std::numeric_limits<int64_t>::max()) {
443         IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
444         UnreachableRanges.push_back(R);
445       }
446 
447       // Count popularity.
448       int64_t N = High - Low + 1;
449       unsigned &Pop = Popularity[I.BB];
450       if ((Pop += N) > MaxPop) {
451         MaxPop = Pop;
452         PopSucc = I.BB;
453       }
454     }
455 #ifndef NDEBUG
456     /* UnreachableRanges should be sorted and the ranges non-adjacent. */
457     for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
458          I != E; ++I) {
459       assert(I->Low <= I->High);
460       auto Next = I + 1;
461       if (Next != E) {
462         assert(Next->Low > I->High);
463       }
464     }
465 #endif
466 
467     // As the default block in the switch is unreachable, update the PHI nodes
468     // (remove all of the references to the default block) to reflect this.
469     const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
470     for (unsigned I = 0; I < NumDefaultEdges; ++I)
471       Default->removePredecessor(OrigBlock);
472 
473     // Use the most popular block as the new default, reducing the number of
474     // cases.
475     assert(MaxPop > 0 && PopSucc);
476     Default = PopSucc;
477     llvm::erase_if(Cases,
478                    [PopSucc](const CaseRange &R) { return R.BB == PopSucc; });
479 
480     // If there are no cases left, just branch.
481     if (Cases.empty()) {
482       BranchInst::Create(Default, OrigBlock);
483       SI->eraseFromParent();
484       // As all the cases have been replaced with a single branch, only keep
485       // one entry in the PHI nodes.
486       for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
487         PopSucc->removePredecessor(OrigBlock);
488       return;
489     }
490 
491     // If the condition was a PHI node with the switch block as a predecessor
492     // removing predecessors may have caused the condition to be erased.
493     // Getting the condition value again here protects against that.
494     Val = SI->getCondition();
495   }
496 
497   // Create a new, empty default block so that the new hierarchy of
498   // if-then statements go to this and the PHI nodes are happy.
499   BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
500   F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
501   BranchInst::Create(Default, NewDefault);
502 
503   BasicBlock *SwitchBlock =
504       SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
505                     OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
506 
507   // If there are entries in any PHI nodes for the default edge, make sure
508   // to update them as well.
509   FixPhis(Default, OrigBlock, NewDefault);
510 
511   // Branch to our shiny new if-then stuff...
512   BranchInst::Create(SwitchBlock, OrigBlock);
513 
514   // We are now done with the switch instruction, delete it.
515   BasicBlock *OldDefault = SI->getDefaultDest();
516   OrigBlock->getInstList().erase(SI);
517 
518   // If the Default block has no more predecessors just add it to DeleteList.
519   if (pred_empty(OldDefault))
520     DeleteList.insert(OldDefault);
521 }
522 
523 bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) {
524   bool Changed = false;
525   SmallPtrSet<BasicBlock *, 8> DeleteList;
526 
527   // We use make_early_inc_range here so that we don't traverse new blocks.
528   for (BasicBlock &Cur : llvm::make_early_inc_range(F)) {
529     // If the block is a dead Default block that will be deleted later, don't
530     // waste time processing it.
531     if (DeleteList.count(&Cur))
532       continue;
533 
534     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) {
535       Changed = true;
536       ProcessSwitchInst(SI, DeleteList, AC, LVI);
537     }
538   }
539 
540   for (BasicBlock *BB : DeleteList) {
541     LVI->eraseBlock(BB);
542     DeleteDeadBlock(BB);
543   }
544 
545   return Changed;
546 }
547 
548 /// Replace all SwitchInst instructions with chained branch instructions.
549 class LowerSwitchLegacyPass : public FunctionPass {
550 public:
551   // Pass identification, replacement for typeid
552   static char ID;
553 
554   LowerSwitchLegacyPass() : FunctionPass(ID) {
555     initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry());
556   }
557 
558   bool runOnFunction(Function &F) override;
559 
560   void getAnalysisUsage(AnalysisUsage &AU) const override {
561     AU.addRequired<LazyValueInfoWrapperPass>();
562   }
563 };
564 
565 } // end anonymous namespace
566 
567 char LowerSwitchLegacyPass::ID = 0;
568 
569 // Publicly exposed interface to pass...
570 char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID;
571 
572 INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",
573                       "Lower SwitchInst's to branches", false, false)
574 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
575 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
576 INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",
577                     "Lower SwitchInst's to branches", false, false)
578 
579 // createLowerSwitchPass - Interface to this file...
580 FunctionPass *llvm::createLowerSwitchPass() {
581   return new LowerSwitchLegacyPass();
582 }
583 
584 bool LowerSwitchLegacyPass::runOnFunction(Function &F) {
585   LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
586   auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
587   AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
588   return LowerSwitch(F, LVI, AC);
589 }
590 
591 PreservedAnalyses LowerSwitchPass::run(Function &F,
592                                        FunctionAnalysisManager &AM) {
593   LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
594   AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F);
595   return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none()
596                                  : PreservedAnalyses::all();
597 }
598