xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LowerMemIntrinsics.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- LowerMemIntrinsics.cpp ----------------------------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
10 #include "llvm/Analysis/ScalarEvolution.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/IR/IRBuilder.h"
13 #include "llvm/IR/IntrinsicInst.h"
14 #include "llvm/IR/MDBuilder.h"
15 #include "llvm/Support/Debug.h"
16 #include "llvm/Support/MathExtras.h"
17 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
18 #include <optional>
19 
20 #define DEBUG_TYPE "lower-mem-intrinsics"
21 
22 using namespace llvm;
23 
24 void llvm::createMemCpyLoopKnownSize(
25     Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr,
26     ConstantInt *CopyLen, Align SrcAlign, Align DstAlign, bool SrcIsVolatile,
27     bool DstIsVolatile, bool CanOverlap, const TargetTransformInfo &TTI,
28     std::optional<uint32_t> AtomicElementSize) {
29   // No need to expand zero length copies.
30   if (CopyLen->isZero())
31     return;
32 
33   BasicBlock *PreLoopBB = InsertBefore->getParent();
34   BasicBlock *PostLoopBB = nullptr;
35   Function *ParentFunc = PreLoopBB->getParent();
36   LLVMContext &Ctx = PreLoopBB->getContext();
37   const DataLayout &DL = ParentFunc->getDataLayout();
38   MDBuilder MDB(Ctx);
39   MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
40   StringRef Name = "MemCopyAliasScope";
41   MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
42 
43   unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
44   unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
45 
46   Type *TypeOfCopyLen = CopyLen->getType();
47   Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
48       Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
49       AtomicElementSize);
50   assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
51          "Atomic memcpy lowering is not supported for vector operand type");
52 
53   unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
54   assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
55       "Atomic memcpy lowering is not supported for selected operand size");
56 
57   uint64_t LoopEndCount = CopyLen->getZExtValue() / LoopOpSize;
58 
59   if (LoopEndCount != 0) {
60     // Split
61     PostLoopBB = PreLoopBB->splitBasicBlock(InsertBefore, "memcpy-split");
62     BasicBlock *LoopBB =
63         BasicBlock::Create(Ctx, "load-store-loop", ParentFunc, PostLoopBB);
64     PreLoopBB->getTerminator()->setSuccessor(0, LoopBB);
65 
66     IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
67 
68     Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
69     Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
70 
71     IRBuilder<> LoopBuilder(LoopBB);
72     PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 2, "loop-index");
73     LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0U), PreLoopBB);
74     // Loop Body
75     Value *SrcGEP =
76         LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
77     LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
78                                                    PartSrcAlign, SrcIsVolatile);
79     if (!CanOverlap) {
80       // Set alias scope for loads.
81       Load->setMetadata(LLVMContext::MD_alias_scope,
82                         MDNode::get(Ctx, NewScope));
83     }
84     Value *DstGEP =
85         LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
86     StoreInst *Store = LoopBuilder.CreateAlignedStore(
87         Load, DstGEP, PartDstAlign, DstIsVolatile);
88     if (!CanOverlap) {
89       // Indicate that stores don't overlap loads.
90       Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
91     }
92     if (AtomicElementSize) {
93       Load->setAtomic(AtomicOrdering::Unordered);
94       Store->setAtomic(AtomicOrdering::Unordered);
95     }
96     Value *NewIndex =
97         LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1U));
98     LoopIndex->addIncoming(NewIndex, LoopBB);
99 
100     // Create the loop branch condition.
101     Constant *LoopEndCI = ConstantInt::get(TypeOfCopyLen, LoopEndCount);
102     LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, LoopEndCI),
103                              LoopBB, PostLoopBB);
104   }
105 
106   uint64_t BytesCopied = LoopEndCount * LoopOpSize;
107   uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopied;
108   if (RemainingBytes) {
109     IRBuilder<> RBuilder(PostLoopBB ? PostLoopBB->getFirstNonPHI()
110                                     : InsertBefore);
111 
112     SmallVector<Type *, 5> RemainingOps;
113     TTI.getMemcpyLoopResidualLoweringType(RemainingOps, Ctx, RemainingBytes,
114                                           SrcAS, DstAS, SrcAlign.value(),
115                                           DstAlign.value(), AtomicElementSize);
116 
117     for (auto *OpTy : RemainingOps) {
118       Align PartSrcAlign(commonAlignment(SrcAlign, BytesCopied));
119       Align PartDstAlign(commonAlignment(DstAlign, BytesCopied));
120 
121       // Calculate the new index
122       unsigned OperandSize = DL.getTypeStoreSize(OpTy);
123       assert(
124           (!AtomicElementSize || OperandSize % *AtomicElementSize == 0) &&
125           "Atomic memcpy lowering is not supported for selected operand size");
126 
127       uint64_t GepIndex = BytesCopied / OperandSize;
128       assert(GepIndex * OperandSize == BytesCopied &&
129              "Division should have no Remainder!");
130 
131       Value *SrcGEP = RBuilder.CreateInBoundsGEP(
132           OpTy, SrcAddr, ConstantInt::get(TypeOfCopyLen, GepIndex));
133       LoadInst *Load =
134           RBuilder.CreateAlignedLoad(OpTy, SrcGEP, PartSrcAlign, SrcIsVolatile);
135       if (!CanOverlap) {
136         // Set alias scope for loads.
137         Load->setMetadata(LLVMContext::MD_alias_scope,
138                           MDNode::get(Ctx, NewScope));
139       }
140       Value *DstGEP = RBuilder.CreateInBoundsGEP(
141           OpTy, DstAddr, ConstantInt::get(TypeOfCopyLen, GepIndex));
142       StoreInst *Store = RBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
143                                                      DstIsVolatile);
144       if (!CanOverlap) {
145         // Indicate that stores don't overlap loads.
146         Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
147       }
148       if (AtomicElementSize) {
149         Load->setAtomic(AtomicOrdering::Unordered);
150         Store->setAtomic(AtomicOrdering::Unordered);
151       }
152       BytesCopied += OperandSize;
153     }
154   }
155   assert(BytesCopied == CopyLen->getZExtValue() &&
156          "Bytes copied should match size in the call!");
157 }
158 
159 // \returns \p Len udiv \p OpSize, checking for optimization opportunities.
160 static Value *getRuntimeLoopCount(const DataLayout &DL, IRBuilderBase &B,
161                                   Value *Len, Value *OpSize,
162                                   unsigned OpSizeVal) {
163   // For powers of 2, we can lshr by log2 instead of using udiv.
164   if (isPowerOf2_32(OpSizeVal))
165     return B.CreateLShr(Len, Log2_32(OpSizeVal));
166   return B.CreateUDiv(Len, OpSize);
167 }
168 
169 // \returns \p Len urem \p OpSize, checking for optimization opportunities.
170 static Value *getRuntimeLoopRemainder(const DataLayout &DL, IRBuilderBase &B,
171                                       Value *Len, Value *OpSize,
172                                       unsigned OpSizeVal) {
173   // For powers of 2, we can and by (OpSizeVal - 1) instead of using urem.
174   if (isPowerOf2_32(OpSizeVal))
175     return B.CreateAnd(Len, OpSizeVal - 1);
176   return B.CreateURem(Len, OpSize);
177 }
178 
179 void llvm::createMemCpyLoopUnknownSize(
180     Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, Value *CopyLen,
181     Align SrcAlign, Align DstAlign, bool SrcIsVolatile, bool DstIsVolatile,
182     bool CanOverlap, const TargetTransformInfo &TTI,
183     std::optional<uint32_t> AtomicElementSize) {
184   BasicBlock *PreLoopBB = InsertBefore->getParent();
185   BasicBlock *PostLoopBB =
186       PreLoopBB->splitBasicBlock(InsertBefore, "post-loop-memcpy-expansion");
187 
188   Function *ParentFunc = PreLoopBB->getParent();
189   const DataLayout &DL = ParentFunc->getDataLayout();
190   LLVMContext &Ctx = PreLoopBB->getContext();
191   MDBuilder MDB(Ctx);
192   MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
193   StringRef Name = "MemCopyAliasScope";
194   MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
195 
196   unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
197   unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
198 
199   Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
200       Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
201       AtomicElementSize);
202   assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
203          "Atomic memcpy lowering is not supported for vector operand type");
204   unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
205   assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
206          "Atomic memcpy lowering is not supported for selected operand size");
207 
208   IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
209 
210   // Calculate the loop trip count, and remaining bytes to copy after the loop.
211   Type *CopyLenType = CopyLen->getType();
212   IntegerType *ILengthType = dyn_cast<IntegerType>(CopyLenType);
213   assert(ILengthType &&
214          "expected size argument to memcpy to be an integer type!");
215   Type *Int8Type = Type::getInt8Ty(Ctx);
216   bool LoopOpIsInt8 = LoopOpType == Int8Type;
217   ConstantInt *CILoopOpSize = ConstantInt::get(ILengthType, LoopOpSize);
218   Value *RuntimeLoopCount = LoopOpIsInt8
219                                 ? CopyLen
220                                 : getRuntimeLoopCount(DL, PLBuilder, CopyLen,
221                                                       CILoopOpSize, LoopOpSize);
222 
223   BasicBlock *LoopBB =
224       BasicBlock::Create(Ctx, "loop-memcpy-expansion", ParentFunc, PostLoopBB);
225   IRBuilder<> LoopBuilder(LoopBB);
226 
227   Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
228   Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
229 
230   PHINode *LoopIndex = LoopBuilder.CreatePHI(CopyLenType, 2, "loop-index");
231   LoopIndex->addIncoming(ConstantInt::get(CopyLenType, 0U), PreLoopBB);
232 
233   Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
234   LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
235                                                  PartSrcAlign, SrcIsVolatile);
236   if (!CanOverlap) {
237     // Set alias scope for loads.
238     Load->setMetadata(LLVMContext::MD_alias_scope, MDNode::get(Ctx, NewScope));
239   }
240   Value *DstGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
241   StoreInst *Store =
242       LoopBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign, DstIsVolatile);
243   if (!CanOverlap) {
244     // Indicate that stores don't overlap loads.
245     Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
246   }
247   if (AtomicElementSize) {
248     Load->setAtomic(AtomicOrdering::Unordered);
249     Store->setAtomic(AtomicOrdering::Unordered);
250   }
251   Value *NewIndex =
252       LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(CopyLenType, 1U));
253   LoopIndex->addIncoming(NewIndex, LoopBB);
254 
255   bool requiresResidual =
256       !LoopOpIsInt8 && !(AtomicElementSize && LoopOpSize == AtomicElementSize);
257   if (requiresResidual) {
258     Type *ResLoopOpType = AtomicElementSize
259                               ? Type::getIntNTy(Ctx, *AtomicElementSize * 8)
260                               : Int8Type;
261     unsigned ResLoopOpSize = DL.getTypeStoreSize(ResLoopOpType);
262     assert((ResLoopOpSize == AtomicElementSize ? *AtomicElementSize : 1) &&
263            "Store size is expected to match type size");
264 
265     Align ResSrcAlign(commonAlignment(PartSrcAlign, ResLoopOpSize));
266     Align ResDstAlign(commonAlignment(PartDstAlign, ResLoopOpSize));
267 
268     Value *RuntimeResidual = getRuntimeLoopRemainder(DL, PLBuilder, CopyLen,
269                                                      CILoopOpSize, LoopOpSize);
270     Value *RuntimeBytesCopied = PLBuilder.CreateSub(CopyLen, RuntimeResidual);
271 
272     // Loop body for the residual copy.
273     BasicBlock *ResLoopBB = BasicBlock::Create(Ctx, "loop-memcpy-residual",
274                                                PreLoopBB->getParent(),
275                                                PostLoopBB);
276     // Residual loop header.
277     BasicBlock *ResHeaderBB = BasicBlock::Create(
278         Ctx, "loop-memcpy-residual-header", PreLoopBB->getParent(), nullptr);
279 
280     // Need to update the pre-loop basic block to branch to the correct place.
281     // branch to the main loop if the count is non-zero, branch to the residual
282     // loop if the copy size is smaller then 1 iteration of the main loop but
283     // non-zero and finally branch to after the residual loop if the memcpy
284     //  size is zero.
285     ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
286     PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
287                            LoopBB, ResHeaderBB);
288     PreLoopBB->getTerminator()->eraseFromParent();
289 
290     LoopBuilder.CreateCondBr(
291         LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
292         ResHeaderBB);
293 
294     // Determine if we need to branch to the residual loop or bypass it.
295     IRBuilder<> RHBuilder(ResHeaderBB);
296     RHBuilder.CreateCondBr(RHBuilder.CreateICmpNE(RuntimeResidual, Zero),
297                            ResLoopBB, PostLoopBB);
298 
299     // Copy the residual with single byte load/store loop.
300     IRBuilder<> ResBuilder(ResLoopBB);
301     PHINode *ResidualIndex =
302         ResBuilder.CreatePHI(CopyLenType, 2, "residual-loop-index");
303     ResidualIndex->addIncoming(Zero, ResHeaderBB);
304 
305     Value *FullOffset = ResBuilder.CreateAdd(RuntimeBytesCopied, ResidualIndex);
306     Value *SrcGEP =
307         ResBuilder.CreateInBoundsGEP(ResLoopOpType, SrcAddr, FullOffset);
308     LoadInst *Load = ResBuilder.CreateAlignedLoad(ResLoopOpType, SrcGEP,
309                                                   ResSrcAlign, SrcIsVolatile);
310     if (!CanOverlap) {
311       // Set alias scope for loads.
312       Load->setMetadata(LLVMContext::MD_alias_scope,
313                         MDNode::get(Ctx, NewScope));
314     }
315     Value *DstGEP =
316         ResBuilder.CreateInBoundsGEP(ResLoopOpType, DstAddr, FullOffset);
317     StoreInst *Store =
318         ResBuilder.CreateAlignedStore(Load, DstGEP, ResDstAlign, DstIsVolatile);
319     if (!CanOverlap) {
320       // Indicate that stores don't overlap loads.
321       Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
322     }
323     if (AtomicElementSize) {
324       Load->setAtomic(AtomicOrdering::Unordered);
325       Store->setAtomic(AtomicOrdering::Unordered);
326     }
327     Value *ResNewIndex = ResBuilder.CreateAdd(
328         ResidualIndex, ConstantInt::get(CopyLenType, ResLoopOpSize));
329     ResidualIndex->addIncoming(ResNewIndex, ResLoopBB);
330 
331     // Create the loop branch condition.
332     ResBuilder.CreateCondBr(
333         ResBuilder.CreateICmpULT(ResNewIndex, RuntimeResidual), ResLoopBB,
334         PostLoopBB);
335   } else {
336     // In this case the loop operand type was a byte, and there is no need for a
337     // residual loop to copy the remaining memory after the main loop.
338     // We do however need to patch up the control flow by creating the
339     // terminators for the preloop block and the memcpy loop.
340     ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
341     PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
342                            LoopBB, PostLoopBB);
343     PreLoopBB->getTerminator()->eraseFromParent();
344     LoopBuilder.CreateCondBr(
345         LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
346         PostLoopBB);
347   }
348 }
349 
350 // Lower memmove to IR. memmove is required to correctly copy overlapping memory
351 // regions; therefore, it has to check the relative positions of the source and
352 // destination pointers and choose the copy direction accordingly.
353 //
354 // The code below is an IR rendition of this C function:
355 //
356 // void* memmove(void* dst, const void* src, size_t n) {
357 //   unsigned char* d = dst;
358 //   const unsigned char* s = src;
359 //   if (s < d) {
360 //     // copy backwards
361 //     while (n--) {
362 //       d[n] = s[n];
363 //     }
364 //   } else {
365 //     // copy forward
366 //     for (size_t i = 0; i < n; ++i) {
367 //       d[i] = s[i];
368 //     }
369 //   }
370 //   return dst;
371 // }
372 static void createMemMoveLoop(Instruction *InsertBefore, Value *SrcAddr,
373                               Value *DstAddr, Value *CopyLen, Align SrcAlign,
374                               Align DstAlign, bool SrcIsVolatile,
375                               bool DstIsVolatile,
376                               const TargetTransformInfo &TTI) {
377   Type *TypeOfCopyLen = CopyLen->getType();
378   BasicBlock *OrigBB = InsertBefore->getParent();
379   Function *F = OrigBB->getParent();
380   const DataLayout &DL = F->getDataLayout();
381   // TODO: Use different element type if possible?
382   Type *EltTy = Type::getInt8Ty(F->getContext());
383 
384   // Create the a comparison of src and dst, based on which we jump to either
385   // the forward-copy part of the function (if src >= dst) or the backwards-copy
386   // part (if src < dst).
387   // SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else
388   // structure. Its block terminators (unconditional branches) are replaced by
389   // the appropriate conditional branches when the loop is built.
390   ICmpInst *PtrCompare = new ICmpInst(InsertBefore->getIterator(), ICmpInst::ICMP_ULT,
391                                       SrcAddr, DstAddr, "compare_src_dst");
392   Instruction *ThenTerm, *ElseTerm;
393   SplitBlockAndInsertIfThenElse(PtrCompare, InsertBefore->getIterator(), &ThenTerm,
394                                 &ElseTerm);
395 
396   // Each part of the function consists of two blocks:
397   //   copy_backwards:        used to skip the loop when n == 0
398   //   copy_backwards_loop:   the actual backwards loop BB
399   //   copy_forward:          used to skip the loop when n == 0
400   //   copy_forward_loop:     the actual forward loop BB
401   BasicBlock *CopyBackwardsBB = ThenTerm->getParent();
402   CopyBackwardsBB->setName("copy_backwards");
403   BasicBlock *CopyForwardBB = ElseTerm->getParent();
404   CopyForwardBB->setName("copy_forward");
405   BasicBlock *ExitBB = InsertBefore->getParent();
406   ExitBB->setName("memmove_done");
407 
408   unsigned PartSize = DL.getTypeStoreSize(EltTy);
409   Align PartSrcAlign(commonAlignment(SrcAlign, PartSize));
410   Align PartDstAlign(commonAlignment(DstAlign, PartSize));
411 
412   // Initial comparison of n == 0 that lets us skip the loops altogether. Shared
413   // between both backwards and forward copy clauses.
414   ICmpInst *CompareN =
415       new ICmpInst(OrigBB->getTerminator()->getIterator(), ICmpInst::ICMP_EQ, CopyLen,
416                    ConstantInt::get(TypeOfCopyLen, 0), "compare_n_to_0");
417 
418   // Copying backwards.
419   BasicBlock *LoopBB =
420     BasicBlock::Create(F->getContext(), "copy_backwards_loop", F, CopyForwardBB);
421   IRBuilder<> LoopBuilder(LoopBB);
422 
423   PHINode *LoopPhi = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
424   Value *IndexPtr = LoopBuilder.CreateSub(
425       LoopPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_ptr");
426   Value *Element = LoopBuilder.CreateAlignedLoad(
427       EltTy, LoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, IndexPtr),
428       PartSrcAlign, SrcIsVolatile, "element");
429   LoopBuilder.CreateAlignedStore(
430       Element, LoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, IndexPtr),
431       PartDstAlign, DstIsVolatile);
432   LoopBuilder.CreateCondBr(
433       LoopBuilder.CreateICmpEQ(IndexPtr, ConstantInt::get(TypeOfCopyLen, 0)),
434       ExitBB, LoopBB);
435   LoopPhi->addIncoming(IndexPtr, LoopBB);
436   LoopPhi->addIncoming(CopyLen, CopyBackwardsBB);
437   BranchInst::Create(ExitBB, LoopBB, CompareN, ThenTerm->getIterator());
438   ThenTerm->eraseFromParent();
439 
440   // Copying forward.
441   BasicBlock *FwdLoopBB =
442     BasicBlock::Create(F->getContext(), "copy_forward_loop", F, ExitBB);
443   IRBuilder<> FwdLoopBuilder(FwdLoopBB);
444   PHINode *FwdCopyPhi = FwdLoopBuilder.CreatePHI(TypeOfCopyLen, 0, "index_ptr");
445   Value *SrcGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, FwdCopyPhi);
446   Value *FwdElement = FwdLoopBuilder.CreateAlignedLoad(
447       EltTy, SrcGEP, PartSrcAlign, SrcIsVolatile, "element");
448   Value *DstGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, FwdCopyPhi);
449   FwdLoopBuilder.CreateAlignedStore(FwdElement, DstGEP, PartDstAlign,
450                                     DstIsVolatile);
451   Value *FwdIndexPtr = FwdLoopBuilder.CreateAdd(
452       FwdCopyPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_increment");
453   FwdLoopBuilder.CreateCondBr(FwdLoopBuilder.CreateICmpEQ(FwdIndexPtr, CopyLen),
454                               ExitBB, FwdLoopBB);
455   FwdCopyPhi->addIncoming(FwdIndexPtr, FwdLoopBB);
456   FwdCopyPhi->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), CopyForwardBB);
457 
458   BranchInst::Create(ExitBB, FwdLoopBB, CompareN, ElseTerm->getIterator());
459   ElseTerm->eraseFromParent();
460 }
461 
462 static void createMemSetLoop(Instruction *InsertBefore, Value *DstAddr,
463                              Value *CopyLen, Value *SetValue, Align DstAlign,
464                              bool IsVolatile) {
465   Type *TypeOfCopyLen = CopyLen->getType();
466   BasicBlock *OrigBB = InsertBefore->getParent();
467   Function *F = OrigBB->getParent();
468   const DataLayout &DL = F->getDataLayout();
469   BasicBlock *NewBB =
470       OrigBB->splitBasicBlock(InsertBefore, "split");
471   BasicBlock *LoopBB
472     = BasicBlock::Create(F->getContext(), "loadstoreloop", F, NewBB);
473 
474   IRBuilder<> Builder(OrigBB->getTerminator());
475 
476   Builder.CreateCondBr(
477       Builder.CreateICmpEQ(ConstantInt::get(TypeOfCopyLen, 0), CopyLen), NewBB,
478       LoopBB);
479   OrigBB->getTerminator()->eraseFromParent();
480 
481   unsigned PartSize = DL.getTypeStoreSize(SetValue->getType());
482   Align PartAlign(commonAlignment(DstAlign, PartSize));
483 
484   IRBuilder<> LoopBuilder(LoopBB);
485   PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
486   LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), OrigBB);
487 
488   LoopBuilder.CreateAlignedStore(
489       SetValue,
490       LoopBuilder.CreateInBoundsGEP(SetValue->getType(), DstAddr, LoopIndex),
491       PartAlign, IsVolatile);
492 
493   Value *NewIndex =
494       LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1));
495   LoopIndex->addIncoming(NewIndex, LoopBB);
496 
497   LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, CopyLen), LoopBB,
498                            NewBB);
499 }
500 
501 template <typename T>
502 static bool canOverlap(MemTransferBase<T> *Memcpy, ScalarEvolution *SE) {
503   if (SE) {
504     auto *SrcSCEV = SE->getSCEV(Memcpy->getRawSource());
505     auto *DestSCEV = SE->getSCEV(Memcpy->getRawDest());
506     if (SE->isKnownPredicateAt(CmpInst::ICMP_NE, SrcSCEV, DestSCEV, Memcpy))
507       return false;
508   }
509   return true;
510 }
511 
512 void llvm::expandMemCpyAsLoop(MemCpyInst *Memcpy,
513                               const TargetTransformInfo &TTI,
514                               ScalarEvolution *SE) {
515   bool CanOverlap = canOverlap(Memcpy, SE);
516   if (ConstantInt *CI = dyn_cast<ConstantInt>(Memcpy->getLength())) {
517     createMemCpyLoopKnownSize(
518         /* InsertBefore */ Memcpy,
519         /* SrcAddr */ Memcpy->getRawSource(),
520         /* DstAddr */ Memcpy->getRawDest(),
521         /* CopyLen */ CI,
522         /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
523         /* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
524         /* SrcIsVolatile */ Memcpy->isVolatile(),
525         /* DstIsVolatile */ Memcpy->isVolatile(),
526         /* CanOverlap */ CanOverlap,
527         /* TargetTransformInfo */ TTI);
528   } else {
529     createMemCpyLoopUnknownSize(
530         /* InsertBefore */ Memcpy,
531         /* SrcAddr */ Memcpy->getRawSource(),
532         /* DstAddr */ Memcpy->getRawDest(),
533         /* CopyLen */ Memcpy->getLength(),
534         /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
535         /* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
536         /* SrcIsVolatile */ Memcpy->isVolatile(),
537         /* DstIsVolatile */ Memcpy->isVolatile(),
538         /* CanOverlap */ CanOverlap,
539         /* TargetTransformInfo */ TTI);
540   }
541 }
542 
543 bool llvm::expandMemMoveAsLoop(MemMoveInst *Memmove,
544                                const TargetTransformInfo &TTI) {
545   Value *CopyLen = Memmove->getLength();
546   Value *SrcAddr = Memmove->getRawSource();
547   Value *DstAddr = Memmove->getRawDest();
548   Align SrcAlign = Memmove->getSourceAlign().valueOrOne();
549   Align DstAlign = Memmove->getDestAlign().valueOrOne();
550   bool SrcIsVolatile = Memmove->isVolatile();
551   bool DstIsVolatile = SrcIsVolatile;
552   IRBuilder<> CastBuilder(Memmove);
553 
554   unsigned SrcAS = SrcAddr->getType()->getPointerAddressSpace();
555   unsigned DstAS = DstAddr->getType()->getPointerAddressSpace();
556   if (SrcAS != DstAS) {
557     if (!TTI.addrspacesMayAlias(SrcAS, DstAS)) {
558       // We may not be able to emit a pointer comparison, but we don't have
559       // to. Expand as memcpy.
560       if (ConstantInt *CI = dyn_cast<ConstantInt>(CopyLen)) {
561         createMemCpyLoopKnownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr,
562                                   CI, SrcAlign, DstAlign, SrcIsVolatile,
563                                   DstIsVolatile,
564                                   /*CanOverlap=*/false, TTI);
565       } else {
566         createMemCpyLoopUnknownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr,
567                                     CopyLen, SrcAlign, DstAlign, SrcIsVolatile,
568                                     DstIsVolatile,
569                                     /*CanOverlap=*/false, TTI);
570       }
571 
572       return true;
573     }
574 
575     if (TTI.isValidAddrSpaceCast(DstAS, SrcAS))
576       DstAddr = CastBuilder.CreateAddrSpaceCast(DstAddr, SrcAddr->getType());
577     else if (TTI.isValidAddrSpaceCast(SrcAS, DstAS))
578       SrcAddr = CastBuilder.CreateAddrSpaceCast(SrcAddr, DstAddr->getType());
579     else {
580       // We don't know generically if it's legal to introduce an
581       // addrspacecast. We need to know either if it's legal to insert an
582       // addrspacecast, or if the address spaces cannot alias.
583       LLVM_DEBUG(
584           dbgs() << "Do not know how to expand memmove between different "
585                     "address spaces\n");
586       return false;
587     }
588   }
589 
590   createMemMoveLoop(
591       /*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen, SrcAlign, DstAlign,
592       SrcIsVolatile, DstIsVolatile, TTI);
593   return true;
594 }
595 
596 void llvm::expandMemSetAsLoop(MemSetInst *Memset) {
597   createMemSetLoop(/* InsertBefore */ Memset,
598                    /* DstAddr */ Memset->getRawDest(),
599                    /* CopyLen */ Memset->getLength(),
600                    /* SetValue */ Memset->getValue(),
601                    /* Alignment */ Memset->getDestAlign().valueOrOne(),
602                    Memset->isVolatile());
603 }
604 
605 void llvm::expandAtomicMemCpyAsLoop(AtomicMemCpyInst *AtomicMemcpy,
606                                     const TargetTransformInfo &TTI,
607                                     ScalarEvolution *SE) {
608   if (ConstantInt *CI = dyn_cast<ConstantInt>(AtomicMemcpy->getLength())) {
609     createMemCpyLoopKnownSize(
610         /* InsertBefore */ AtomicMemcpy,
611         /* SrcAddr */ AtomicMemcpy->getRawSource(),
612         /* DstAddr */ AtomicMemcpy->getRawDest(),
613         /* CopyLen */ CI,
614         /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
615         /* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
616         /* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
617         /* DstIsVolatile */ AtomicMemcpy->isVolatile(),
618         /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
619         /* TargetTransformInfo */ TTI,
620         /* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
621   } else {
622     createMemCpyLoopUnknownSize(
623         /* InsertBefore */ AtomicMemcpy,
624         /* SrcAddr */ AtomicMemcpy->getRawSource(),
625         /* DstAddr */ AtomicMemcpy->getRawDest(),
626         /* CopyLen */ AtomicMemcpy->getLength(),
627         /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
628         /* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
629         /* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
630         /* DstIsVolatile */ AtomicMemcpy->isVolatile(),
631         /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
632         /* TargetTransformInfo */ TTI,
633         /* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
634   }
635 }
636