1 //===- LoopVersioning.cpp - Utility to version a loop ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a utility class to perform loop versioning. The versioned 10 // loop speculates that otherwise may-aliasing memory accesses don't overlap and 11 // emits checks to prove this. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/LoopVersioning.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/Analysis/LoopAccessAnalysis.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/MemorySSA.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Cloning.h" 29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 30 31 using namespace llvm; 32 33 static cl::opt<bool> 34 AnnotateNoAlias("loop-version-annotate-no-alias", cl::init(true), 35 cl::Hidden, 36 cl::desc("Add no-alias annotation for instructions that " 37 "are disambiguated by memchecks")); 38 39 LoopVersioning::LoopVersioning(const LoopAccessInfo &LAI, 40 ArrayRef<RuntimePointerCheck> Checks, Loop *L, 41 LoopInfo *LI, DominatorTree *DT, 42 ScalarEvolution *SE) 43 : VersionedLoop(L), NonVersionedLoop(nullptr), 44 AliasChecks(Checks.begin(), Checks.end()), 45 Preds(LAI.getPSE().getUnionPredicate()), LAI(LAI), LI(LI), DT(DT), 46 SE(SE) { 47 assert(L->getUniqueExitBlock() && "No single exit block"); 48 } 49 50 void LoopVersioning::versionLoop( 51 const SmallVectorImpl<Instruction *> &DefsUsedOutside) { 52 assert(VersionedLoop->isLoopSimplifyForm() && 53 "Loop is not in loop-simplify form"); 54 55 Instruction *FirstCheckInst; 56 Instruction *MemRuntimeCheck; 57 Value *SCEVRuntimeCheck; 58 Value *RuntimeCheck = nullptr; 59 60 // Add the memcheck in the original preheader (this is empty initially). 61 BasicBlock *RuntimeCheckBB = VersionedLoop->getLoopPreheader(); 62 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 63 std::tie(FirstCheckInst, MemRuntimeCheck) = 64 addRuntimeChecks(RuntimeCheckBB->getTerminator(), VersionedLoop, 65 AliasChecks, RtPtrChecking.getSE()); 66 67 SCEVExpander Exp(*SE, RuntimeCheckBB->getModule()->getDataLayout(), 68 "scev.check"); 69 SCEVRuntimeCheck = 70 Exp.expandCodeForPredicate(&Preds, RuntimeCheckBB->getTerminator()); 71 auto *CI = dyn_cast<ConstantInt>(SCEVRuntimeCheck); 72 73 // Discard the SCEV runtime check if it is always true. 74 if (CI && CI->isZero()) 75 SCEVRuntimeCheck = nullptr; 76 77 if (MemRuntimeCheck && SCEVRuntimeCheck) { 78 RuntimeCheck = BinaryOperator::Create(Instruction::Or, MemRuntimeCheck, 79 SCEVRuntimeCheck, "lver.safe"); 80 if (auto *I = dyn_cast<Instruction>(RuntimeCheck)) 81 I->insertBefore(RuntimeCheckBB->getTerminator()); 82 } else 83 RuntimeCheck = MemRuntimeCheck ? MemRuntimeCheck : SCEVRuntimeCheck; 84 85 assert(RuntimeCheck && "called even though we don't need " 86 "any runtime checks"); 87 88 // Rename the block to make the IR more readable. 89 RuntimeCheckBB->setName(VersionedLoop->getHeader()->getName() + 90 ".lver.check"); 91 92 // Create empty preheader for the loop (and after cloning for the 93 // non-versioned loop). 94 BasicBlock *PH = 95 SplitBlock(RuntimeCheckBB, RuntimeCheckBB->getTerminator(), DT, LI, 96 nullptr, VersionedLoop->getHeader()->getName() + ".ph"); 97 98 // Clone the loop including the preheader. 99 // 100 // FIXME: This does not currently preserve SimplifyLoop because the exit 101 // block is a join between the two loops. 102 SmallVector<BasicBlock *, 8> NonVersionedLoopBlocks; 103 NonVersionedLoop = 104 cloneLoopWithPreheader(PH, RuntimeCheckBB, VersionedLoop, VMap, 105 ".lver.orig", LI, DT, NonVersionedLoopBlocks); 106 remapInstructionsInBlocks(NonVersionedLoopBlocks, VMap); 107 108 // Insert the conditional branch based on the result of the memchecks. 109 Instruction *OrigTerm = RuntimeCheckBB->getTerminator(); 110 BranchInst::Create(NonVersionedLoop->getLoopPreheader(), 111 VersionedLoop->getLoopPreheader(), RuntimeCheck, OrigTerm); 112 OrigTerm->eraseFromParent(); 113 114 // The loops merge in the original exit block. This is now dominated by the 115 // memchecking block. 116 DT->changeImmediateDominator(VersionedLoop->getExitBlock(), RuntimeCheckBB); 117 118 // Adds the necessary PHI nodes for the versioned loops based on the 119 // loop-defined values used outside of the loop. 120 addPHINodes(DefsUsedOutside); 121 formDedicatedExitBlocks(NonVersionedLoop, DT, LI, nullptr, true); 122 formDedicatedExitBlocks(VersionedLoop, DT, LI, nullptr, true); 123 assert(NonVersionedLoop->isLoopSimplifyForm() && 124 VersionedLoop->isLoopSimplifyForm() && 125 "The versioned loops should be in simplify form."); 126 } 127 128 void LoopVersioning::addPHINodes( 129 const SmallVectorImpl<Instruction *> &DefsUsedOutside) { 130 BasicBlock *PHIBlock = VersionedLoop->getExitBlock(); 131 assert(PHIBlock && "No single successor to loop exit block"); 132 PHINode *PN; 133 134 // First add a single-operand PHI for each DefsUsedOutside if one does not 135 // exists yet. 136 for (auto *Inst : DefsUsedOutside) { 137 // See if we have a single-operand PHI with the value defined by the 138 // original loop. 139 for (auto I = PHIBlock->begin(); (PN = dyn_cast<PHINode>(I)); ++I) { 140 if (PN->getIncomingValue(0) == Inst) 141 break; 142 } 143 // If not create it. 144 if (!PN) { 145 PN = PHINode::Create(Inst->getType(), 2, Inst->getName() + ".lver", 146 &PHIBlock->front()); 147 SmallVector<User*, 8> UsersToUpdate; 148 for (User *U : Inst->users()) 149 if (!VersionedLoop->contains(cast<Instruction>(U)->getParent())) 150 UsersToUpdate.push_back(U); 151 for (User *U : UsersToUpdate) 152 U->replaceUsesOfWith(Inst, PN); 153 PN->addIncoming(Inst, VersionedLoop->getExitingBlock()); 154 } 155 } 156 157 // Then for each PHI add the operand for the edge from the cloned loop. 158 for (auto I = PHIBlock->begin(); (PN = dyn_cast<PHINode>(I)); ++I) { 159 assert(PN->getNumOperands() == 1 && 160 "Exit block should only have on predecessor"); 161 162 // If the definition was cloned used that otherwise use the same value. 163 Value *ClonedValue = PN->getIncomingValue(0); 164 auto Mapped = VMap.find(ClonedValue); 165 if (Mapped != VMap.end()) 166 ClonedValue = Mapped->second; 167 168 PN->addIncoming(ClonedValue, NonVersionedLoop->getExitingBlock()); 169 } 170 } 171 172 void LoopVersioning::prepareNoAliasMetadata() { 173 // We need to turn the no-alias relation between pointer checking groups into 174 // no-aliasing annotations between instructions. 175 // 176 // We accomplish this by mapping each pointer checking group (a set of 177 // pointers memchecked together) to an alias scope and then also mapping each 178 // group to the list of scopes it can't alias. 179 180 const RuntimePointerChecking *RtPtrChecking = LAI.getRuntimePointerChecking(); 181 LLVMContext &Context = VersionedLoop->getHeader()->getContext(); 182 183 // First allocate an aliasing scope for each pointer checking group. 184 // 185 // While traversing through the checking groups in the loop, also create a 186 // reverse map from pointers to the pointer checking group they were assigned 187 // to. 188 MDBuilder MDB(Context); 189 MDNode *Domain = MDB.createAnonymousAliasScopeDomain("LVerDomain"); 190 191 for (const auto &Group : RtPtrChecking->CheckingGroups) { 192 GroupToScope[&Group] = MDB.createAnonymousAliasScope(Domain); 193 194 for (unsigned PtrIdx : Group.Members) 195 PtrToGroup[RtPtrChecking->getPointerInfo(PtrIdx).PointerValue] = &Group; 196 } 197 198 // Go through the checks and for each pointer group, collect the scopes for 199 // each non-aliasing pointer group. 200 DenseMap<const RuntimeCheckingPtrGroup *, SmallVector<Metadata *, 4>> 201 GroupToNonAliasingScopes; 202 203 for (const auto &Check : AliasChecks) 204 GroupToNonAliasingScopes[Check.first].push_back(GroupToScope[Check.second]); 205 206 // Finally, transform the above to actually map to scope list which is what 207 // the metadata uses. 208 209 for (auto Pair : GroupToNonAliasingScopes) 210 GroupToNonAliasingScopeList[Pair.first] = MDNode::get(Context, Pair.second); 211 } 212 213 void LoopVersioning::annotateLoopWithNoAlias() { 214 if (!AnnotateNoAlias) 215 return; 216 217 // First prepare the maps. 218 prepareNoAliasMetadata(); 219 220 // Add the scope and no-alias metadata to the instructions. 221 for (Instruction *I : LAI.getDepChecker().getMemoryInstructions()) { 222 annotateInstWithNoAlias(I); 223 } 224 } 225 226 void LoopVersioning::annotateInstWithNoAlias(Instruction *VersionedInst, 227 const Instruction *OrigInst) { 228 if (!AnnotateNoAlias) 229 return; 230 231 LLVMContext &Context = VersionedLoop->getHeader()->getContext(); 232 const Value *Ptr = isa<LoadInst>(OrigInst) 233 ? cast<LoadInst>(OrigInst)->getPointerOperand() 234 : cast<StoreInst>(OrigInst)->getPointerOperand(); 235 236 // Find the group for the pointer and then add the scope metadata. 237 auto Group = PtrToGroup.find(Ptr); 238 if (Group != PtrToGroup.end()) { 239 VersionedInst->setMetadata( 240 LLVMContext::MD_alias_scope, 241 MDNode::concatenate( 242 VersionedInst->getMetadata(LLVMContext::MD_alias_scope), 243 MDNode::get(Context, GroupToScope[Group->second]))); 244 245 // Add the no-alias metadata. 246 auto NonAliasingScopeList = GroupToNonAliasingScopeList.find(Group->second); 247 if (NonAliasingScopeList != GroupToNonAliasingScopeList.end()) 248 VersionedInst->setMetadata( 249 LLVMContext::MD_noalias, 250 MDNode::concatenate( 251 VersionedInst->getMetadata(LLVMContext::MD_noalias), 252 NonAliasingScopeList->second)); 253 } 254 } 255 256 namespace { 257 bool runImpl(LoopInfo *LI, function_ref<const LoopAccessInfo &(Loop &)> GetLAA, 258 DominatorTree *DT, ScalarEvolution *SE) { 259 // Build up a worklist of inner-loops to version. This is necessary as the 260 // act of versioning a loop creates new loops and can invalidate iterators 261 // across the loops. 262 SmallVector<Loop *, 8> Worklist; 263 264 for (Loop *TopLevelLoop : *LI) 265 for (Loop *L : depth_first(TopLevelLoop)) 266 // We only handle inner-most loops. 267 if (L->isInnermost()) 268 Worklist.push_back(L); 269 270 // Now walk the identified inner loops. 271 bool Changed = false; 272 for (Loop *L : Worklist) { 273 if (!L->isLoopSimplifyForm() || !L->isRotatedForm() || 274 !L->getExitingBlock()) 275 continue; 276 const LoopAccessInfo &LAI = GetLAA(*L); 277 if (!LAI.hasConvergentOp() && 278 (LAI.getNumRuntimePointerChecks() || 279 !LAI.getPSE().getUnionPredicate().isAlwaysTrue())) { 280 LoopVersioning LVer(LAI, LAI.getRuntimePointerChecking()->getChecks(), L, 281 LI, DT, SE); 282 LVer.versionLoop(); 283 LVer.annotateLoopWithNoAlias(); 284 Changed = true; 285 } 286 } 287 288 return Changed; 289 } 290 291 /// Also expose this is a pass. Currently this is only used for 292 /// unit-testing. It adds all memchecks necessary to remove all may-aliasing 293 /// array accesses from the loop. 294 class LoopVersioningLegacyPass : public FunctionPass { 295 public: 296 LoopVersioningLegacyPass() : FunctionPass(ID) { 297 initializeLoopVersioningLegacyPassPass(*PassRegistry::getPassRegistry()); 298 } 299 300 bool runOnFunction(Function &F) override { 301 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 302 auto GetLAA = [&](Loop &L) -> const LoopAccessInfo & { 303 return getAnalysis<LoopAccessLegacyAnalysis>().getInfo(&L); 304 }; 305 306 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 307 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 308 309 return runImpl(LI, GetLAA, DT, SE); 310 } 311 312 void getAnalysisUsage(AnalysisUsage &AU) const override { 313 AU.addRequired<LoopInfoWrapperPass>(); 314 AU.addPreserved<LoopInfoWrapperPass>(); 315 AU.addRequired<LoopAccessLegacyAnalysis>(); 316 AU.addRequired<DominatorTreeWrapperPass>(); 317 AU.addPreserved<DominatorTreeWrapperPass>(); 318 AU.addRequired<ScalarEvolutionWrapperPass>(); 319 } 320 321 static char ID; 322 }; 323 } 324 325 #define LVER_OPTION "loop-versioning" 326 #define DEBUG_TYPE LVER_OPTION 327 328 char LoopVersioningLegacyPass::ID; 329 static const char LVer_name[] = "Loop Versioning"; 330 331 INITIALIZE_PASS_BEGIN(LoopVersioningLegacyPass, LVER_OPTION, LVer_name, false, 332 false) 333 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 334 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 335 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 336 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 337 INITIALIZE_PASS_END(LoopVersioningLegacyPass, LVER_OPTION, LVer_name, false, 338 false) 339 340 namespace llvm { 341 FunctionPass *createLoopVersioningLegacyPass() { 342 return new LoopVersioningLegacyPass(); 343 } 344 345 PreservedAnalyses LoopVersioningPass::run(Function &F, 346 FunctionAnalysisManager &AM) { 347 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 348 auto &LI = AM.getResult<LoopAnalysis>(F); 349 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 350 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 351 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 352 auto &AA = AM.getResult<AAManager>(F); 353 auto &AC = AM.getResult<AssumptionAnalysis>(F); 354 MemorySSA *MSSA = EnableMSSALoopDependency 355 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 356 : nullptr; 357 358 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 359 auto GetLAA = [&](Loop &L) -> const LoopAccessInfo & { 360 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 361 TLI, TTI, nullptr, MSSA}; 362 return LAM.getResult<LoopAccessAnalysis>(L, AR); 363 }; 364 365 if (runImpl(&LI, GetLAA, &DT, &SE)) 366 return PreservedAnalyses::none(); 367 return PreservedAnalyses::all(); 368 } 369 } // namespace llvm 370