xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LowerMemIntrinsics.cpp (revision 59c8e88e72633afbc47a4ace0d2170d00d51f7dc)
1 //===- LowerMemIntrinsics.cpp ----------------------------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
10 #include "llvm/Analysis/ScalarEvolution.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/IR/IRBuilder.h"
13 #include "llvm/IR/IntrinsicInst.h"
14 #include "llvm/IR/MDBuilder.h"
15 #include "llvm/Support/Debug.h"
16 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
17 #include <optional>
18 
19 #define DEBUG_TYPE "lower-mem-intrinsics"
20 
21 using namespace llvm;
22 
23 void llvm::createMemCpyLoopKnownSize(
24     Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr,
25     ConstantInt *CopyLen, Align SrcAlign, Align DstAlign, bool SrcIsVolatile,
26     bool DstIsVolatile, bool CanOverlap, const TargetTransformInfo &TTI,
27     std::optional<uint32_t> AtomicElementSize) {
28   // No need to expand zero length copies.
29   if (CopyLen->isZero())
30     return;
31 
32   BasicBlock *PreLoopBB = InsertBefore->getParent();
33   BasicBlock *PostLoopBB = nullptr;
34   Function *ParentFunc = PreLoopBB->getParent();
35   LLVMContext &Ctx = PreLoopBB->getContext();
36   const DataLayout &DL = ParentFunc->getParent()->getDataLayout();
37   MDBuilder MDB(Ctx);
38   MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
39   StringRef Name = "MemCopyAliasScope";
40   MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
41 
42   unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
43   unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
44 
45   Type *TypeOfCopyLen = CopyLen->getType();
46   Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
47       Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
48       AtomicElementSize);
49   assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
50          "Atomic memcpy lowering is not supported for vector operand type");
51 
52   unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
53   assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
54       "Atomic memcpy lowering is not supported for selected operand size");
55 
56   uint64_t LoopEndCount = CopyLen->getZExtValue() / LoopOpSize;
57 
58   if (LoopEndCount != 0) {
59     // Split
60     PostLoopBB = PreLoopBB->splitBasicBlock(InsertBefore, "memcpy-split");
61     BasicBlock *LoopBB =
62         BasicBlock::Create(Ctx, "load-store-loop", ParentFunc, PostLoopBB);
63     PreLoopBB->getTerminator()->setSuccessor(0, LoopBB);
64 
65     IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
66 
67     // Cast the Src and Dst pointers to pointers to the loop operand type (if
68     // needed).
69     PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
70     PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
71     if (SrcAddr->getType() != SrcOpType) {
72       SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
73     }
74     if (DstAddr->getType() != DstOpType) {
75       DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
76     }
77 
78     Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
79     Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
80 
81     IRBuilder<> LoopBuilder(LoopBB);
82     PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 2, "loop-index");
83     LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0U), PreLoopBB);
84     // Loop Body
85     Value *SrcGEP =
86         LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
87     LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
88                                                    PartSrcAlign, SrcIsVolatile);
89     if (!CanOverlap) {
90       // Set alias scope for loads.
91       Load->setMetadata(LLVMContext::MD_alias_scope,
92                         MDNode::get(Ctx, NewScope));
93     }
94     Value *DstGEP =
95         LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
96     StoreInst *Store = LoopBuilder.CreateAlignedStore(
97         Load, DstGEP, PartDstAlign, DstIsVolatile);
98     if (!CanOverlap) {
99       // Indicate that stores don't overlap loads.
100       Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
101     }
102     if (AtomicElementSize) {
103       Load->setAtomic(AtomicOrdering::Unordered);
104       Store->setAtomic(AtomicOrdering::Unordered);
105     }
106     Value *NewIndex =
107         LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1U));
108     LoopIndex->addIncoming(NewIndex, LoopBB);
109 
110     // Create the loop branch condition.
111     Constant *LoopEndCI = ConstantInt::get(TypeOfCopyLen, LoopEndCount);
112     LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, LoopEndCI),
113                              LoopBB, PostLoopBB);
114   }
115 
116   uint64_t BytesCopied = LoopEndCount * LoopOpSize;
117   uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopied;
118   if (RemainingBytes) {
119     IRBuilder<> RBuilder(PostLoopBB ? PostLoopBB->getFirstNonPHI()
120                                     : InsertBefore);
121 
122     SmallVector<Type *, 5> RemainingOps;
123     TTI.getMemcpyLoopResidualLoweringType(RemainingOps, Ctx, RemainingBytes,
124                                           SrcAS, DstAS, SrcAlign.value(),
125                                           DstAlign.value(), AtomicElementSize);
126 
127     for (auto *OpTy : RemainingOps) {
128       Align PartSrcAlign(commonAlignment(SrcAlign, BytesCopied));
129       Align PartDstAlign(commonAlignment(DstAlign, BytesCopied));
130 
131       // Calculate the new index
132       unsigned OperandSize = DL.getTypeStoreSize(OpTy);
133       assert(
134           (!AtomicElementSize || OperandSize % *AtomicElementSize == 0) &&
135           "Atomic memcpy lowering is not supported for selected operand size");
136 
137       uint64_t GepIndex = BytesCopied / OperandSize;
138       assert(GepIndex * OperandSize == BytesCopied &&
139              "Division should have no Remainder!");
140       // Cast source to operand type and load
141       PointerType *SrcPtrType = PointerType::get(OpTy, SrcAS);
142       Value *CastedSrc = SrcAddr->getType() == SrcPtrType
143                              ? SrcAddr
144                              : RBuilder.CreateBitCast(SrcAddr, SrcPtrType);
145       Value *SrcGEP = RBuilder.CreateInBoundsGEP(
146           OpTy, CastedSrc, ConstantInt::get(TypeOfCopyLen, GepIndex));
147       LoadInst *Load =
148           RBuilder.CreateAlignedLoad(OpTy, SrcGEP, PartSrcAlign, SrcIsVolatile);
149       if (!CanOverlap) {
150         // Set alias scope for loads.
151         Load->setMetadata(LLVMContext::MD_alias_scope,
152                           MDNode::get(Ctx, NewScope));
153       }
154       // Cast destination to operand type and store.
155       PointerType *DstPtrType = PointerType::get(OpTy, DstAS);
156       Value *CastedDst = DstAddr->getType() == DstPtrType
157                              ? DstAddr
158                              : RBuilder.CreateBitCast(DstAddr, DstPtrType);
159       Value *DstGEP = RBuilder.CreateInBoundsGEP(
160           OpTy, CastedDst, ConstantInt::get(TypeOfCopyLen, GepIndex));
161       StoreInst *Store = RBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
162                                                      DstIsVolatile);
163       if (!CanOverlap) {
164         // Indicate that stores don't overlap loads.
165         Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
166       }
167       if (AtomicElementSize) {
168         Load->setAtomic(AtomicOrdering::Unordered);
169         Store->setAtomic(AtomicOrdering::Unordered);
170       }
171       BytesCopied += OperandSize;
172     }
173   }
174   assert(BytesCopied == CopyLen->getZExtValue() &&
175          "Bytes copied should match size in the call!");
176 }
177 
178 void llvm::createMemCpyLoopUnknownSize(
179     Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, Value *CopyLen,
180     Align SrcAlign, Align DstAlign, bool SrcIsVolatile, bool DstIsVolatile,
181     bool CanOverlap, const TargetTransformInfo &TTI,
182     std::optional<uint32_t> AtomicElementSize) {
183   BasicBlock *PreLoopBB = InsertBefore->getParent();
184   BasicBlock *PostLoopBB =
185       PreLoopBB->splitBasicBlock(InsertBefore, "post-loop-memcpy-expansion");
186 
187   Function *ParentFunc = PreLoopBB->getParent();
188   const DataLayout &DL = ParentFunc->getParent()->getDataLayout();
189   LLVMContext &Ctx = PreLoopBB->getContext();
190   MDBuilder MDB(Ctx);
191   MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
192   StringRef Name = "MemCopyAliasScope";
193   MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
194 
195   unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
196   unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
197 
198   Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
199       Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
200       AtomicElementSize);
201   assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
202          "Atomic memcpy lowering is not supported for vector operand type");
203   unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
204   assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
205          "Atomic memcpy lowering is not supported for selected operand size");
206 
207   IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
208 
209   PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
210   PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
211   if (SrcAddr->getType() != SrcOpType) {
212     SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
213   }
214   if (DstAddr->getType() != DstOpType) {
215     DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
216   }
217 
218   // Calculate the loop trip count, and remaining bytes to copy after the loop.
219   Type *CopyLenType = CopyLen->getType();
220   IntegerType *ILengthType = dyn_cast<IntegerType>(CopyLenType);
221   assert(ILengthType &&
222          "expected size argument to memcpy to be an integer type!");
223   Type *Int8Type = Type::getInt8Ty(Ctx);
224   bool LoopOpIsInt8 = LoopOpType == Int8Type;
225   ConstantInt *CILoopOpSize = ConstantInt::get(ILengthType, LoopOpSize);
226   Value *RuntimeLoopCount = LoopOpIsInt8 ?
227                             CopyLen :
228                             PLBuilder.CreateUDiv(CopyLen, CILoopOpSize);
229   BasicBlock *LoopBB =
230       BasicBlock::Create(Ctx, "loop-memcpy-expansion", ParentFunc, PostLoopBB);
231   IRBuilder<> LoopBuilder(LoopBB);
232 
233   Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
234   Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
235 
236   PHINode *LoopIndex = LoopBuilder.CreatePHI(CopyLenType, 2, "loop-index");
237   LoopIndex->addIncoming(ConstantInt::get(CopyLenType, 0U), PreLoopBB);
238 
239   Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
240   LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
241                                                  PartSrcAlign, SrcIsVolatile);
242   if (!CanOverlap) {
243     // Set alias scope for loads.
244     Load->setMetadata(LLVMContext::MD_alias_scope, MDNode::get(Ctx, NewScope));
245   }
246   Value *DstGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
247   StoreInst *Store =
248       LoopBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign, DstIsVolatile);
249   if (!CanOverlap) {
250     // Indicate that stores don't overlap loads.
251     Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
252   }
253   if (AtomicElementSize) {
254     Load->setAtomic(AtomicOrdering::Unordered);
255     Store->setAtomic(AtomicOrdering::Unordered);
256   }
257   Value *NewIndex =
258       LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(CopyLenType, 1U));
259   LoopIndex->addIncoming(NewIndex, LoopBB);
260 
261   bool requiresResidual =
262       !LoopOpIsInt8 && !(AtomicElementSize && LoopOpSize == AtomicElementSize);
263   if (requiresResidual) {
264     Type *ResLoopOpType = AtomicElementSize
265                               ? Type::getIntNTy(Ctx, *AtomicElementSize * 8)
266                               : Int8Type;
267     unsigned ResLoopOpSize = DL.getTypeStoreSize(ResLoopOpType);
268     assert((ResLoopOpSize == AtomicElementSize ? *AtomicElementSize : 1) &&
269            "Store size is expected to match type size");
270 
271     // Add in the
272     Value *RuntimeResidual = PLBuilder.CreateURem(CopyLen, CILoopOpSize);
273     Value *RuntimeBytesCopied = PLBuilder.CreateSub(CopyLen, RuntimeResidual);
274 
275     // Loop body for the residual copy.
276     BasicBlock *ResLoopBB = BasicBlock::Create(Ctx, "loop-memcpy-residual",
277                                                PreLoopBB->getParent(),
278                                                PostLoopBB);
279     // Residual loop header.
280     BasicBlock *ResHeaderBB = BasicBlock::Create(
281         Ctx, "loop-memcpy-residual-header", PreLoopBB->getParent(), nullptr);
282 
283     // Need to update the pre-loop basic block to branch to the correct place.
284     // branch to the main loop if the count is non-zero, branch to the residual
285     // loop if the copy size is smaller then 1 iteration of the main loop but
286     // non-zero and finally branch to after the residual loop if the memcpy
287     //  size is zero.
288     ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
289     PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
290                            LoopBB, ResHeaderBB);
291     PreLoopBB->getTerminator()->eraseFromParent();
292 
293     LoopBuilder.CreateCondBr(
294         LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
295         ResHeaderBB);
296 
297     // Determine if we need to branch to the residual loop or bypass it.
298     IRBuilder<> RHBuilder(ResHeaderBB);
299     RHBuilder.CreateCondBr(RHBuilder.CreateICmpNE(RuntimeResidual, Zero),
300                            ResLoopBB, PostLoopBB);
301 
302     // Copy the residual with single byte load/store loop.
303     IRBuilder<> ResBuilder(ResLoopBB);
304     PHINode *ResidualIndex =
305         ResBuilder.CreatePHI(CopyLenType, 2, "residual-loop-index");
306     ResidualIndex->addIncoming(Zero, ResHeaderBB);
307 
308     Value *SrcAsResLoopOpType = ResBuilder.CreateBitCast(
309         SrcAddr, PointerType::get(ResLoopOpType, SrcAS));
310     Value *DstAsResLoopOpType = ResBuilder.CreateBitCast(
311         DstAddr, PointerType::get(ResLoopOpType, DstAS));
312     Value *FullOffset = ResBuilder.CreateAdd(RuntimeBytesCopied, ResidualIndex);
313     Value *SrcGEP = ResBuilder.CreateInBoundsGEP(
314         ResLoopOpType, SrcAsResLoopOpType, FullOffset);
315     LoadInst *Load = ResBuilder.CreateAlignedLoad(ResLoopOpType, SrcGEP,
316                                                   PartSrcAlign, SrcIsVolatile);
317     if (!CanOverlap) {
318       // Set alias scope for loads.
319       Load->setMetadata(LLVMContext::MD_alias_scope,
320                         MDNode::get(Ctx, NewScope));
321     }
322     Value *DstGEP = ResBuilder.CreateInBoundsGEP(
323         ResLoopOpType, DstAsResLoopOpType, FullOffset);
324     StoreInst *Store = ResBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
325                                                      DstIsVolatile);
326     if (!CanOverlap) {
327       // Indicate that stores don't overlap loads.
328       Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
329     }
330     if (AtomicElementSize) {
331       Load->setAtomic(AtomicOrdering::Unordered);
332       Store->setAtomic(AtomicOrdering::Unordered);
333     }
334     Value *ResNewIndex = ResBuilder.CreateAdd(
335         ResidualIndex, ConstantInt::get(CopyLenType, ResLoopOpSize));
336     ResidualIndex->addIncoming(ResNewIndex, ResLoopBB);
337 
338     // Create the loop branch condition.
339     ResBuilder.CreateCondBr(
340         ResBuilder.CreateICmpULT(ResNewIndex, RuntimeResidual), ResLoopBB,
341         PostLoopBB);
342   } else {
343     // In this case the loop operand type was a byte, and there is no need for a
344     // residual loop to copy the remaining memory after the main loop.
345     // We do however need to patch up the control flow by creating the
346     // terminators for the preloop block and the memcpy loop.
347     ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
348     PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
349                            LoopBB, PostLoopBB);
350     PreLoopBB->getTerminator()->eraseFromParent();
351     LoopBuilder.CreateCondBr(
352         LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
353         PostLoopBB);
354   }
355 }
356 
357 // Lower memmove to IR. memmove is required to correctly copy overlapping memory
358 // regions; therefore, it has to check the relative positions of the source and
359 // destination pointers and choose the copy direction accordingly.
360 //
361 // The code below is an IR rendition of this C function:
362 //
363 // void* memmove(void* dst, const void* src, size_t n) {
364 //   unsigned char* d = dst;
365 //   const unsigned char* s = src;
366 //   if (s < d) {
367 //     // copy backwards
368 //     while (n--) {
369 //       d[n] = s[n];
370 //     }
371 //   } else {
372 //     // copy forward
373 //     for (size_t i = 0; i < n; ++i) {
374 //       d[i] = s[i];
375 //     }
376 //   }
377 //   return dst;
378 // }
379 static void createMemMoveLoop(Instruction *InsertBefore, Value *SrcAddr,
380                               Value *DstAddr, Value *CopyLen, Align SrcAlign,
381                               Align DstAlign, bool SrcIsVolatile,
382                               bool DstIsVolatile,
383                               const TargetTransformInfo &TTI) {
384   Type *TypeOfCopyLen = CopyLen->getType();
385   BasicBlock *OrigBB = InsertBefore->getParent();
386   Function *F = OrigBB->getParent();
387   const DataLayout &DL = F->getParent()->getDataLayout();
388   // TODO: Use different element type if possible?
389   Type *EltTy = Type::getInt8Ty(F->getContext());
390 
391   // Create the a comparison of src and dst, based on which we jump to either
392   // the forward-copy part of the function (if src >= dst) or the backwards-copy
393   // part (if src < dst).
394   // SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else
395   // structure. Its block terminators (unconditional branches) are replaced by
396   // the appropriate conditional branches when the loop is built.
397   ICmpInst *PtrCompare = new ICmpInst(InsertBefore, ICmpInst::ICMP_ULT,
398                                       SrcAddr, DstAddr, "compare_src_dst");
399   Instruction *ThenTerm, *ElseTerm;
400   SplitBlockAndInsertIfThenElse(PtrCompare, InsertBefore, &ThenTerm,
401                                 &ElseTerm);
402 
403   // Each part of the function consists of two blocks:
404   //   copy_backwards:        used to skip the loop when n == 0
405   //   copy_backwards_loop:   the actual backwards loop BB
406   //   copy_forward:          used to skip the loop when n == 0
407   //   copy_forward_loop:     the actual forward loop BB
408   BasicBlock *CopyBackwardsBB = ThenTerm->getParent();
409   CopyBackwardsBB->setName("copy_backwards");
410   BasicBlock *CopyForwardBB = ElseTerm->getParent();
411   CopyForwardBB->setName("copy_forward");
412   BasicBlock *ExitBB = InsertBefore->getParent();
413   ExitBB->setName("memmove_done");
414 
415   unsigned PartSize = DL.getTypeStoreSize(EltTy);
416   Align PartSrcAlign(commonAlignment(SrcAlign, PartSize));
417   Align PartDstAlign(commonAlignment(DstAlign, PartSize));
418 
419   // Initial comparison of n == 0 that lets us skip the loops altogether. Shared
420   // between both backwards and forward copy clauses.
421   ICmpInst *CompareN =
422       new ICmpInst(OrigBB->getTerminator(), ICmpInst::ICMP_EQ, CopyLen,
423                    ConstantInt::get(TypeOfCopyLen, 0), "compare_n_to_0");
424 
425   // Copying backwards.
426   BasicBlock *LoopBB =
427     BasicBlock::Create(F->getContext(), "copy_backwards_loop", F, CopyForwardBB);
428   IRBuilder<> LoopBuilder(LoopBB);
429 
430   PHINode *LoopPhi = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
431   Value *IndexPtr = LoopBuilder.CreateSub(
432       LoopPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_ptr");
433   Value *Element = LoopBuilder.CreateAlignedLoad(
434       EltTy, LoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, IndexPtr),
435       PartSrcAlign, "element");
436   LoopBuilder.CreateAlignedStore(
437       Element, LoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, IndexPtr),
438       PartDstAlign);
439   LoopBuilder.CreateCondBr(
440       LoopBuilder.CreateICmpEQ(IndexPtr, ConstantInt::get(TypeOfCopyLen, 0)),
441       ExitBB, LoopBB);
442   LoopPhi->addIncoming(IndexPtr, LoopBB);
443   LoopPhi->addIncoming(CopyLen, CopyBackwardsBB);
444   BranchInst::Create(ExitBB, LoopBB, CompareN, ThenTerm);
445   ThenTerm->eraseFromParent();
446 
447   // Copying forward.
448   BasicBlock *FwdLoopBB =
449     BasicBlock::Create(F->getContext(), "copy_forward_loop", F, ExitBB);
450   IRBuilder<> FwdLoopBuilder(FwdLoopBB);
451   PHINode *FwdCopyPhi = FwdLoopBuilder.CreatePHI(TypeOfCopyLen, 0, "index_ptr");
452   Value *SrcGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, FwdCopyPhi);
453   Value *FwdElement =
454       FwdLoopBuilder.CreateAlignedLoad(EltTy, SrcGEP, PartSrcAlign, "element");
455   Value *DstGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, FwdCopyPhi);
456   FwdLoopBuilder.CreateAlignedStore(FwdElement, DstGEP, PartDstAlign);
457   Value *FwdIndexPtr = FwdLoopBuilder.CreateAdd(
458       FwdCopyPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_increment");
459   FwdLoopBuilder.CreateCondBr(FwdLoopBuilder.CreateICmpEQ(FwdIndexPtr, CopyLen),
460                               ExitBB, FwdLoopBB);
461   FwdCopyPhi->addIncoming(FwdIndexPtr, FwdLoopBB);
462   FwdCopyPhi->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), CopyForwardBB);
463 
464   BranchInst::Create(ExitBB, FwdLoopBB, CompareN, ElseTerm);
465   ElseTerm->eraseFromParent();
466 }
467 
468 static void createMemSetLoop(Instruction *InsertBefore, Value *DstAddr,
469                              Value *CopyLen, Value *SetValue, Align DstAlign,
470                              bool IsVolatile) {
471   Type *TypeOfCopyLen = CopyLen->getType();
472   BasicBlock *OrigBB = InsertBefore->getParent();
473   Function *F = OrigBB->getParent();
474   const DataLayout &DL = F->getParent()->getDataLayout();
475   BasicBlock *NewBB =
476       OrigBB->splitBasicBlock(InsertBefore, "split");
477   BasicBlock *LoopBB
478     = BasicBlock::Create(F->getContext(), "loadstoreloop", F, NewBB);
479 
480   IRBuilder<> Builder(OrigBB->getTerminator());
481 
482   // Cast pointer to the type of value getting stored
483   unsigned dstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
484   DstAddr = Builder.CreateBitCast(DstAddr,
485                                   PointerType::get(SetValue->getType(), dstAS));
486 
487   Builder.CreateCondBr(
488       Builder.CreateICmpEQ(ConstantInt::get(TypeOfCopyLen, 0), CopyLen), NewBB,
489       LoopBB);
490   OrigBB->getTerminator()->eraseFromParent();
491 
492   unsigned PartSize = DL.getTypeStoreSize(SetValue->getType());
493   Align PartAlign(commonAlignment(DstAlign, PartSize));
494 
495   IRBuilder<> LoopBuilder(LoopBB);
496   PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
497   LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), OrigBB);
498 
499   LoopBuilder.CreateAlignedStore(
500       SetValue,
501       LoopBuilder.CreateInBoundsGEP(SetValue->getType(), DstAddr, LoopIndex),
502       PartAlign, IsVolatile);
503 
504   Value *NewIndex =
505       LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1));
506   LoopIndex->addIncoming(NewIndex, LoopBB);
507 
508   LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, CopyLen), LoopBB,
509                            NewBB);
510 }
511 
512 template <typename T>
513 static bool canOverlap(MemTransferBase<T> *Memcpy, ScalarEvolution *SE) {
514   if (SE) {
515     auto *SrcSCEV = SE->getSCEV(Memcpy->getRawSource());
516     auto *DestSCEV = SE->getSCEV(Memcpy->getRawDest());
517     if (SE->isKnownPredicateAt(CmpInst::ICMP_NE, SrcSCEV, DestSCEV, Memcpy))
518       return false;
519   }
520   return true;
521 }
522 
523 void llvm::expandMemCpyAsLoop(MemCpyInst *Memcpy,
524                               const TargetTransformInfo &TTI,
525                               ScalarEvolution *SE) {
526   bool CanOverlap = canOverlap(Memcpy, SE);
527   if (ConstantInt *CI = dyn_cast<ConstantInt>(Memcpy->getLength())) {
528     createMemCpyLoopKnownSize(
529         /* InsertBefore */ Memcpy,
530         /* SrcAddr */ Memcpy->getRawSource(),
531         /* DstAddr */ Memcpy->getRawDest(),
532         /* CopyLen */ CI,
533         /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
534         /* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
535         /* SrcIsVolatile */ Memcpy->isVolatile(),
536         /* DstIsVolatile */ Memcpy->isVolatile(),
537         /* CanOverlap */ CanOverlap,
538         /* TargetTransformInfo */ TTI);
539   } else {
540     createMemCpyLoopUnknownSize(
541         /* InsertBefore */ Memcpy,
542         /* SrcAddr */ Memcpy->getRawSource(),
543         /* DstAddr */ Memcpy->getRawDest(),
544         /* CopyLen */ Memcpy->getLength(),
545         /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
546         /* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
547         /* SrcIsVolatile */ Memcpy->isVolatile(),
548         /* DstIsVolatile */ Memcpy->isVolatile(),
549         /* CanOverlap */ CanOverlap,
550         /* TargetTransformInfo */ TTI);
551   }
552 }
553 
554 bool llvm::expandMemMoveAsLoop(MemMoveInst *Memmove,
555                                const TargetTransformInfo &TTI) {
556   Value *CopyLen = Memmove->getLength();
557   Value *SrcAddr = Memmove->getRawSource();
558   Value *DstAddr = Memmove->getRawDest();
559   Align SrcAlign = Memmove->getSourceAlign().valueOrOne();
560   Align DstAlign = Memmove->getDestAlign().valueOrOne();
561   bool SrcIsVolatile = Memmove->isVolatile();
562   bool DstIsVolatile = SrcIsVolatile;
563   IRBuilder<> CastBuilder(Memmove);
564 
565   unsigned SrcAS = SrcAddr->getType()->getPointerAddressSpace();
566   unsigned DstAS = DstAddr->getType()->getPointerAddressSpace();
567   if (SrcAS != DstAS) {
568     if (!TTI.addrspacesMayAlias(SrcAS, DstAS)) {
569       // We may not be able to emit a pointer comparison, but we don't have
570       // to. Expand as memcpy.
571       if (ConstantInt *CI = dyn_cast<ConstantInt>(CopyLen)) {
572         createMemCpyLoopKnownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr,
573                                   CI, SrcAlign, DstAlign, SrcIsVolatile,
574                                   DstIsVolatile,
575                                   /*CanOverlap=*/false, TTI);
576       } else {
577         createMemCpyLoopUnknownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr,
578                                     CopyLen, SrcAlign, DstAlign, SrcIsVolatile,
579                                     DstIsVolatile,
580                                     /*CanOverlap=*/false, TTI);
581       }
582 
583       return true;
584     }
585 
586     if (TTI.isValidAddrSpaceCast(DstAS, SrcAS))
587       DstAddr = CastBuilder.CreateAddrSpaceCast(DstAddr, SrcAddr->getType());
588     else if (TTI.isValidAddrSpaceCast(SrcAS, DstAS))
589       SrcAddr = CastBuilder.CreateAddrSpaceCast(SrcAddr, DstAddr->getType());
590     else {
591       // We don't know generically if it's legal to introduce an
592       // addrspacecast. We need to know either if it's legal to insert an
593       // addrspacecast, or if the address spaces cannot alias.
594       LLVM_DEBUG(
595           dbgs() << "Do not know how to expand memmove between different "
596                     "address spaces\n");
597       return false;
598     }
599   }
600 
601   createMemMoveLoop(
602       /*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen, SrcAlign, DstAlign,
603       SrcIsVolatile, DstIsVolatile, TTI);
604   return true;
605 }
606 
607 void llvm::expandMemSetAsLoop(MemSetInst *Memset) {
608   createMemSetLoop(/* InsertBefore */ Memset,
609                    /* DstAddr */ Memset->getRawDest(),
610                    /* CopyLen */ Memset->getLength(),
611                    /* SetValue */ Memset->getValue(),
612                    /* Alignment */ Memset->getDestAlign().valueOrOne(),
613                    Memset->isVolatile());
614 }
615 
616 void llvm::expandAtomicMemCpyAsLoop(AtomicMemCpyInst *AtomicMemcpy,
617                                     const TargetTransformInfo &TTI,
618                                     ScalarEvolution *SE) {
619   if (ConstantInt *CI = dyn_cast<ConstantInt>(AtomicMemcpy->getLength())) {
620     createMemCpyLoopKnownSize(
621         /* InsertBefore */ AtomicMemcpy,
622         /* SrcAddr */ AtomicMemcpy->getRawSource(),
623         /* DstAddr */ AtomicMemcpy->getRawDest(),
624         /* CopyLen */ CI,
625         /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
626         /* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
627         /* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
628         /* DstIsVolatile */ AtomicMemcpy->isVolatile(),
629         /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
630         /* TargetTransformInfo */ TTI,
631         /* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
632   } else {
633     createMemCpyLoopUnknownSize(
634         /* InsertBefore */ AtomicMemcpy,
635         /* SrcAddr */ AtomicMemcpy->getRawSource(),
636         /* DstAddr */ AtomicMemcpy->getRawDest(),
637         /* CopyLen */ AtomicMemcpy->getLength(),
638         /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
639         /* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
640         /* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
641         /* DstIsVolatile */ AtomicMemcpy->isVolatile(),
642         /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
643         /* TargetTransformInfo */ TTI,
644         /* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
645   }
646 }
647