xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LowerMemIntrinsics.cpp (revision 734e82fe33aa764367791a7d603b383996c6b40b)
1 //===- LowerMemIntrinsics.cpp ----------------------------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
10 #include "llvm/Analysis/ScalarEvolution.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/IR/IRBuilder.h"
13 #include "llvm/IR/IntrinsicInst.h"
14 #include "llvm/IR/MDBuilder.h"
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include <optional>
17 
18 using namespace llvm;
19 
20 void llvm::createMemCpyLoopKnownSize(
21     Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr,
22     ConstantInt *CopyLen, Align SrcAlign, Align DstAlign, bool SrcIsVolatile,
23     bool DstIsVolatile, bool CanOverlap, const TargetTransformInfo &TTI,
24     std::optional<uint32_t> AtomicElementSize) {
25   // No need to expand zero length copies.
26   if (CopyLen->isZero())
27     return;
28 
29   BasicBlock *PreLoopBB = InsertBefore->getParent();
30   BasicBlock *PostLoopBB = nullptr;
31   Function *ParentFunc = PreLoopBB->getParent();
32   LLVMContext &Ctx = PreLoopBB->getContext();
33   const DataLayout &DL = ParentFunc->getParent()->getDataLayout();
34   MDBuilder MDB(Ctx);
35   MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
36   StringRef Name = "MemCopyAliasScope";
37   MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
38 
39   unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
40   unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
41 
42   Type *TypeOfCopyLen = CopyLen->getType();
43   Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
44       Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
45       AtomicElementSize);
46   assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
47          "Atomic memcpy lowering is not supported for vector operand type");
48 
49   unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
50   assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
51       "Atomic memcpy lowering is not supported for selected operand size");
52 
53   uint64_t LoopEndCount = CopyLen->getZExtValue() / LoopOpSize;
54 
55   if (LoopEndCount != 0) {
56     // Split
57     PostLoopBB = PreLoopBB->splitBasicBlock(InsertBefore, "memcpy-split");
58     BasicBlock *LoopBB =
59         BasicBlock::Create(Ctx, "load-store-loop", ParentFunc, PostLoopBB);
60     PreLoopBB->getTerminator()->setSuccessor(0, LoopBB);
61 
62     IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
63 
64     // Cast the Src and Dst pointers to pointers to the loop operand type (if
65     // needed).
66     PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
67     PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
68     if (SrcAddr->getType() != SrcOpType) {
69       SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
70     }
71     if (DstAddr->getType() != DstOpType) {
72       DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
73     }
74 
75     Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
76     Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
77 
78     IRBuilder<> LoopBuilder(LoopBB);
79     PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 2, "loop-index");
80     LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0U), PreLoopBB);
81     // Loop Body
82     Value *SrcGEP =
83         LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
84     LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
85                                                    PartSrcAlign, SrcIsVolatile);
86     if (!CanOverlap) {
87       // Set alias scope for loads.
88       Load->setMetadata(LLVMContext::MD_alias_scope,
89                         MDNode::get(Ctx, NewScope));
90     }
91     Value *DstGEP =
92         LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
93     StoreInst *Store = LoopBuilder.CreateAlignedStore(
94         Load, DstGEP, PartDstAlign, DstIsVolatile);
95     if (!CanOverlap) {
96       // Indicate that stores don't overlap loads.
97       Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
98     }
99     if (AtomicElementSize) {
100       Load->setAtomic(AtomicOrdering::Unordered);
101       Store->setAtomic(AtomicOrdering::Unordered);
102     }
103     Value *NewIndex =
104         LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1U));
105     LoopIndex->addIncoming(NewIndex, LoopBB);
106 
107     // Create the loop branch condition.
108     Constant *LoopEndCI = ConstantInt::get(TypeOfCopyLen, LoopEndCount);
109     LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, LoopEndCI),
110                              LoopBB, PostLoopBB);
111   }
112 
113   uint64_t BytesCopied = LoopEndCount * LoopOpSize;
114   uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopied;
115   if (RemainingBytes) {
116     IRBuilder<> RBuilder(PostLoopBB ? PostLoopBB->getFirstNonPHI()
117                                     : InsertBefore);
118 
119     SmallVector<Type *, 5> RemainingOps;
120     TTI.getMemcpyLoopResidualLoweringType(RemainingOps, Ctx, RemainingBytes,
121                                           SrcAS, DstAS, SrcAlign.value(),
122                                           DstAlign.value(), AtomicElementSize);
123 
124     for (auto *OpTy : RemainingOps) {
125       Align PartSrcAlign(commonAlignment(SrcAlign, BytesCopied));
126       Align PartDstAlign(commonAlignment(DstAlign, BytesCopied));
127 
128       // Calculate the new index
129       unsigned OperandSize = DL.getTypeStoreSize(OpTy);
130       assert(
131           (!AtomicElementSize || OperandSize % *AtomicElementSize == 0) &&
132           "Atomic memcpy lowering is not supported for selected operand size");
133 
134       uint64_t GepIndex = BytesCopied / OperandSize;
135       assert(GepIndex * OperandSize == BytesCopied &&
136              "Division should have no Remainder!");
137       // Cast source to operand type and load
138       PointerType *SrcPtrType = PointerType::get(OpTy, SrcAS);
139       Value *CastedSrc = SrcAddr->getType() == SrcPtrType
140                              ? SrcAddr
141                              : RBuilder.CreateBitCast(SrcAddr, SrcPtrType);
142       Value *SrcGEP = RBuilder.CreateInBoundsGEP(
143           OpTy, CastedSrc, ConstantInt::get(TypeOfCopyLen, GepIndex));
144       LoadInst *Load =
145           RBuilder.CreateAlignedLoad(OpTy, SrcGEP, PartSrcAlign, SrcIsVolatile);
146       if (!CanOverlap) {
147         // Set alias scope for loads.
148         Load->setMetadata(LLVMContext::MD_alias_scope,
149                           MDNode::get(Ctx, NewScope));
150       }
151       // Cast destination to operand type and store.
152       PointerType *DstPtrType = PointerType::get(OpTy, DstAS);
153       Value *CastedDst = DstAddr->getType() == DstPtrType
154                              ? DstAddr
155                              : RBuilder.CreateBitCast(DstAddr, DstPtrType);
156       Value *DstGEP = RBuilder.CreateInBoundsGEP(
157           OpTy, CastedDst, ConstantInt::get(TypeOfCopyLen, GepIndex));
158       StoreInst *Store = RBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
159                                                      DstIsVolatile);
160       if (!CanOverlap) {
161         // Indicate that stores don't overlap loads.
162         Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
163       }
164       if (AtomicElementSize) {
165         Load->setAtomic(AtomicOrdering::Unordered);
166         Store->setAtomic(AtomicOrdering::Unordered);
167       }
168       BytesCopied += OperandSize;
169     }
170   }
171   assert(BytesCopied == CopyLen->getZExtValue() &&
172          "Bytes copied should match size in the call!");
173 }
174 
175 void llvm::createMemCpyLoopUnknownSize(
176     Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, Value *CopyLen,
177     Align SrcAlign, Align DstAlign, bool SrcIsVolatile, bool DstIsVolatile,
178     bool CanOverlap, const TargetTransformInfo &TTI,
179     std::optional<uint32_t> AtomicElementSize) {
180   BasicBlock *PreLoopBB = InsertBefore->getParent();
181   BasicBlock *PostLoopBB =
182       PreLoopBB->splitBasicBlock(InsertBefore, "post-loop-memcpy-expansion");
183 
184   Function *ParentFunc = PreLoopBB->getParent();
185   const DataLayout &DL = ParentFunc->getParent()->getDataLayout();
186   LLVMContext &Ctx = PreLoopBB->getContext();
187   MDBuilder MDB(Ctx);
188   MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
189   StringRef Name = "MemCopyAliasScope";
190   MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
191 
192   unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
193   unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
194 
195   Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
196       Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
197       AtomicElementSize);
198   assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
199          "Atomic memcpy lowering is not supported for vector operand type");
200   unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
201   assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
202          "Atomic memcpy lowering is not supported for selected operand size");
203 
204   IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
205 
206   PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
207   PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
208   if (SrcAddr->getType() != SrcOpType) {
209     SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
210   }
211   if (DstAddr->getType() != DstOpType) {
212     DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
213   }
214 
215   // Calculate the loop trip count, and remaining bytes to copy after the loop.
216   Type *CopyLenType = CopyLen->getType();
217   IntegerType *ILengthType = dyn_cast<IntegerType>(CopyLenType);
218   assert(ILengthType &&
219          "expected size argument to memcpy to be an integer type!");
220   Type *Int8Type = Type::getInt8Ty(Ctx);
221   bool LoopOpIsInt8 = LoopOpType == Int8Type;
222   ConstantInt *CILoopOpSize = ConstantInt::get(ILengthType, LoopOpSize);
223   Value *RuntimeLoopCount = LoopOpIsInt8 ?
224                             CopyLen :
225                             PLBuilder.CreateUDiv(CopyLen, CILoopOpSize);
226   BasicBlock *LoopBB =
227       BasicBlock::Create(Ctx, "loop-memcpy-expansion", ParentFunc, PostLoopBB);
228   IRBuilder<> LoopBuilder(LoopBB);
229 
230   Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
231   Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
232 
233   PHINode *LoopIndex = LoopBuilder.CreatePHI(CopyLenType, 2, "loop-index");
234   LoopIndex->addIncoming(ConstantInt::get(CopyLenType, 0U), PreLoopBB);
235 
236   Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
237   LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
238                                                  PartSrcAlign, SrcIsVolatile);
239   if (!CanOverlap) {
240     // Set alias scope for loads.
241     Load->setMetadata(LLVMContext::MD_alias_scope, MDNode::get(Ctx, NewScope));
242   }
243   Value *DstGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
244   StoreInst *Store =
245       LoopBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign, DstIsVolatile);
246   if (!CanOverlap) {
247     // Indicate that stores don't overlap loads.
248     Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
249   }
250   if (AtomicElementSize) {
251     Load->setAtomic(AtomicOrdering::Unordered);
252     Store->setAtomic(AtomicOrdering::Unordered);
253   }
254   Value *NewIndex =
255       LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(CopyLenType, 1U));
256   LoopIndex->addIncoming(NewIndex, LoopBB);
257 
258   bool requiresResidual =
259       !LoopOpIsInt8 && !(AtomicElementSize && LoopOpSize == AtomicElementSize);
260   if (requiresResidual) {
261     Type *ResLoopOpType = AtomicElementSize
262                               ? Type::getIntNTy(Ctx, *AtomicElementSize * 8)
263                               : Int8Type;
264     unsigned ResLoopOpSize = DL.getTypeStoreSize(ResLoopOpType);
265     assert((ResLoopOpSize == AtomicElementSize ? *AtomicElementSize : 1) &&
266            "Store size is expected to match type size");
267 
268     // Add in the
269     Value *RuntimeResidual = PLBuilder.CreateURem(CopyLen, CILoopOpSize);
270     Value *RuntimeBytesCopied = PLBuilder.CreateSub(CopyLen, RuntimeResidual);
271 
272     // Loop body for the residual copy.
273     BasicBlock *ResLoopBB = BasicBlock::Create(Ctx, "loop-memcpy-residual",
274                                                PreLoopBB->getParent(),
275                                                PostLoopBB);
276     // Residual loop header.
277     BasicBlock *ResHeaderBB = BasicBlock::Create(
278         Ctx, "loop-memcpy-residual-header", PreLoopBB->getParent(), nullptr);
279 
280     // Need to update the pre-loop basic block to branch to the correct place.
281     // branch to the main loop if the count is non-zero, branch to the residual
282     // loop if the copy size is smaller then 1 iteration of the main loop but
283     // non-zero and finally branch to after the residual loop if the memcpy
284     //  size is zero.
285     ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
286     PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
287                            LoopBB, ResHeaderBB);
288     PreLoopBB->getTerminator()->eraseFromParent();
289 
290     LoopBuilder.CreateCondBr(
291         LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
292         ResHeaderBB);
293 
294     // Determine if we need to branch to the residual loop or bypass it.
295     IRBuilder<> RHBuilder(ResHeaderBB);
296     RHBuilder.CreateCondBr(RHBuilder.CreateICmpNE(RuntimeResidual, Zero),
297                            ResLoopBB, PostLoopBB);
298 
299     // Copy the residual with single byte load/store loop.
300     IRBuilder<> ResBuilder(ResLoopBB);
301     PHINode *ResidualIndex =
302         ResBuilder.CreatePHI(CopyLenType, 2, "residual-loop-index");
303     ResidualIndex->addIncoming(Zero, ResHeaderBB);
304 
305     Value *SrcAsResLoopOpType = ResBuilder.CreateBitCast(
306         SrcAddr, PointerType::get(ResLoopOpType, SrcAS));
307     Value *DstAsResLoopOpType = ResBuilder.CreateBitCast(
308         DstAddr, PointerType::get(ResLoopOpType, DstAS));
309     Value *FullOffset = ResBuilder.CreateAdd(RuntimeBytesCopied, ResidualIndex);
310     Value *SrcGEP = ResBuilder.CreateInBoundsGEP(
311         ResLoopOpType, SrcAsResLoopOpType, FullOffset);
312     LoadInst *Load = ResBuilder.CreateAlignedLoad(ResLoopOpType, SrcGEP,
313                                                   PartSrcAlign, SrcIsVolatile);
314     if (!CanOverlap) {
315       // Set alias scope for loads.
316       Load->setMetadata(LLVMContext::MD_alias_scope,
317                         MDNode::get(Ctx, NewScope));
318     }
319     Value *DstGEP = ResBuilder.CreateInBoundsGEP(
320         ResLoopOpType, DstAsResLoopOpType, FullOffset);
321     StoreInst *Store = ResBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
322                                                      DstIsVolatile);
323     if (!CanOverlap) {
324       // Indicate that stores don't overlap loads.
325       Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
326     }
327     if (AtomicElementSize) {
328       Load->setAtomic(AtomicOrdering::Unordered);
329       Store->setAtomic(AtomicOrdering::Unordered);
330     }
331     Value *ResNewIndex = ResBuilder.CreateAdd(
332         ResidualIndex, ConstantInt::get(CopyLenType, ResLoopOpSize));
333     ResidualIndex->addIncoming(ResNewIndex, ResLoopBB);
334 
335     // Create the loop branch condition.
336     ResBuilder.CreateCondBr(
337         ResBuilder.CreateICmpULT(ResNewIndex, RuntimeResidual), ResLoopBB,
338         PostLoopBB);
339   } else {
340     // In this case the loop operand type was a byte, and there is no need for a
341     // residual loop to copy the remaining memory after the main loop.
342     // We do however need to patch up the control flow by creating the
343     // terminators for the preloop block and the memcpy loop.
344     ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
345     PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
346                            LoopBB, PostLoopBB);
347     PreLoopBB->getTerminator()->eraseFromParent();
348     LoopBuilder.CreateCondBr(
349         LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
350         PostLoopBB);
351   }
352 }
353 
354 // Lower memmove to IR. memmove is required to correctly copy overlapping memory
355 // regions; therefore, it has to check the relative positions of the source and
356 // destination pointers and choose the copy direction accordingly.
357 //
358 // The code below is an IR rendition of this C function:
359 //
360 // void* memmove(void* dst, const void* src, size_t n) {
361 //   unsigned char* d = dst;
362 //   const unsigned char* s = src;
363 //   if (s < d) {
364 //     // copy backwards
365 //     while (n--) {
366 //       d[n] = s[n];
367 //     }
368 //   } else {
369 //     // copy forward
370 //     for (size_t i = 0; i < n; ++i) {
371 //       d[i] = s[i];
372 //     }
373 //   }
374 //   return dst;
375 // }
376 static void createMemMoveLoop(Instruction *InsertBefore, Value *SrcAddr,
377                               Value *DstAddr, Value *CopyLen, Align SrcAlign,
378                               Align DstAlign, bool SrcIsVolatile,
379                               bool DstIsVolatile) {
380   Type *TypeOfCopyLen = CopyLen->getType();
381   BasicBlock *OrigBB = InsertBefore->getParent();
382   Function *F = OrigBB->getParent();
383   const DataLayout &DL = F->getParent()->getDataLayout();
384 
385   // TODO: Use different element type if possible?
386   IRBuilder<> CastBuilder(InsertBefore);
387   Type *EltTy = CastBuilder.getInt8Ty();
388   Type *PtrTy =
389       CastBuilder.getInt8PtrTy(SrcAddr->getType()->getPointerAddressSpace());
390   SrcAddr = CastBuilder.CreateBitCast(SrcAddr, PtrTy);
391   DstAddr = CastBuilder.CreateBitCast(DstAddr, PtrTy);
392 
393   // Create the a comparison of src and dst, based on which we jump to either
394   // the forward-copy part of the function (if src >= dst) or the backwards-copy
395   // part (if src < dst).
396   // SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else
397   // structure. Its block terminators (unconditional branches) are replaced by
398   // the appropriate conditional branches when the loop is built.
399   ICmpInst *PtrCompare = new ICmpInst(InsertBefore, ICmpInst::ICMP_ULT,
400                                       SrcAddr, DstAddr, "compare_src_dst");
401   Instruction *ThenTerm, *ElseTerm;
402   SplitBlockAndInsertIfThenElse(PtrCompare, InsertBefore, &ThenTerm,
403                                 &ElseTerm);
404 
405   // Each part of the function consists of two blocks:
406   //   copy_backwards:        used to skip the loop when n == 0
407   //   copy_backwards_loop:   the actual backwards loop BB
408   //   copy_forward:          used to skip the loop when n == 0
409   //   copy_forward_loop:     the actual forward loop BB
410   BasicBlock *CopyBackwardsBB = ThenTerm->getParent();
411   CopyBackwardsBB->setName("copy_backwards");
412   BasicBlock *CopyForwardBB = ElseTerm->getParent();
413   CopyForwardBB->setName("copy_forward");
414   BasicBlock *ExitBB = InsertBefore->getParent();
415   ExitBB->setName("memmove_done");
416 
417   unsigned PartSize = DL.getTypeStoreSize(EltTy);
418   Align PartSrcAlign(commonAlignment(SrcAlign, PartSize));
419   Align PartDstAlign(commonAlignment(DstAlign, PartSize));
420 
421   // Initial comparison of n == 0 that lets us skip the loops altogether. Shared
422   // between both backwards and forward copy clauses.
423   ICmpInst *CompareN =
424       new ICmpInst(OrigBB->getTerminator(), ICmpInst::ICMP_EQ, CopyLen,
425                    ConstantInt::get(TypeOfCopyLen, 0), "compare_n_to_0");
426 
427   // Copying backwards.
428   BasicBlock *LoopBB =
429     BasicBlock::Create(F->getContext(), "copy_backwards_loop", F, CopyForwardBB);
430   IRBuilder<> LoopBuilder(LoopBB);
431   PHINode *LoopPhi = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
432   Value *IndexPtr = LoopBuilder.CreateSub(
433       LoopPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_ptr");
434   Value *Element = LoopBuilder.CreateAlignedLoad(
435       EltTy, LoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, IndexPtr),
436       PartSrcAlign, "element");
437   LoopBuilder.CreateAlignedStore(
438       Element, LoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, IndexPtr),
439       PartDstAlign);
440   LoopBuilder.CreateCondBr(
441       LoopBuilder.CreateICmpEQ(IndexPtr, ConstantInt::get(TypeOfCopyLen, 0)),
442       ExitBB, LoopBB);
443   LoopPhi->addIncoming(IndexPtr, LoopBB);
444   LoopPhi->addIncoming(CopyLen, CopyBackwardsBB);
445   BranchInst::Create(ExitBB, LoopBB, CompareN, ThenTerm);
446   ThenTerm->eraseFromParent();
447 
448   // Copying forward.
449   BasicBlock *FwdLoopBB =
450     BasicBlock::Create(F->getContext(), "copy_forward_loop", F, ExitBB);
451   IRBuilder<> FwdLoopBuilder(FwdLoopBB);
452   PHINode *FwdCopyPhi = FwdLoopBuilder.CreatePHI(TypeOfCopyLen, 0, "index_ptr");
453   Value *SrcGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, FwdCopyPhi);
454   Value *FwdElement =
455       FwdLoopBuilder.CreateAlignedLoad(EltTy, SrcGEP, PartSrcAlign, "element");
456   Value *DstGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, FwdCopyPhi);
457   FwdLoopBuilder.CreateAlignedStore(FwdElement, DstGEP, PartDstAlign);
458   Value *FwdIndexPtr = FwdLoopBuilder.CreateAdd(
459       FwdCopyPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_increment");
460   FwdLoopBuilder.CreateCondBr(FwdLoopBuilder.CreateICmpEQ(FwdIndexPtr, CopyLen),
461                               ExitBB, FwdLoopBB);
462   FwdCopyPhi->addIncoming(FwdIndexPtr, FwdLoopBB);
463   FwdCopyPhi->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), CopyForwardBB);
464 
465   BranchInst::Create(ExitBB, FwdLoopBB, CompareN, ElseTerm);
466   ElseTerm->eraseFromParent();
467 }
468 
469 static void createMemSetLoop(Instruction *InsertBefore, Value *DstAddr,
470                              Value *CopyLen, Value *SetValue, Align DstAlign,
471                              bool IsVolatile) {
472   Type *TypeOfCopyLen = CopyLen->getType();
473   BasicBlock *OrigBB = InsertBefore->getParent();
474   Function *F = OrigBB->getParent();
475   const DataLayout &DL = F->getParent()->getDataLayout();
476   BasicBlock *NewBB =
477       OrigBB->splitBasicBlock(InsertBefore, "split");
478   BasicBlock *LoopBB
479     = BasicBlock::Create(F->getContext(), "loadstoreloop", F, NewBB);
480 
481   IRBuilder<> Builder(OrigBB->getTerminator());
482 
483   // Cast pointer to the type of value getting stored
484   unsigned dstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
485   DstAddr = Builder.CreateBitCast(DstAddr,
486                                   PointerType::get(SetValue->getType(), dstAS));
487 
488   Builder.CreateCondBr(
489       Builder.CreateICmpEQ(ConstantInt::get(TypeOfCopyLen, 0), CopyLen), NewBB,
490       LoopBB);
491   OrigBB->getTerminator()->eraseFromParent();
492 
493   unsigned PartSize = DL.getTypeStoreSize(SetValue->getType());
494   Align PartAlign(commonAlignment(DstAlign, PartSize));
495 
496   IRBuilder<> LoopBuilder(LoopBB);
497   PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
498   LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), OrigBB);
499 
500   LoopBuilder.CreateAlignedStore(
501       SetValue,
502       LoopBuilder.CreateInBoundsGEP(SetValue->getType(), DstAddr, LoopIndex),
503       PartAlign, IsVolatile);
504 
505   Value *NewIndex =
506       LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1));
507   LoopIndex->addIncoming(NewIndex, LoopBB);
508 
509   LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, CopyLen), LoopBB,
510                            NewBB);
511 }
512 
513 template <typename T>
514 static bool canOverlap(MemTransferBase<T> *Memcpy, ScalarEvolution *SE) {
515   if (SE) {
516     auto *SrcSCEV = SE->getSCEV(Memcpy->getRawSource());
517     auto *DestSCEV = SE->getSCEV(Memcpy->getRawDest());
518     if (SE->isKnownPredicateAt(CmpInst::ICMP_NE, SrcSCEV, DestSCEV, Memcpy))
519       return false;
520   }
521   return true;
522 }
523 
524 void llvm::expandMemCpyAsLoop(MemCpyInst *Memcpy,
525                               const TargetTransformInfo &TTI,
526                               ScalarEvolution *SE) {
527   bool CanOverlap = canOverlap(Memcpy, SE);
528   if (ConstantInt *CI = dyn_cast<ConstantInt>(Memcpy->getLength())) {
529     createMemCpyLoopKnownSize(
530         /* InsertBefore */ Memcpy,
531         /* SrcAddr */ Memcpy->getRawSource(),
532         /* DstAddr */ Memcpy->getRawDest(),
533         /* CopyLen */ CI,
534         /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
535         /* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
536         /* SrcIsVolatile */ Memcpy->isVolatile(),
537         /* DstIsVolatile */ Memcpy->isVolatile(),
538         /* CanOverlap */ CanOverlap,
539         /* TargetTransformInfo */ TTI);
540   } else {
541     createMemCpyLoopUnknownSize(
542         /* InsertBefore */ Memcpy,
543         /* SrcAddr */ Memcpy->getRawSource(),
544         /* DstAddr */ Memcpy->getRawDest(),
545         /* CopyLen */ Memcpy->getLength(),
546         /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
547         /* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
548         /* SrcIsVolatile */ Memcpy->isVolatile(),
549         /* DstIsVolatile */ Memcpy->isVolatile(),
550         /* CanOverlap */ CanOverlap,
551         /* TargetTransformInfo */ TTI);
552   }
553 }
554 
555 void llvm::expandMemMoveAsLoop(MemMoveInst *Memmove) {
556   createMemMoveLoop(/* InsertBefore */ Memmove,
557                     /* SrcAddr */ Memmove->getRawSource(),
558                     /* DstAddr */ Memmove->getRawDest(),
559                     /* CopyLen */ Memmove->getLength(),
560                     /* SrcAlign */ Memmove->getSourceAlign().valueOrOne(),
561                     /* DestAlign */ Memmove->getDestAlign().valueOrOne(),
562                     /* SrcIsVolatile */ Memmove->isVolatile(),
563                     /* DstIsVolatile */ Memmove->isVolatile());
564 }
565 
566 void llvm::expandMemSetAsLoop(MemSetInst *Memset) {
567   createMemSetLoop(/* InsertBefore */ Memset,
568                    /* DstAddr */ Memset->getRawDest(),
569                    /* CopyLen */ Memset->getLength(),
570                    /* SetValue */ Memset->getValue(),
571                    /* Alignment */ Memset->getDestAlign().valueOrOne(),
572                    Memset->isVolatile());
573 }
574 
575 void llvm::expandAtomicMemCpyAsLoop(AtomicMemCpyInst *AtomicMemcpy,
576                                     const TargetTransformInfo &TTI,
577                                     ScalarEvolution *SE) {
578   if (ConstantInt *CI = dyn_cast<ConstantInt>(AtomicMemcpy->getLength())) {
579     createMemCpyLoopKnownSize(
580         /* InsertBefore */ AtomicMemcpy,
581         /* SrcAddr */ AtomicMemcpy->getRawSource(),
582         /* DstAddr */ AtomicMemcpy->getRawDest(),
583         /* CopyLen */ CI,
584         /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
585         /* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
586         /* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
587         /* DstIsVolatile */ AtomicMemcpy->isVolatile(),
588         /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
589         /* TargetTransformInfo */ TTI,
590         /* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
591   } else {
592     createMemCpyLoopUnknownSize(
593         /* InsertBefore */ AtomicMemcpy,
594         /* SrcAddr */ AtomicMemcpy->getRawSource(),
595         /* DstAddr */ AtomicMemcpy->getRawDest(),
596         /* CopyLen */ AtomicMemcpy->getLength(),
597         /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
598         /* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
599         /* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
600         /* DstIsVolatile */ AtomicMemcpy->isVolatile(),
601         /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
602         /* TargetTransformInfo */ TTI,
603         /* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
604   }
605 }
606