xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp (revision e51b3d8e53cee7d6a36e34e1cd4d588593d71b40)
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/PriorityWorklist.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/InstSimplifyFolder.h"
25 #include "llvm/Analysis/LoopAccessAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ProfDataUtils.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
48 
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
51 
52 #define DEBUG_TYPE "loop-utils"
53 
54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
56 
57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
58                                    MemorySSAUpdater *MSSAU,
59                                    bool PreserveLCSSA) {
60   bool Changed = false;
61 
62   // We re-use a vector for the in-loop predecesosrs.
63   SmallVector<BasicBlock *, 4> InLoopPredecessors;
64 
65   auto RewriteExit = [&](BasicBlock *BB) {
66     assert(InLoopPredecessors.empty() &&
67            "Must start with an empty predecessors list!");
68     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
69 
70     // See if there are any non-loop predecessors of this exit block and
71     // keep track of the in-loop predecessors.
72     bool IsDedicatedExit = true;
73     for (auto *PredBB : predecessors(BB))
74       if (L->contains(PredBB)) {
75         if (isa<IndirectBrInst>(PredBB->getTerminator()))
76           // We cannot rewrite exiting edges from an indirectbr.
77           return false;
78 
79         InLoopPredecessors.push_back(PredBB);
80       } else {
81         IsDedicatedExit = false;
82       }
83 
84     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
85 
86     // Nothing to do if this is already a dedicated exit.
87     if (IsDedicatedExit)
88       return false;
89 
90     auto *NewExitBB = SplitBlockPredecessors(
91         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
92 
93     if (!NewExitBB)
94       LLVM_DEBUG(
95           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
96                  << *L << "\n");
97     else
98       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
99                         << NewExitBB->getName() << "\n");
100     return true;
101   };
102 
103   // Walk the exit blocks directly rather than building up a data structure for
104   // them, but only visit each one once.
105   SmallPtrSet<BasicBlock *, 4> Visited;
106   for (auto *BB : L->blocks())
107     for (auto *SuccBB : successors(BB)) {
108       // We're looking for exit blocks so skip in-loop successors.
109       if (L->contains(SuccBB))
110         continue;
111 
112       // Visit each exit block exactly once.
113       if (!Visited.insert(SuccBB).second)
114         continue;
115 
116       Changed |= RewriteExit(SuccBB);
117     }
118 
119   return Changed;
120 }
121 
122 /// Returns the instructions that use values defined in the loop.
123 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
124   SmallVector<Instruction *, 8> UsedOutside;
125 
126   for (auto *Block : L->getBlocks())
127     // FIXME: I believe that this could use copy_if if the Inst reference could
128     // be adapted into a pointer.
129     for (auto &Inst : *Block) {
130       auto Users = Inst.users();
131       if (any_of(Users, [&](User *U) {
132             auto *Use = cast<Instruction>(U);
133             return !L->contains(Use->getParent());
134           }))
135         UsedOutside.push_back(&Inst);
136     }
137 
138   return UsedOutside;
139 }
140 
141 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
142   // By definition, all loop passes need the LoopInfo analysis and the
143   // Dominator tree it depends on. Because they all participate in the loop
144   // pass manager, they must also preserve these.
145   AU.addRequired<DominatorTreeWrapperPass>();
146   AU.addPreserved<DominatorTreeWrapperPass>();
147   AU.addRequired<LoopInfoWrapperPass>();
148   AU.addPreserved<LoopInfoWrapperPass>();
149 
150   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
151   // here because users shouldn't directly get them from this header.
152   extern char &LoopSimplifyID;
153   extern char &LCSSAID;
154   AU.addRequiredID(LoopSimplifyID);
155   AU.addPreservedID(LoopSimplifyID);
156   AU.addRequiredID(LCSSAID);
157   AU.addPreservedID(LCSSAID);
158   // This is used in the LPPassManager to perform LCSSA verification on passes
159   // which preserve lcssa form
160   AU.addRequired<LCSSAVerificationPass>();
161   AU.addPreserved<LCSSAVerificationPass>();
162 
163   // Loop passes are designed to run inside of a loop pass manager which means
164   // that any function analyses they require must be required by the first loop
165   // pass in the manager (so that it is computed before the loop pass manager
166   // runs) and preserved by all loop pasess in the manager. To make this
167   // reasonably robust, the set needed for most loop passes is maintained here.
168   // If your loop pass requires an analysis not listed here, you will need to
169   // carefully audit the loop pass manager nesting structure that results.
170   AU.addRequired<AAResultsWrapperPass>();
171   AU.addPreserved<AAResultsWrapperPass>();
172   AU.addPreserved<BasicAAWrapperPass>();
173   AU.addPreserved<GlobalsAAWrapperPass>();
174   AU.addPreserved<SCEVAAWrapperPass>();
175   AU.addRequired<ScalarEvolutionWrapperPass>();
176   AU.addPreserved<ScalarEvolutionWrapperPass>();
177   // FIXME: When all loop passes preserve MemorySSA, it can be required and
178   // preserved here instead of the individual handling in each pass.
179 }
180 
181 /// Manually defined generic "LoopPass" dependency initialization. This is used
182 /// to initialize the exact set of passes from above in \c
183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
184 /// with:
185 ///
186 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
187 ///
188 /// As-if "LoopPass" were a pass.
189 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
190   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
191   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
192   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
193   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
194   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
195   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
196   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
197   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
198   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
199   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
200 }
201 
202 /// Create MDNode for input string.
203 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
204   LLVMContext &Context = TheLoop->getHeader()->getContext();
205   Metadata *MDs[] = {
206       MDString::get(Context, Name),
207       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
208   return MDNode::get(Context, MDs);
209 }
210 
211 /// Set input string into loop metadata by keeping other values intact.
212 /// If the string is already in loop metadata update value if it is
213 /// different.
214 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
215                                    unsigned V) {
216   SmallVector<Metadata *, 4> MDs(1);
217   // If the loop already has metadata, retain it.
218   MDNode *LoopID = TheLoop->getLoopID();
219   if (LoopID) {
220     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
221       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
222       // If it is of form key = value, try to parse it.
223       if (Node->getNumOperands() == 2) {
224         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
225         if (S && S->getString().equals(StringMD)) {
226           ConstantInt *IntMD =
227               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
228           if (IntMD && IntMD->getSExtValue() == V)
229             // It is already in place. Do nothing.
230             return;
231           // We need to update the value, so just skip it here and it will
232           // be added after copying other existed nodes.
233           continue;
234         }
235       }
236       MDs.push_back(Node);
237     }
238   }
239   // Add new metadata.
240   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
241   // Replace current metadata node with new one.
242   LLVMContext &Context = TheLoop->getHeader()->getContext();
243   MDNode *NewLoopID = MDNode::get(Context, MDs);
244   // Set operand 0 to refer to the loop id itself.
245   NewLoopID->replaceOperandWith(0, NewLoopID);
246   TheLoop->setLoopID(NewLoopID);
247 }
248 
249 std::optional<ElementCount>
250 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
251   std::optional<int> Width =
252       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
253 
254   if (Width) {
255     std::optional<int> IsScalable = getOptionalIntLoopAttribute(
256         TheLoop, "llvm.loop.vectorize.scalable.enable");
257     return ElementCount::get(*Width, IsScalable.value_or(false));
258   }
259 
260   return std::nullopt;
261 }
262 
263 std::optional<MDNode *> llvm::makeFollowupLoopID(
264     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
265     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
266   if (!OrigLoopID) {
267     if (AlwaysNew)
268       return nullptr;
269     return std::nullopt;
270   }
271 
272   assert(OrigLoopID->getOperand(0) == OrigLoopID);
273 
274   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
275   bool InheritSomeAttrs =
276       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
277   SmallVector<Metadata *, 8> MDs;
278   MDs.push_back(nullptr);
279 
280   bool Changed = false;
281   if (InheritAllAttrs || InheritSomeAttrs) {
282     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
283       MDNode *Op = cast<MDNode>(Existing.get());
284 
285       auto InheritThisAttribute = [InheritSomeAttrs,
286                                    InheritOptionsExceptPrefix](MDNode *Op) {
287         if (!InheritSomeAttrs)
288           return false;
289 
290         // Skip malformatted attribute metadata nodes.
291         if (Op->getNumOperands() == 0)
292           return true;
293         Metadata *NameMD = Op->getOperand(0).get();
294         if (!isa<MDString>(NameMD))
295           return true;
296         StringRef AttrName = cast<MDString>(NameMD)->getString();
297 
298         // Do not inherit excluded attributes.
299         return !AttrName.startswith(InheritOptionsExceptPrefix);
300       };
301 
302       if (InheritThisAttribute(Op))
303         MDs.push_back(Op);
304       else
305         Changed = true;
306     }
307   } else {
308     // Modified if we dropped at least one attribute.
309     Changed = OrigLoopID->getNumOperands() > 1;
310   }
311 
312   bool HasAnyFollowup = false;
313   for (StringRef OptionName : FollowupOptions) {
314     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
315     if (!FollowupNode)
316       continue;
317 
318     HasAnyFollowup = true;
319     for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
320       MDs.push_back(Option.get());
321       Changed = true;
322     }
323   }
324 
325   // Attributes of the followup loop not specified explicity, so signal to the
326   // transformation pass to add suitable attributes.
327   if (!AlwaysNew && !HasAnyFollowup)
328     return std::nullopt;
329 
330   // If no attributes were added or remove, the previous loop Id can be reused.
331   if (!AlwaysNew && !Changed)
332     return OrigLoopID;
333 
334   // No attributes is equivalent to having no !llvm.loop metadata at all.
335   if (MDs.size() == 1)
336     return nullptr;
337 
338   // Build the new loop ID.
339   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
340   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
341   return FollowupLoopID;
342 }
343 
344 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
345   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
346 }
347 
348 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
349   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
350 }
351 
352 TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
353   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
354     return TM_SuppressedByUser;
355 
356   std::optional<int> Count =
357       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
358   if (Count)
359     return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
360 
361   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
362     return TM_ForcedByUser;
363 
364   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
365     return TM_ForcedByUser;
366 
367   if (hasDisableAllTransformsHint(L))
368     return TM_Disable;
369 
370   return TM_Unspecified;
371 }
372 
373 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
374   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
375     return TM_SuppressedByUser;
376 
377   std::optional<int> Count =
378       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
379   if (Count)
380     return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
381 
382   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
383     return TM_ForcedByUser;
384 
385   if (hasDisableAllTransformsHint(L))
386     return TM_Disable;
387 
388   return TM_Unspecified;
389 }
390 
391 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
392   std::optional<bool> Enable =
393       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
394 
395   if (Enable == false)
396     return TM_SuppressedByUser;
397 
398   std::optional<ElementCount> VectorizeWidth =
399       getOptionalElementCountLoopAttribute(L);
400   std::optional<int> InterleaveCount =
401       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
402 
403   // 'Forcing' vector width and interleave count to one effectively disables
404   // this tranformation.
405   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
406       InterleaveCount == 1)
407     return TM_SuppressedByUser;
408 
409   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
410     return TM_Disable;
411 
412   if (Enable == true)
413     return TM_ForcedByUser;
414 
415   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
416     return TM_Disable;
417 
418   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
419     return TM_Enable;
420 
421   if (hasDisableAllTransformsHint(L))
422     return TM_Disable;
423 
424   return TM_Unspecified;
425 }
426 
427 TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
428   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
429     return TM_ForcedByUser;
430 
431   if (hasDisableAllTransformsHint(L))
432     return TM_Disable;
433 
434   return TM_Unspecified;
435 }
436 
437 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
438   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
439     return TM_SuppressedByUser;
440 
441   if (hasDisableAllTransformsHint(L))
442     return TM_Disable;
443 
444   return TM_Unspecified;
445 }
446 
447 /// Does a BFS from a given node to all of its children inside a given loop.
448 /// The returned vector of nodes includes the starting point.
449 SmallVector<DomTreeNode *, 16>
450 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
451   SmallVector<DomTreeNode *, 16> Worklist;
452   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
453     // Only include subregions in the top level loop.
454     BasicBlock *BB = DTN->getBlock();
455     if (CurLoop->contains(BB))
456       Worklist.push_back(DTN);
457   };
458 
459   AddRegionToWorklist(N);
460 
461   for (size_t I = 0; I < Worklist.size(); I++) {
462     for (DomTreeNode *Child : Worklist[I]->children())
463       AddRegionToWorklist(Child);
464   }
465 
466   return Worklist;
467 }
468 
469 bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) {
470   int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
471   Value *IncV = PN->getIncomingValue(LatchIdx);
472 
473   for (User *U : PN->users())
474     if (U != Cond && U != IncV) return false;
475 
476   for (User *U : IncV->users())
477     if (U != Cond && U != PN) return false;
478   return true;
479 }
480 
481 
482 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
483                           LoopInfo *LI, MemorySSA *MSSA) {
484   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
485   auto *Preheader = L->getLoopPreheader();
486   assert(Preheader && "Preheader should exist!");
487 
488   std::unique_ptr<MemorySSAUpdater> MSSAU;
489   if (MSSA)
490     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
491 
492   // Now that we know the removal is safe, remove the loop by changing the
493   // branch from the preheader to go to the single exit block.
494   //
495   // Because we're deleting a large chunk of code at once, the sequence in which
496   // we remove things is very important to avoid invalidation issues.
497 
498   // Tell ScalarEvolution that the loop is deleted. Do this before
499   // deleting the loop so that ScalarEvolution can look at the loop
500   // to determine what it needs to clean up.
501   if (SE) {
502     SE->forgetLoop(L);
503     SE->forgetBlockAndLoopDispositions();
504   }
505 
506   Instruction *OldTerm = Preheader->getTerminator();
507   assert(!OldTerm->mayHaveSideEffects() &&
508          "Preheader must end with a side-effect-free terminator");
509   assert(OldTerm->getNumSuccessors() == 1 &&
510          "Preheader must have a single successor");
511   // Connect the preheader to the exit block. Keep the old edge to the header
512   // around to perform the dominator tree update in two separate steps
513   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
514   // preheader -> header.
515   //
516   //
517   // 0.  Preheader          1.  Preheader           2.  Preheader
518   //        |                    |   |                   |
519   //        V                    |   V                   |
520   //      Header <--\            | Header <--\           | Header <--\
521   //       |  |     |            |  |  |     |           |  |  |     |
522   //       |  V     |            |  |  V     |           |  |  V     |
523   //       | Body --/            |  | Body --/           |  | Body --/
524   //       V                     V  V                    V  V
525   //      Exit                   Exit                    Exit
526   //
527   // By doing this is two separate steps we can perform the dominator tree
528   // update without using the batch update API.
529   //
530   // Even when the loop is never executed, we cannot remove the edge from the
531   // source block to the exit block. Consider the case where the unexecuted loop
532   // branches back to an outer loop. If we deleted the loop and removed the edge
533   // coming to this inner loop, this will break the outer loop structure (by
534   // deleting the backedge of the outer loop). If the outer loop is indeed a
535   // non-loop, it will be deleted in a future iteration of loop deletion pass.
536   IRBuilder<> Builder(OldTerm);
537 
538   auto *ExitBlock = L->getUniqueExitBlock();
539   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
540   if (ExitBlock) {
541     assert(ExitBlock && "Should have a unique exit block!");
542     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
543 
544     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
545     // Remove the old branch. The conditional branch becomes a new terminator.
546     OldTerm->eraseFromParent();
547 
548     // Rewrite phis in the exit block to get their inputs from the Preheader
549     // instead of the exiting block.
550     for (PHINode &P : ExitBlock->phis()) {
551       // Set the zero'th element of Phi to be from the preheader and remove all
552       // other incoming values. Given the loop has dedicated exits, all other
553       // incoming values must be from the exiting blocks.
554       int PredIndex = 0;
555       P.setIncomingBlock(PredIndex, Preheader);
556       // Removes all incoming values from all other exiting blocks (including
557       // duplicate values from an exiting block).
558       // Nuke all entries except the zero'th entry which is the preheader entry.
559       // NOTE! We need to remove Incoming Values in the reverse order as done
560       // below, to keep the indices valid for deletion (removeIncomingValues
561       // updates getNumIncomingValues and shifts all values down into the
562       // operand being deleted).
563       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
564         P.removeIncomingValue(e - i, false);
565 
566       assert((P.getNumIncomingValues() == 1 &&
567               P.getIncomingBlock(PredIndex) == Preheader) &&
568              "Should have exactly one value and that's from the preheader!");
569     }
570 
571     if (DT) {
572       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
573       if (MSSA) {
574         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
575                             *DT);
576         if (VerifyMemorySSA)
577           MSSA->verifyMemorySSA();
578       }
579     }
580 
581     // Disconnect the loop body by branching directly to its exit.
582     Builder.SetInsertPoint(Preheader->getTerminator());
583     Builder.CreateBr(ExitBlock);
584     // Remove the old branch.
585     Preheader->getTerminator()->eraseFromParent();
586   } else {
587     assert(L->hasNoExitBlocks() &&
588            "Loop should have either zero or one exit blocks.");
589 
590     Builder.SetInsertPoint(OldTerm);
591     Builder.CreateUnreachable();
592     Preheader->getTerminator()->eraseFromParent();
593   }
594 
595   if (DT) {
596     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
597     if (MSSA) {
598       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
599                           *DT);
600       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
601                                                    L->block_end());
602       MSSAU->removeBlocks(DeadBlockSet);
603       if (VerifyMemorySSA)
604         MSSA->verifyMemorySSA();
605     }
606   }
607 
608   // Use a map to unique and a vector to guarantee deterministic ordering.
609   llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet;
610   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
611 
612   if (ExitBlock) {
613     // Given LCSSA form is satisfied, we should not have users of instructions
614     // within the dead loop outside of the loop. However, LCSSA doesn't take
615     // unreachable uses into account. We handle them here.
616     // We could do it after drop all references (in this case all users in the
617     // loop will be already eliminated and we have less work to do but according
618     // to API doc of User::dropAllReferences only valid operation after dropping
619     // references, is deletion. So let's substitute all usages of
620     // instruction from the loop with poison value of corresponding type first.
621     for (auto *Block : L->blocks())
622       for (Instruction &I : *Block) {
623         auto *Poison = PoisonValue::get(I.getType());
624         for (Use &U : llvm::make_early_inc_range(I.uses())) {
625           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
626             if (L->contains(Usr->getParent()))
627               continue;
628           // If we have a DT then we can check that uses outside a loop only in
629           // unreachable block.
630           if (DT)
631             assert(!DT->isReachableFromEntry(U) &&
632                    "Unexpected user in reachable block");
633           U.set(Poison);
634         }
635         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
636         if (!DVI)
637           continue;
638         if (!DeadDebugSet.insert(DebugVariable(DVI)).second)
639           continue;
640         DeadDebugInst.push_back(DVI);
641       }
642 
643     // After the loop has been deleted all the values defined and modified
644     // inside the loop are going to be unavailable. Values computed in the
645     // loop will have been deleted, automatically causing their debug uses
646     // be be replaced with undef. Loop invariant values will still be available.
647     // Move dbg.values out the loop so that earlier location ranges are still
648     // terminated and loop invariant assignments are preserved.
649     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
650     assert(InsertDbgValueBefore &&
651            "There should be a non-PHI instruction in exit block, else these "
652            "instructions will have no parent.");
653     for (auto *DVI : DeadDebugInst)
654       DVI->moveBefore(InsertDbgValueBefore);
655   }
656 
657   // Remove the block from the reference counting scheme, so that we can
658   // delete it freely later.
659   for (auto *Block : L->blocks())
660     Block->dropAllReferences();
661 
662   if (MSSA && VerifyMemorySSA)
663     MSSA->verifyMemorySSA();
664 
665   if (LI) {
666     // Erase the instructions and the blocks without having to worry
667     // about ordering because we already dropped the references.
668     // NOTE: This iteration is safe because erasing the block does not remove
669     // its entry from the loop's block list.  We do that in the next section.
670     for (BasicBlock *BB : L->blocks())
671       BB->eraseFromParent();
672 
673     // Finally, the blocks from loopinfo.  This has to happen late because
674     // otherwise our loop iterators won't work.
675 
676     SmallPtrSet<BasicBlock *, 8> blocks;
677     blocks.insert(L->block_begin(), L->block_end());
678     for (BasicBlock *BB : blocks)
679       LI->removeBlock(BB);
680 
681     // The last step is to update LoopInfo now that we've eliminated this loop.
682     // Note: LoopInfo::erase remove the given loop and relink its subloops with
683     // its parent. While removeLoop/removeChildLoop remove the given loop but
684     // not relink its subloops, which is what we want.
685     if (Loop *ParentLoop = L->getParentLoop()) {
686       Loop::iterator I = find(*ParentLoop, L);
687       assert(I != ParentLoop->end() && "Couldn't find loop");
688       ParentLoop->removeChildLoop(I);
689     } else {
690       Loop::iterator I = find(*LI, L);
691       assert(I != LI->end() && "Couldn't find loop");
692       LI->removeLoop(I);
693     }
694     LI->destroy(L);
695   }
696 }
697 
698 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
699                              LoopInfo &LI, MemorySSA *MSSA) {
700   auto *Latch = L->getLoopLatch();
701   assert(Latch && "multiple latches not yet supported");
702   auto *Header = L->getHeader();
703   Loop *OutermostLoop = L->getOutermostLoop();
704 
705   SE.forgetLoop(L);
706   SE.forgetBlockAndLoopDispositions();
707 
708   std::unique_ptr<MemorySSAUpdater> MSSAU;
709   if (MSSA)
710     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
711 
712   // Update the CFG and domtree.  We chose to special case a couple of
713   // of common cases for code quality and test readability reasons.
714   [&]() -> void {
715     if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
716       if (!BI->isConditional()) {
717         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
718         (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
719                                   MSSAU.get());
720         return;
721       }
722 
723       // Conditional latch/exit - note that latch can be shared by inner
724       // and outer loop so the other target doesn't need to an exit
725       if (L->isLoopExiting(Latch)) {
726         // TODO: Generalize ConstantFoldTerminator so that it can be used
727         // here without invalidating LCSSA or MemorySSA.  (Tricky case for
728         // LCSSA: header is an exit block of a preceeding sibling loop w/o
729         // dedicated exits.)
730         const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
731         BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
732 
733         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
734         Header->removePredecessor(Latch, true);
735 
736         IRBuilder<> Builder(BI);
737         auto *NewBI = Builder.CreateBr(ExitBB);
738         // Transfer the metadata to the new branch instruction (minus the
739         // loop info since this is no longer a loop)
740         NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
741                                   LLVMContext::MD_annotation});
742 
743         BI->eraseFromParent();
744         DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
745         if (MSSA)
746           MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
747         return;
748       }
749     }
750 
751     // General case.  By splitting the backedge, and then explicitly making it
752     // unreachable we gracefully handle corner cases such as switch and invoke
753     // termiantors.
754     auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
755 
756     DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
757     (void)changeToUnreachable(BackedgeBB->getTerminator(),
758                               /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
759   }();
760 
761   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
762   // and blocks within the loop as needed.
763   LI.erase(L);
764 
765   // If the loop we broke had a parent, then changeToUnreachable might have
766   // caused a block to be removed from the parent loop (see loop_nest_lcssa
767   // test case in zero-btc.ll for an example), thus changing the parent's
768   // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
769   // loop which might have a had a block removed.
770   if (OutermostLoop != L)
771     formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
772 }
773 
774 
775 /// Checks if \p L has an exiting latch branch.  There may also be other
776 /// exiting blocks.  Returns branch instruction terminating the loop
777 /// latch if above check is successful, nullptr otherwise.
778 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
779   BasicBlock *Latch = L->getLoopLatch();
780   if (!Latch)
781     return nullptr;
782 
783   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
784   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
785     return nullptr;
786 
787   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
788           LatchBR->getSuccessor(1) == L->getHeader()) &&
789          "At least one edge out of the latch must go to the header");
790 
791   return LatchBR;
792 }
793 
794 /// Return the estimated trip count for any exiting branch which dominates
795 /// the loop latch.
796 static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch,
797                                                      Loop *L,
798                                                      uint64_t &OrigExitWeight) {
799   // To estimate the number of times the loop body was executed, we want to
800   // know the number of times the backedge was taken, vs. the number of times
801   // we exited the loop.
802   uint64_t LoopWeight, ExitWeight;
803   if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
804     return std::nullopt;
805 
806   if (L->contains(ExitingBranch->getSuccessor(1)))
807     std::swap(LoopWeight, ExitWeight);
808 
809   if (!ExitWeight)
810     // Don't have a way to return predicated infinite
811     return std::nullopt;
812 
813   OrigExitWeight = ExitWeight;
814 
815   // Estimated exit count is a ratio of the loop weight by the weight of the
816   // edge exiting the loop, rounded to nearest.
817   uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
818   // Estimated trip count is one plus estimated exit count.
819   return ExitCount + 1;
820 }
821 
822 std::optional<unsigned>
823 llvm::getLoopEstimatedTripCount(Loop *L,
824                                 unsigned *EstimatedLoopInvocationWeight) {
825   // Currently we take the estimate exit count only from the loop latch,
826   // ignoring other exiting blocks.  This can overestimate the trip count
827   // if we exit through another exit, but can never underestimate it.
828   // TODO: incorporate information from other exits
829   if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
830     uint64_t ExitWeight;
831     if (std::optional<uint64_t> EstTripCount =
832             getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
833       if (EstimatedLoopInvocationWeight)
834         *EstimatedLoopInvocationWeight = ExitWeight;
835       return *EstTripCount;
836     }
837   }
838   return std::nullopt;
839 }
840 
841 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
842                                      unsigned EstimatedloopInvocationWeight) {
843   // At the moment, we currently support changing the estimate trip count of
844   // the latch branch only.  We could extend this API to manipulate estimated
845   // trip counts for any exit.
846   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
847   if (!LatchBranch)
848     return false;
849 
850   // Calculate taken and exit weights.
851   unsigned LatchExitWeight = 0;
852   unsigned BackedgeTakenWeight = 0;
853 
854   if (EstimatedTripCount > 0) {
855     LatchExitWeight = EstimatedloopInvocationWeight;
856     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
857   }
858 
859   // Make a swap if back edge is taken when condition is "false".
860   if (LatchBranch->getSuccessor(0) != L->getHeader())
861     std::swap(BackedgeTakenWeight, LatchExitWeight);
862 
863   MDBuilder MDB(LatchBranch->getContext());
864 
865   // Set/Update profile metadata.
866   LatchBranch->setMetadata(
867       LLVMContext::MD_prof,
868       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
869 
870   return true;
871 }
872 
873 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
874                                               ScalarEvolution &SE) {
875   Loop *OuterL = InnerLoop->getParentLoop();
876   if (!OuterL)
877     return true;
878 
879   // Get the backedge taken count for the inner loop
880   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
881   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
882   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
883       !InnerLoopBECountSC->getType()->isIntegerTy())
884     return false;
885 
886   // Get whether count is invariant to the outer loop
887   ScalarEvolution::LoopDisposition LD =
888       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
889   if (LD != ScalarEvolution::LoopInvariant)
890     return false;
891 
892   return true;
893 }
894 
895 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) {
896   switch (RK) {
897   default:
898     llvm_unreachable("Unknown min/max recurrence kind");
899   case RecurKind::UMin:
900     return Intrinsic::umin;
901   case RecurKind::UMax:
902     return Intrinsic::umax;
903   case RecurKind::SMin:
904     return Intrinsic::smin;
905   case RecurKind::SMax:
906     return Intrinsic::smax;
907   case RecurKind::FMin:
908     return Intrinsic::minnum;
909   case RecurKind::FMax:
910     return Intrinsic::maxnum;
911   case RecurKind::FMinimum:
912     return Intrinsic::minimum;
913   case RecurKind::FMaximum:
914     return Intrinsic::maximum;
915   }
916 }
917 
918 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
919   switch (RK) {
920   default:
921     llvm_unreachable("Unknown min/max recurrence kind");
922   case RecurKind::UMin:
923     return CmpInst::ICMP_ULT;
924   case RecurKind::UMax:
925     return CmpInst::ICMP_UGT;
926   case RecurKind::SMin:
927     return CmpInst::ICMP_SLT;
928   case RecurKind::SMax:
929     return CmpInst::ICMP_SGT;
930   case RecurKind::FMin:
931     return CmpInst::FCMP_OLT;
932   case RecurKind::FMax:
933     return CmpInst::FCMP_OGT;
934   // We do not add FMinimum/FMaximum recurrence kind here since there is no
935   // equivalent predicate which compares signed zeroes according to the
936   // semantics of the intrinsics (llvm.minimum/maximum).
937   }
938 }
939 
940 Value *llvm::createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal,
941                                RecurKind RK, Value *Left, Value *Right) {
942   if (auto VTy = dyn_cast<VectorType>(Left->getType()))
943     StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal);
944   Value *Cmp =
945       Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp");
946   return Builder.CreateSelect(Cmp, Left, Right, "rdx.select");
947 }
948 
949 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
950                             Value *Right) {
951   Type *Ty = Left->getType();
952   if (Ty->isIntOrIntVectorTy() ||
953       (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) {
954     // TODO: Add float minnum/maxnum support when FMF nnan is set.
955     Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK);
956     return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
957                                    "rdx.minmax");
958   }
959   CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
960   Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
961   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
962   return Select;
963 }
964 
965 // Helper to generate an ordered reduction.
966 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
967                                  unsigned Op, RecurKind RdxKind) {
968   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
969 
970   // Extract and apply reduction ops in ascending order:
971   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
972   Value *Result = Acc;
973   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
974     Value *Ext =
975         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
976 
977     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
978       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
979                                    "bin.rdx");
980     } else {
981       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
982              "Invalid min/max");
983       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
984     }
985   }
986 
987   return Result;
988 }
989 
990 // Helper to generate a log2 shuffle reduction.
991 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
992                                  unsigned Op, RecurKind RdxKind) {
993   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
994   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
995   // and vector ops, reducing the set of values being computed by half each
996   // round.
997   assert(isPowerOf2_32(VF) &&
998          "Reduction emission only supported for pow2 vectors!");
999   // Note: fast-math-flags flags are controlled by the builder configuration
1000   // and are assumed to apply to all generated arithmetic instructions.  Other
1001   // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1002   // of the builder configuration, and since they're not passed explicitly,
1003   // will never be relevant here.  Note that it would be generally unsound to
1004   // propagate these from an intrinsic call to the expansion anyways as we/
1005   // change the order of operations.
1006   Value *TmpVec = Src;
1007   SmallVector<int, 32> ShuffleMask(VF);
1008   for (unsigned i = VF; i != 1; i >>= 1) {
1009     // Move the upper half of the vector to the lower half.
1010     for (unsigned j = 0; j != i / 2; ++j)
1011       ShuffleMask[j] = i / 2 + j;
1012 
1013     // Fill the rest of the mask with undef.
1014     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1015 
1016     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1017 
1018     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1019       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1020                                    "bin.rdx");
1021     } else {
1022       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1023              "Invalid min/max");
1024       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1025     }
1026   }
1027   // The result is in the first element of the vector.
1028   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1029 }
1030 
1031 Value *llvm::createSelectCmpTargetReduction(IRBuilderBase &Builder,
1032                                             const TargetTransformInfo *TTI,
1033                                             Value *Src,
1034                                             const RecurrenceDescriptor &Desc,
1035                                             PHINode *OrigPhi) {
1036   assert(RecurrenceDescriptor::isSelectCmpRecurrenceKind(
1037              Desc.getRecurrenceKind()) &&
1038          "Unexpected reduction kind");
1039   Value *InitVal = Desc.getRecurrenceStartValue();
1040   Value *NewVal = nullptr;
1041 
1042   // First use the original phi to determine the new value we're trying to
1043   // select from in the loop.
1044   SelectInst *SI = nullptr;
1045   for (auto *U : OrigPhi->users()) {
1046     if ((SI = dyn_cast<SelectInst>(U)))
1047       break;
1048   }
1049   assert(SI && "One user of the original phi should be a select");
1050 
1051   if (SI->getTrueValue() == OrigPhi)
1052     NewVal = SI->getFalseValue();
1053   else {
1054     assert(SI->getFalseValue() == OrigPhi &&
1055            "At least one input to the select should be the original Phi");
1056     NewVal = SI->getTrueValue();
1057   }
1058 
1059   // Create a splat vector with the new value and compare this to the vector
1060   // we want to reduce.
1061   ElementCount EC = cast<VectorType>(Src->getType())->getElementCount();
1062   Value *Right = Builder.CreateVectorSplat(EC, InitVal);
1063   Value *Cmp =
1064       Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp");
1065 
1066   // If any predicate is true it means that we want to select the new value.
1067   Cmp = Builder.CreateOrReduce(Cmp);
1068   return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select");
1069 }
1070 
1071 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
1072                                          const TargetTransformInfo *TTI,
1073                                          Value *Src, RecurKind RdxKind) {
1074   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1075   switch (RdxKind) {
1076   case RecurKind::Add:
1077     return Builder.CreateAddReduce(Src);
1078   case RecurKind::Mul:
1079     return Builder.CreateMulReduce(Src);
1080   case RecurKind::And:
1081     return Builder.CreateAndReduce(Src);
1082   case RecurKind::Or:
1083     return Builder.CreateOrReduce(Src);
1084   case RecurKind::Xor:
1085     return Builder.CreateXorReduce(Src);
1086   case RecurKind::FMulAdd:
1087   case RecurKind::FAdd:
1088     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1089                                     Src);
1090   case RecurKind::FMul:
1091     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1092   case RecurKind::SMax:
1093     return Builder.CreateIntMaxReduce(Src, true);
1094   case RecurKind::SMin:
1095     return Builder.CreateIntMinReduce(Src, true);
1096   case RecurKind::UMax:
1097     return Builder.CreateIntMaxReduce(Src, false);
1098   case RecurKind::UMin:
1099     return Builder.CreateIntMinReduce(Src, false);
1100   case RecurKind::FMax:
1101     return Builder.CreateFPMaxReduce(Src);
1102   case RecurKind::FMin:
1103     return Builder.CreateFPMinReduce(Src);
1104   case RecurKind::FMinimum:
1105     return Builder.CreateFPMinimumReduce(Src);
1106   case RecurKind::FMaximum:
1107     return Builder.CreateFPMaximumReduce(Src);
1108   default:
1109     llvm_unreachable("Unhandled opcode");
1110   }
1111 }
1112 
1113 Value *llvm::createTargetReduction(IRBuilderBase &B,
1114                                    const TargetTransformInfo *TTI,
1115                                    const RecurrenceDescriptor &Desc, Value *Src,
1116                                    PHINode *OrigPhi) {
1117   // TODO: Support in-order reductions based on the recurrence descriptor.
1118   // All ops in the reduction inherit fast-math-flags from the recurrence
1119   // descriptor.
1120   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1121   B.setFastMathFlags(Desc.getFastMathFlags());
1122 
1123   RecurKind RK = Desc.getRecurrenceKind();
1124   if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
1125     return createSelectCmpTargetReduction(B, TTI, Src, Desc, OrigPhi);
1126 
1127   return createSimpleTargetReduction(B, TTI, Src, RK);
1128 }
1129 
1130 Value *llvm::createOrderedReduction(IRBuilderBase &B,
1131                                     const RecurrenceDescriptor &Desc,
1132                                     Value *Src, Value *Start) {
1133   assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
1134           Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
1135          "Unexpected reduction kind");
1136   assert(Src->getType()->isVectorTy() && "Expected a vector type");
1137   assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1138 
1139   return B.CreateFAddReduce(Start, Src);
1140 }
1141 
1142 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue,
1143                             bool IncludeWrapFlags) {
1144   auto *VecOp = dyn_cast<Instruction>(I);
1145   if (!VecOp)
1146     return;
1147   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1148                                             : dyn_cast<Instruction>(OpValue);
1149   if (!Intersection)
1150     return;
1151   const unsigned Opcode = Intersection->getOpcode();
1152   VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1153   for (auto *V : VL) {
1154     auto *Instr = dyn_cast<Instruction>(V);
1155     if (!Instr)
1156       continue;
1157     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1158       VecOp->andIRFlags(V);
1159   }
1160 }
1161 
1162 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1163                                  ScalarEvolution &SE) {
1164   const SCEV *Zero = SE.getZero(S->getType());
1165   return SE.isAvailableAtLoopEntry(S, L) &&
1166          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1167 }
1168 
1169 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1170                                     ScalarEvolution &SE) {
1171   const SCEV *Zero = SE.getZero(S->getType());
1172   return SE.isAvailableAtLoopEntry(S, L) &&
1173          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1174 }
1175 
1176 bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
1177                                  ScalarEvolution &SE) {
1178   const SCEV *Zero = SE.getZero(S->getType());
1179   return SE.isAvailableAtLoopEntry(S, L) &&
1180          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero);
1181 }
1182 
1183 bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L,
1184                                     ScalarEvolution &SE) {
1185   const SCEV *Zero = SE.getZero(S->getType());
1186   return SE.isAvailableAtLoopEntry(S, L) &&
1187          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero);
1188 }
1189 
1190 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1191                              bool Signed) {
1192   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1193   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1194     APInt::getMinValue(BitWidth);
1195   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1196   return SE.isAvailableAtLoopEntry(S, L) &&
1197          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1198                                      SE.getConstant(Min));
1199 }
1200 
1201 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1202                              bool Signed) {
1203   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1204   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1205     APInt::getMaxValue(BitWidth);
1206   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1207   return SE.isAvailableAtLoopEntry(S, L) &&
1208          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1209                                      SE.getConstant(Max));
1210 }
1211 
1212 //===----------------------------------------------------------------------===//
1213 // rewriteLoopExitValues - Optimize IV users outside the loop.
1214 // As a side effect, reduces the amount of IV processing within the loop.
1215 //===----------------------------------------------------------------------===//
1216 
1217 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1218   SmallPtrSet<const Instruction *, 8> Visited;
1219   SmallVector<const Instruction *, 8> WorkList;
1220   Visited.insert(I);
1221   WorkList.push_back(I);
1222   while (!WorkList.empty()) {
1223     const Instruction *Curr = WorkList.pop_back_val();
1224     // This use is outside the loop, nothing to do.
1225     if (!L->contains(Curr))
1226       continue;
1227     // Do we assume it is a "hard" use which will not be eliminated easily?
1228     if (Curr->mayHaveSideEffects())
1229       return true;
1230     // Otherwise, add all its users to worklist.
1231     for (const auto *U : Curr->users()) {
1232       auto *UI = cast<Instruction>(U);
1233       if (Visited.insert(UI).second)
1234         WorkList.push_back(UI);
1235     }
1236   }
1237   return false;
1238 }
1239 
1240 // Collect information about PHI nodes which can be transformed in
1241 // rewriteLoopExitValues.
1242 struct RewritePhi {
1243   PHINode *PN;               // For which PHI node is this replacement?
1244   unsigned Ith;              // For which incoming value?
1245   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1246   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1247   bool HighCost;               // Is this expansion a high-cost?
1248 
1249   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1250              bool H)
1251       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1252         HighCost(H) {}
1253 };
1254 
1255 // Check whether it is possible to delete the loop after rewriting exit
1256 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1257 // aggressively.
1258 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1259   BasicBlock *Preheader = L->getLoopPreheader();
1260   // If there is no preheader, the loop will not be deleted.
1261   if (!Preheader)
1262     return false;
1263 
1264   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1265   // We obviate multiple ExitingBlocks case for simplicity.
1266   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1267   // after exit value rewriting, we can enhance the logic here.
1268   SmallVector<BasicBlock *, 4> ExitingBlocks;
1269   L->getExitingBlocks(ExitingBlocks);
1270   SmallVector<BasicBlock *, 8> ExitBlocks;
1271   L->getUniqueExitBlocks(ExitBlocks);
1272   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1273     return false;
1274 
1275   BasicBlock *ExitBlock = ExitBlocks[0];
1276   BasicBlock::iterator BI = ExitBlock->begin();
1277   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1278     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1279 
1280     // If the Incoming value of P is found in RewritePhiSet, we know it
1281     // could be rewritten to use a loop invariant value in transformation
1282     // phase later. Skip it in the loop invariant check below.
1283     bool found = false;
1284     for (const RewritePhi &Phi : RewritePhiSet) {
1285       unsigned i = Phi.Ith;
1286       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1287         found = true;
1288         break;
1289       }
1290     }
1291 
1292     Instruction *I;
1293     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1294       if (!L->hasLoopInvariantOperands(I))
1295         return false;
1296 
1297     ++BI;
1298   }
1299 
1300   for (auto *BB : L->blocks())
1301     if (llvm::any_of(*BB, [](Instruction &I) {
1302           return I.mayHaveSideEffects();
1303         }))
1304       return false;
1305 
1306   return true;
1307 }
1308 
1309 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1310 /// and returns true if this Phi is an induction phi in the loop. When
1311 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1312 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
1313                           InductionDescriptor &ID) {
1314   if (!Phi)
1315     return false;
1316   if (!L->getLoopPreheader())
1317     return false;
1318   if (Phi->getParent() != L->getHeader())
1319     return false;
1320   return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
1321 }
1322 
1323 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1324                                 ScalarEvolution *SE,
1325                                 const TargetTransformInfo *TTI,
1326                                 SCEVExpander &Rewriter, DominatorTree *DT,
1327                                 ReplaceExitVal ReplaceExitValue,
1328                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1329   // Check a pre-condition.
1330   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1331          "Indvars did not preserve LCSSA!");
1332 
1333   SmallVector<BasicBlock*, 8> ExitBlocks;
1334   L->getUniqueExitBlocks(ExitBlocks);
1335 
1336   SmallVector<RewritePhi, 8> RewritePhiSet;
1337   // Find all values that are computed inside the loop, but used outside of it.
1338   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1339   // the exit blocks of the loop to find them.
1340   for (BasicBlock *ExitBB : ExitBlocks) {
1341     // If there are no PHI nodes in this exit block, then no values defined
1342     // inside the loop are used on this path, skip it.
1343     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1344     if (!PN) continue;
1345 
1346     unsigned NumPreds = PN->getNumIncomingValues();
1347 
1348     // Iterate over all of the PHI nodes.
1349     BasicBlock::iterator BBI = ExitBB->begin();
1350     while ((PN = dyn_cast<PHINode>(BBI++))) {
1351       if (PN->use_empty())
1352         continue; // dead use, don't replace it
1353 
1354       if (!SE->isSCEVable(PN->getType()))
1355         continue;
1356 
1357       // Iterate over all of the values in all the PHI nodes.
1358       for (unsigned i = 0; i != NumPreds; ++i) {
1359         // If the value being merged in is not integer or is not defined
1360         // in the loop, skip it.
1361         Value *InVal = PN->getIncomingValue(i);
1362         if (!isa<Instruction>(InVal))
1363           continue;
1364 
1365         // If this pred is for a subloop, not L itself, skip it.
1366         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1367           continue; // The Block is in a subloop, skip it.
1368 
1369         // Check that InVal is defined in the loop.
1370         Instruction *Inst = cast<Instruction>(InVal);
1371         if (!L->contains(Inst))
1372           continue;
1373 
1374         // Find exit values which are induction variables in the loop, and are
1375         // unused in the loop, with the only use being the exit block PhiNode,
1376         // and the induction variable update binary operator.
1377         // The exit value can be replaced with the final value when it is cheap
1378         // to do so.
1379         if (ReplaceExitValue == UnusedIndVarInLoop) {
1380           InductionDescriptor ID;
1381           PHINode *IndPhi = dyn_cast<PHINode>(Inst);
1382           if (IndPhi) {
1383             if (!checkIsIndPhi(IndPhi, L, SE, ID))
1384               continue;
1385             // This is an induction PHI. Check that the only users are PHI
1386             // nodes, and induction variable update binary operators.
1387             if (llvm::any_of(Inst->users(), [&](User *U) {
1388                   if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1389                     return true;
1390                   BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1391                   if (B && B != ID.getInductionBinOp())
1392                     return true;
1393                   return false;
1394                 }))
1395               continue;
1396           } else {
1397             // If it is not an induction phi, it must be an induction update
1398             // binary operator with an induction phi user.
1399             BinaryOperator *B = dyn_cast<BinaryOperator>(Inst);
1400             if (!B)
1401               continue;
1402             if (llvm::any_of(Inst->users(), [&](User *U) {
1403                   PHINode *Phi = dyn_cast<PHINode>(U);
1404                   if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1405                     return true;
1406                   return false;
1407                 }))
1408               continue;
1409             if (B != ID.getInductionBinOp())
1410               continue;
1411           }
1412         }
1413 
1414         // Okay, this instruction has a user outside of the current loop
1415         // and varies predictably *inside* the loop.  Evaluate the value it
1416         // contains when the loop exits, if possible.  We prefer to start with
1417         // expressions which are true for all exits (so as to maximize
1418         // expression reuse by the SCEVExpander), but resort to per-exit
1419         // evaluation if that fails.
1420         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1421         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1422             !SE->isLoopInvariant(ExitValue, L) ||
1423             !Rewriter.isSafeToExpand(ExitValue)) {
1424           // TODO: This should probably be sunk into SCEV in some way; maybe a
1425           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1426           // most SCEV expressions and other recurrence types (e.g. shift
1427           // recurrences).  Is there existing code we can reuse?
1428           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1429           if (isa<SCEVCouldNotCompute>(ExitCount))
1430             continue;
1431           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1432             if (AddRec->getLoop() == L)
1433               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1434           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1435               !SE->isLoopInvariant(ExitValue, L) ||
1436               !Rewriter.isSafeToExpand(ExitValue))
1437             continue;
1438         }
1439 
1440         // Computing the value outside of the loop brings no benefit if it is
1441         // definitely used inside the loop in a way which can not be optimized
1442         // away. Avoid doing so unless we know we have a value which computes
1443         // the ExitValue already. TODO: This should be merged into SCEV
1444         // expander to leverage its knowledge of existing expressions.
1445         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1446             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1447           continue;
1448 
1449         // Check if expansions of this SCEV would count as being high cost.
1450         bool HighCost = Rewriter.isHighCostExpansion(
1451             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1452 
1453         // Note that we must not perform expansions until after
1454         // we query *all* the costs, because if we perform temporary expansion
1455         // inbetween, one that we might not intend to keep, said expansion
1456         // *may* affect cost calculation of the the next SCEV's we'll query,
1457         // and next SCEV may errneously get smaller cost.
1458 
1459         // Collect all the candidate PHINodes to be rewritten.
1460         Instruction *InsertPt =
1461           (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
1462           &*Inst->getParent()->getFirstInsertionPt() : Inst;
1463         RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1464       }
1465     }
1466   }
1467 
1468   // TODO: evaluate whether it is beneficial to change how we calculate
1469   // high-cost: if we have SCEV 'A' which we know we will expand, should we
1470   // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1471   // potentially giving cost bonus to those other SCEV's?
1472 
1473   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1474   int NumReplaced = 0;
1475 
1476   // Transformation.
1477   for (const RewritePhi &Phi : RewritePhiSet) {
1478     PHINode *PN = Phi.PN;
1479 
1480     // Only do the rewrite when the ExitValue can be expanded cheaply.
1481     // If LoopCanBeDel is true, rewrite exit value aggressively.
1482     if ((ReplaceExitValue == OnlyCheapRepl ||
1483          ReplaceExitValue == UnusedIndVarInLoop) &&
1484         !LoopCanBeDel && Phi.HighCost)
1485       continue;
1486 
1487     Value *ExitVal = Rewriter.expandCodeFor(
1488         Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1489 
1490     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1491                       << '\n'
1492                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1493 
1494 #ifndef NDEBUG
1495     // If we reuse an instruction from a loop which is neither L nor one of
1496     // its containing loops, we end up breaking LCSSA form for this loop by
1497     // creating a new use of its instruction.
1498     if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1499       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1500         if (EVL != L)
1501           assert(EVL->contains(L) && "LCSSA breach detected!");
1502 #endif
1503 
1504     NumReplaced++;
1505     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1506     PN->setIncomingValue(Phi.Ith, ExitVal);
1507     // It's necessary to tell ScalarEvolution about this explicitly so that
1508     // it can walk the def-use list and forget all SCEVs, as it may not be
1509     // watching the PHI itself. Once the new exit value is in place, there
1510     // may not be a def-use connection between the loop and every instruction
1511     // which got a SCEVAddRecExpr for that loop.
1512     SE->forgetValue(PN);
1513 
1514     // If this instruction is dead now, delete it. Don't do it now to avoid
1515     // invalidating iterators.
1516     if (isInstructionTriviallyDead(Inst, TLI))
1517       DeadInsts.push_back(Inst);
1518 
1519     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1520     if (PN->getNumIncomingValues() == 1 &&
1521         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1522       PN->replaceAllUsesWith(ExitVal);
1523       PN->eraseFromParent();
1524     }
1525   }
1526 
1527   // The insertion point instruction may have been deleted; clear it out
1528   // so that the rewriter doesn't trip over it later.
1529   Rewriter.clearInsertPoint();
1530   return NumReplaced;
1531 }
1532 
1533 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1534 /// \p OrigLoop.
1535 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1536                                         Loop *RemainderLoop, uint64_t UF) {
1537   assert(UF > 0 && "Zero unrolled factor is not supported");
1538   assert(UnrolledLoop != RemainderLoop &&
1539          "Unrolled and Remainder loops are expected to distinct");
1540 
1541   // Get number of iterations in the original scalar loop.
1542   unsigned OrigLoopInvocationWeight = 0;
1543   std::optional<unsigned> OrigAverageTripCount =
1544       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1545   if (!OrigAverageTripCount)
1546     return;
1547 
1548   // Calculate number of iterations in unrolled loop.
1549   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1550   // Calculate number of iterations for remainder loop.
1551   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1552 
1553   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1554                             OrigLoopInvocationWeight);
1555   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1556                             OrigLoopInvocationWeight);
1557 }
1558 
1559 /// Utility that implements appending of loops onto a worklist.
1560 /// Loops are added in preorder (analogous for reverse postorder for trees),
1561 /// and the worklist is processed LIFO.
1562 template <typename RangeT>
1563 void llvm::appendReversedLoopsToWorklist(
1564     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1565   // We use an internal worklist to build up the preorder traversal without
1566   // recursion.
1567   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1568 
1569   // We walk the initial sequence of loops in reverse because we generally want
1570   // to visit defs before uses and the worklist is LIFO.
1571   for (Loop *RootL : Loops) {
1572     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1573     assert(PreOrderWorklist.empty() &&
1574            "Must start with an empty preorder walk worklist.");
1575     PreOrderWorklist.push_back(RootL);
1576     do {
1577       Loop *L = PreOrderWorklist.pop_back_val();
1578       PreOrderWorklist.append(L->begin(), L->end());
1579       PreOrderLoops.push_back(L);
1580     } while (!PreOrderWorklist.empty());
1581 
1582     Worklist.insert(std::move(PreOrderLoops));
1583     PreOrderLoops.clear();
1584   }
1585 }
1586 
1587 template <typename RangeT>
1588 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1589                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1590   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1591 }
1592 
1593 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1594     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1595 
1596 template void
1597 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1598                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1599 
1600 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1601                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1602   appendReversedLoopsToWorklist(LI, Worklist);
1603 }
1604 
1605 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1606                       LoopInfo *LI, LPPassManager *LPM) {
1607   Loop &New = *LI->AllocateLoop();
1608   if (PL)
1609     PL->addChildLoop(&New);
1610   else
1611     LI->addTopLevelLoop(&New);
1612 
1613   if (LPM)
1614     LPM->addLoop(New);
1615 
1616   // Add all of the blocks in L to the new loop.
1617   for (BasicBlock *BB : L->blocks())
1618     if (LI->getLoopFor(BB) == L)
1619       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1620 
1621   // Add all of the subloops to the new loop.
1622   for (Loop *I : *L)
1623     cloneLoop(I, &New, VM, LI, LPM);
1624 
1625   return &New;
1626 }
1627 
1628 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1629 /// need to use value-handles because SCEV expansion can invalidate previously
1630 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1631 /// a previous one.
1632 struct PointerBounds {
1633   TrackingVH<Value> Start;
1634   TrackingVH<Value> End;
1635 };
1636 
1637 /// Expand code for the lower and upper bound of the pointer group \p CG
1638 /// in \p TheLoop.  \return the values for the bounds.
1639 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1640                                   Loop *TheLoop, Instruction *Loc,
1641                                   SCEVExpander &Exp) {
1642   LLVMContext &Ctx = Loc->getContext();
1643   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace);
1644 
1645   Value *Start = nullptr, *End = nullptr;
1646   LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1647   Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1648   End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1649   if (CG->NeedsFreeze) {
1650     IRBuilder<> Builder(Loc);
1651     Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
1652     End = Builder.CreateFreeze(End, End->getName() + ".fr");
1653   }
1654   LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1655   return {Start, End};
1656 }
1657 
1658 /// Turns a collection of checks into a collection of expanded upper and
1659 /// lower bounds for both pointers in the check.
1660 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1661 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1662              Instruction *Loc, SCEVExpander &Exp) {
1663   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1664 
1665   // Here we're relying on the SCEV Expander's cache to only emit code for the
1666   // same bounds once.
1667   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1668             [&](const RuntimePointerCheck &Check) {
1669               PointerBounds First = expandBounds(Check.first, L, Loc, Exp),
1670                             Second = expandBounds(Check.second, L, Loc, Exp);
1671               return std::make_pair(First, Second);
1672             });
1673 
1674   return ChecksWithBounds;
1675 }
1676 
1677 Value *llvm::addRuntimeChecks(
1678     Instruction *Loc, Loop *TheLoop,
1679     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1680     SCEVExpander &Exp) {
1681   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1682   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1683   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp);
1684 
1685   LLVMContext &Ctx = Loc->getContext();
1686   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1687                                            Loc->getModule()->getDataLayout());
1688   ChkBuilder.SetInsertPoint(Loc);
1689   // Our instructions might fold to a constant.
1690   Value *MemoryRuntimeCheck = nullptr;
1691 
1692   for (const auto &Check : ExpandedChecks) {
1693     const PointerBounds &A = Check.first, &B = Check.second;
1694     // Check if two pointers (A and B) conflict where conflict is computed as:
1695     // start(A) <= end(B) && start(B) <= end(A)
1696     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1697     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1698 
1699     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1700            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1701            "Trying to bounds check pointers with different address spaces");
1702 
1703     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1704     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1705 
1706     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1707     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1708     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1709     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1710 
1711     // [A|B].Start points to the first accessed byte under base [A|B].
1712     // [A|B].End points to the last accessed byte, plus one.
1713     // There is no conflict when the intervals are disjoint:
1714     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1715     //
1716     // bound0 = (B.Start < A.End)
1717     // bound1 = (A.Start < B.End)
1718     //  IsConflict = bound0 & bound1
1719     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1720     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1721     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1722     if (MemoryRuntimeCheck) {
1723       IsConflict =
1724           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1725     }
1726     MemoryRuntimeCheck = IsConflict;
1727   }
1728 
1729   return MemoryRuntimeCheck;
1730 }
1731 
1732 Value *llvm::addDiffRuntimeChecks(
1733     Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
1734     function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
1735 
1736   LLVMContext &Ctx = Loc->getContext();
1737   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1738                                            Loc->getModule()->getDataLayout());
1739   ChkBuilder.SetInsertPoint(Loc);
1740   // Our instructions might fold to a constant.
1741   Value *MemoryRuntimeCheck = nullptr;
1742 
1743   for (const auto &C : Checks) {
1744     Type *Ty = C.SinkStart->getType();
1745     // Compute VF * IC * AccessSize.
1746     auto *VFTimesUFTimesSize =
1747         ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
1748                              ConstantInt::get(Ty, IC * C.AccessSize));
1749     Value *Sink = Expander.expandCodeFor(C.SinkStart, Ty, Loc);
1750     Value *Src = Expander.expandCodeFor(C.SrcStart, Ty, Loc);
1751     if (C.NeedsFreeze) {
1752       IRBuilder<> Builder(Loc);
1753       Sink = Builder.CreateFreeze(Sink, Sink->getName() + ".fr");
1754       Src = Builder.CreateFreeze(Src, Src->getName() + ".fr");
1755     }
1756     Value *Diff = ChkBuilder.CreateSub(Sink, Src);
1757     Value *IsConflict =
1758         ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check");
1759 
1760     if (MemoryRuntimeCheck) {
1761       IsConflict =
1762           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1763     }
1764     MemoryRuntimeCheck = IsConflict;
1765   }
1766 
1767   return MemoryRuntimeCheck;
1768 }
1769 
1770 std::optional<IVConditionInfo>
1771 llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold,
1772                             const MemorySSA &MSSA, AAResults &AA) {
1773   auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1774   if (!TI || !TI->isConditional())
1775     return {};
1776 
1777   auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
1778   // The case with the condition outside the loop should already be handled
1779   // earlier.
1780   if (!CondI || !L.contains(CondI))
1781     return {};
1782 
1783   SmallVector<Instruction *> InstToDuplicate;
1784   InstToDuplicate.push_back(CondI);
1785 
1786   SmallVector<Value *, 4> WorkList;
1787   WorkList.append(CondI->op_begin(), CondI->op_end());
1788 
1789   SmallVector<MemoryAccess *, 4> AccessesToCheck;
1790   SmallVector<MemoryLocation, 4> AccessedLocs;
1791   while (!WorkList.empty()) {
1792     Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1793     if (!I || !L.contains(I))
1794       continue;
1795 
1796     // TODO: support additional instructions.
1797     if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1798       return {};
1799 
1800     // Do not duplicate volatile and atomic loads.
1801     if (auto *LI = dyn_cast<LoadInst>(I))
1802       if (LI->isVolatile() || LI->isAtomic())
1803         return {};
1804 
1805     InstToDuplicate.push_back(I);
1806     if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1807       if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1808         // Queue the defining access to check for alias checks.
1809         AccessesToCheck.push_back(MemUse->getDefiningAccess());
1810         AccessedLocs.push_back(MemoryLocation::get(I));
1811       } else {
1812         // MemoryDefs may clobber the location or may be atomic memory
1813         // operations. Bail out.
1814         return {};
1815       }
1816     }
1817     WorkList.append(I->op_begin(), I->op_end());
1818   }
1819 
1820   if (InstToDuplicate.empty())
1821     return {};
1822 
1823   SmallVector<BasicBlock *, 4> ExitingBlocks;
1824   L.getExitingBlocks(ExitingBlocks);
1825   auto HasNoClobbersOnPath =
1826       [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1827        MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1828                       SmallVector<MemoryAccess *, 4> AccessesToCheck)
1829       -> std::optional<IVConditionInfo> {
1830     IVConditionInfo Info;
1831     // First, collect all blocks in the loop that are on a patch from Succ
1832     // to the header.
1833     SmallVector<BasicBlock *, 4> WorkList;
1834     WorkList.push_back(Succ);
1835     WorkList.push_back(Header);
1836     SmallPtrSet<BasicBlock *, 4> Seen;
1837     Seen.insert(Header);
1838     Info.PathIsNoop &=
1839         all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1840 
1841     while (!WorkList.empty()) {
1842       BasicBlock *Current = WorkList.pop_back_val();
1843       if (!L.contains(Current))
1844         continue;
1845       const auto &SeenIns = Seen.insert(Current);
1846       if (!SeenIns.second)
1847         continue;
1848 
1849       Info.PathIsNoop &= all_of(
1850           *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1851       WorkList.append(succ_begin(Current), succ_end(Current));
1852     }
1853 
1854     // Require at least 2 blocks on a path through the loop. This skips
1855     // paths that directly exit the loop.
1856     if (Seen.size() < 2)
1857       return {};
1858 
1859     // Next, check if there are any MemoryDefs that are on the path through
1860     // the loop (in the Seen set) and they may-alias any of the locations in
1861     // AccessedLocs. If that is the case, they may modify the condition and
1862     // partial unswitching is not possible.
1863     SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
1864     while (!AccessesToCheck.empty()) {
1865       MemoryAccess *Current = AccessesToCheck.pop_back_val();
1866       auto SeenI = SeenAccesses.insert(Current);
1867       if (!SeenI.second || !Seen.contains(Current->getBlock()))
1868         continue;
1869 
1870       // Bail out if exceeded the threshold.
1871       if (SeenAccesses.size() >= MSSAThreshold)
1872         return {};
1873 
1874       // MemoryUse are read-only accesses.
1875       if (isa<MemoryUse>(Current))
1876         continue;
1877 
1878       // For a MemoryDef, check if is aliases any of the location feeding
1879       // the original condition.
1880       if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
1881         if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
1882               return isModSet(
1883                   AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
1884             }))
1885           return {};
1886       }
1887 
1888       for (Use &U : Current->uses())
1889         AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
1890     }
1891 
1892     // We could also allow loops with known trip counts without mustprogress,
1893     // but ScalarEvolution may not be available.
1894     Info.PathIsNoop &= isMustProgress(&L);
1895 
1896     // If the path is considered a no-op so far, check if it reaches a
1897     // single exit block without any phis. This ensures no values from the
1898     // loop are used outside of the loop.
1899     if (Info.PathIsNoop) {
1900       for (auto *Exiting : ExitingBlocks) {
1901         if (!Seen.contains(Exiting))
1902           continue;
1903         for (auto *Succ : successors(Exiting)) {
1904           if (L.contains(Succ))
1905             continue;
1906 
1907           Info.PathIsNoop &= Succ->phis().empty() &&
1908                              (!Info.ExitForPath || Info.ExitForPath == Succ);
1909           if (!Info.PathIsNoop)
1910             break;
1911           assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
1912                  "cannot have multiple exit blocks");
1913           Info.ExitForPath = Succ;
1914         }
1915       }
1916     }
1917     if (!Info.ExitForPath)
1918       Info.PathIsNoop = false;
1919 
1920     Info.InstToDuplicate = InstToDuplicate;
1921     return Info;
1922   };
1923 
1924   // If we branch to the same successor, partial unswitching will not be
1925   // beneficial.
1926   if (TI->getSuccessor(0) == TI->getSuccessor(1))
1927     return {};
1928 
1929   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
1930                                       AccessesToCheck)) {
1931     Info->KnownValue = ConstantInt::getTrue(TI->getContext());
1932     return Info;
1933   }
1934   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
1935                                       AccessesToCheck)) {
1936     Info->KnownValue = ConstantInt::getFalse(TI->getContext());
1937     return Info;
1938   }
1939 
1940   return {};
1941 }
1942