1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/PriorityWorklist.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/DomTreeUpdater.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/InstSimplifyFolder.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ProfDataUtils.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 49 using namespace llvm; 50 using namespace llvm::PatternMatch; 51 52 #define DEBUG_TYPE "loop-utils" 53 54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 56 57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 58 MemorySSAUpdater *MSSAU, 59 bool PreserveLCSSA) { 60 bool Changed = false; 61 62 // We re-use a vector for the in-loop predecesosrs. 63 SmallVector<BasicBlock *, 4> InLoopPredecessors; 64 65 auto RewriteExit = [&](BasicBlock *BB) { 66 assert(InLoopPredecessors.empty() && 67 "Must start with an empty predecessors list!"); 68 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 69 70 // See if there are any non-loop predecessors of this exit block and 71 // keep track of the in-loop predecessors. 72 bool IsDedicatedExit = true; 73 for (auto *PredBB : predecessors(BB)) 74 if (L->contains(PredBB)) { 75 if (isa<IndirectBrInst>(PredBB->getTerminator())) 76 // We cannot rewrite exiting edges from an indirectbr. 77 return false; 78 79 InLoopPredecessors.push_back(PredBB); 80 } else { 81 IsDedicatedExit = false; 82 } 83 84 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 85 86 // Nothing to do if this is already a dedicated exit. 87 if (IsDedicatedExit) 88 return false; 89 90 auto *NewExitBB = SplitBlockPredecessors( 91 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 92 93 if (!NewExitBB) 94 LLVM_DEBUG( 95 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 96 << *L << "\n"); 97 else 98 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 99 << NewExitBB->getName() << "\n"); 100 return true; 101 }; 102 103 // Walk the exit blocks directly rather than building up a data structure for 104 // them, but only visit each one once. 105 SmallPtrSet<BasicBlock *, 4> Visited; 106 for (auto *BB : L->blocks()) 107 for (auto *SuccBB : successors(BB)) { 108 // We're looking for exit blocks so skip in-loop successors. 109 if (L->contains(SuccBB)) 110 continue; 111 112 // Visit each exit block exactly once. 113 if (!Visited.insert(SuccBB).second) 114 continue; 115 116 Changed |= RewriteExit(SuccBB); 117 } 118 119 return Changed; 120 } 121 122 /// Returns the instructions that use values defined in the loop. 123 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 124 SmallVector<Instruction *, 8> UsedOutside; 125 126 for (auto *Block : L->getBlocks()) 127 // FIXME: I believe that this could use copy_if if the Inst reference could 128 // be adapted into a pointer. 129 for (auto &Inst : *Block) { 130 auto Users = Inst.users(); 131 if (any_of(Users, [&](User *U) { 132 auto *Use = cast<Instruction>(U); 133 return !L->contains(Use->getParent()); 134 })) 135 UsedOutside.push_back(&Inst); 136 } 137 138 return UsedOutside; 139 } 140 141 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 142 // By definition, all loop passes need the LoopInfo analysis and the 143 // Dominator tree it depends on. Because they all participate in the loop 144 // pass manager, they must also preserve these. 145 AU.addRequired<DominatorTreeWrapperPass>(); 146 AU.addPreserved<DominatorTreeWrapperPass>(); 147 AU.addRequired<LoopInfoWrapperPass>(); 148 AU.addPreserved<LoopInfoWrapperPass>(); 149 150 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 151 // here because users shouldn't directly get them from this header. 152 extern char &LoopSimplifyID; 153 extern char &LCSSAID; 154 AU.addRequiredID(LoopSimplifyID); 155 AU.addPreservedID(LoopSimplifyID); 156 AU.addRequiredID(LCSSAID); 157 AU.addPreservedID(LCSSAID); 158 // This is used in the LPPassManager to perform LCSSA verification on passes 159 // which preserve lcssa form 160 AU.addRequired<LCSSAVerificationPass>(); 161 AU.addPreserved<LCSSAVerificationPass>(); 162 163 // Loop passes are designed to run inside of a loop pass manager which means 164 // that any function analyses they require must be required by the first loop 165 // pass in the manager (so that it is computed before the loop pass manager 166 // runs) and preserved by all loop pasess in the manager. To make this 167 // reasonably robust, the set needed for most loop passes is maintained here. 168 // If your loop pass requires an analysis not listed here, you will need to 169 // carefully audit the loop pass manager nesting structure that results. 170 AU.addRequired<AAResultsWrapperPass>(); 171 AU.addPreserved<AAResultsWrapperPass>(); 172 AU.addPreserved<BasicAAWrapperPass>(); 173 AU.addPreserved<GlobalsAAWrapperPass>(); 174 AU.addPreserved<SCEVAAWrapperPass>(); 175 AU.addRequired<ScalarEvolutionWrapperPass>(); 176 AU.addPreserved<ScalarEvolutionWrapperPass>(); 177 // FIXME: When all loop passes preserve MemorySSA, it can be required and 178 // preserved here instead of the individual handling in each pass. 179 } 180 181 /// Manually defined generic "LoopPass" dependency initialization. This is used 182 /// to initialize the exact set of passes from above in \c 183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 184 /// with: 185 /// 186 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 187 /// 188 /// As-if "LoopPass" were a pass. 189 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 192 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 193 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 194 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 196 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 198 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 200 } 201 202 /// Create MDNode for input string. 203 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 204 LLVMContext &Context = TheLoop->getHeader()->getContext(); 205 Metadata *MDs[] = { 206 MDString::get(Context, Name), 207 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 208 return MDNode::get(Context, MDs); 209 } 210 211 /// Set input string into loop metadata by keeping other values intact. 212 /// If the string is already in loop metadata update value if it is 213 /// different. 214 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 215 unsigned V) { 216 SmallVector<Metadata *, 4> MDs(1); 217 // If the loop already has metadata, retain it. 218 MDNode *LoopID = TheLoop->getLoopID(); 219 if (LoopID) { 220 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 221 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 222 // If it is of form key = value, try to parse it. 223 if (Node->getNumOperands() == 2) { 224 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 225 if (S && S->getString().equals(StringMD)) { 226 ConstantInt *IntMD = 227 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 228 if (IntMD && IntMD->getSExtValue() == V) 229 // It is already in place. Do nothing. 230 return; 231 // We need to update the value, so just skip it here and it will 232 // be added after copying other existed nodes. 233 continue; 234 } 235 } 236 MDs.push_back(Node); 237 } 238 } 239 // Add new metadata. 240 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 241 // Replace current metadata node with new one. 242 LLVMContext &Context = TheLoop->getHeader()->getContext(); 243 MDNode *NewLoopID = MDNode::get(Context, MDs); 244 // Set operand 0 to refer to the loop id itself. 245 NewLoopID->replaceOperandWith(0, NewLoopID); 246 TheLoop->setLoopID(NewLoopID); 247 } 248 249 std::optional<ElementCount> 250 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 251 std::optional<int> Width = 252 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 253 254 if (Width) { 255 std::optional<int> IsScalable = getOptionalIntLoopAttribute( 256 TheLoop, "llvm.loop.vectorize.scalable.enable"); 257 return ElementCount::get(*Width, IsScalable.value_or(false)); 258 } 259 260 return std::nullopt; 261 } 262 263 std::optional<MDNode *> llvm::makeFollowupLoopID( 264 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 265 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 266 if (!OrigLoopID) { 267 if (AlwaysNew) 268 return nullptr; 269 return std::nullopt; 270 } 271 272 assert(OrigLoopID->getOperand(0) == OrigLoopID); 273 274 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 275 bool InheritSomeAttrs = 276 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 277 SmallVector<Metadata *, 8> MDs; 278 MDs.push_back(nullptr); 279 280 bool Changed = false; 281 if (InheritAllAttrs || InheritSomeAttrs) { 282 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 283 MDNode *Op = cast<MDNode>(Existing.get()); 284 285 auto InheritThisAttribute = [InheritSomeAttrs, 286 InheritOptionsExceptPrefix](MDNode *Op) { 287 if (!InheritSomeAttrs) 288 return false; 289 290 // Skip malformatted attribute metadata nodes. 291 if (Op->getNumOperands() == 0) 292 return true; 293 Metadata *NameMD = Op->getOperand(0).get(); 294 if (!isa<MDString>(NameMD)) 295 return true; 296 StringRef AttrName = cast<MDString>(NameMD)->getString(); 297 298 // Do not inherit excluded attributes. 299 return !AttrName.starts_with(InheritOptionsExceptPrefix); 300 }; 301 302 if (InheritThisAttribute(Op)) 303 MDs.push_back(Op); 304 else 305 Changed = true; 306 } 307 } else { 308 // Modified if we dropped at least one attribute. 309 Changed = OrigLoopID->getNumOperands() > 1; 310 } 311 312 bool HasAnyFollowup = false; 313 for (StringRef OptionName : FollowupOptions) { 314 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 315 if (!FollowupNode) 316 continue; 317 318 HasAnyFollowup = true; 319 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 320 MDs.push_back(Option.get()); 321 Changed = true; 322 } 323 } 324 325 // Attributes of the followup loop not specified explicity, so signal to the 326 // transformation pass to add suitable attributes. 327 if (!AlwaysNew && !HasAnyFollowup) 328 return std::nullopt; 329 330 // If no attributes were added or remove, the previous loop Id can be reused. 331 if (!AlwaysNew && !Changed) 332 return OrigLoopID; 333 334 // No attributes is equivalent to having no !llvm.loop metadata at all. 335 if (MDs.size() == 1) 336 return nullptr; 337 338 // Build the new loop ID. 339 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 340 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 341 return FollowupLoopID; 342 } 343 344 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 345 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 346 } 347 348 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 349 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 350 } 351 352 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 353 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 354 return TM_SuppressedByUser; 355 356 std::optional<int> Count = 357 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 358 if (Count) 359 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 360 361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 362 return TM_ForcedByUser; 363 364 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 365 return TM_ForcedByUser; 366 367 if (hasDisableAllTransformsHint(L)) 368 return TM_Disable; 369 370 return TM_Unspecified; 371 } 372 373 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 374 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 375 return TM_SuppressedByUser; 376 377 std::optional<int> Count = 378 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 379 if (Count) 380 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 381 382 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 383 return TM_ForcedByUser; 384 385 if (hasDisableAllTransformsHint(L)) 386 return TM_Disable; 387 388 return TM_Unspecified; 389 } 390 391 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 392 std::optional<bool> Enable = 393 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 394 395 if (Enable == false) 396 return TM_SuppressedByUser; 397 398 std::optional<ElementCount> VectorizeWidth = 399 getOptionalElementCountLoopAttribute(L); 400 std::optional<int> InterleaveCount = 401 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 402 403 // 'Forcing' vector width and interleave count to one effectively disables 404 // this tranformation. 405 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 406 InterleaveCount == 1) 407 return TM_SuppressedByUser; 408 409 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 410 return TM_Disable; 411 412 if (Enable == true) 413 return TM_ForcedByUser; 414 415 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 416 return TM_Disable; 417 418 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 419 return TM_Enable; 420 421 if (hasDisableAllTransformsHint(L)) 422 return TM_Disable; 423 424 return TM_Unspecified; 425 } 426 427 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 428 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 429 return TM_ForcedByUser; 430 431 if (hasDisableAllTransformsHint(L)) 432 return TM_Disable; 433 434 return TM_Unspecified; 435 } 436 437 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 438 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 439 return TM_SuppressedByUser; 440 441 if (hasDisableAllTransformsHint(L)) 442 return TM_Disable; 443 444 return TM_Unspecified; 445 } 446 447 /// Does a BFS from a given node to all of its children inside a given loop. 448 /// The returned vector of nodes includes the starting point. 449 SmallVector<DomTreeNode *, 16> 450 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 451 SmallVector<DomTreeNode *, 16> Worklist; 452 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 453 // Only include subregions in the top level loop. 454 BasicBlock *BB = DTN->getBlock(); 455 if (CurLoop->contains(BB)) 456 Worklist.push_back(DTN); 457 }; 458 459 AddRegionToWorklist(N); 460 461 for (size_t I = 0; I < Worklist.size(); I++) { 462 for (DomTreeNode *Child : Worklist[I]->children()) 463 AddRegionToWorklist(Child); 464 } 465 466 return Worklist; 467 } 468 469 bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) { 470 int LatchIdx = PN->getBasicBlockIndex(LatchBlock); 471 Value *IncV = PN->getIncomingValue(LatchIdx); 472 473 for (User *U : PN->users()) 474 if (U != Cond && U != IncV) return false; 475 476 for (User *U : IncV->users()) 477 if (U != Cond && U != PN) return false; 478 return true; 479 } 480 481 482 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 483 LoopInfo *LI, MemorySSA *MSSA) { 484 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 485 auto *Preheader = L->getLoopPreheader(); 486 assert(Preheader && "Preheader should exist!"); 487 488 std::unique_ptr<MemorySSAUpdater> MSSAU; 489 if (MSSA) 490 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 491 492 // Now that we know the removal is safe, remove the loop by changing the 493 // branch from the preheader to go to the single exit block. 494 // 495 // Because we're deleting a large chunk of code at once, the sequence in which 496 // we remove things is very important to avoid invalidation issues. 497 498 // Tell ScalarEvolution that the loop is deleted. Do this before 499 // deleting the loop so that ScalarEvolution can look at the loop 500 // to determine what it needs to clean up. 501 if (SE) { 502 SE->forgetLoop(L); 503 SE->forgetBlockAndLoopDispositions(); 504 } 505 506 Instruction *OldTerm = Preheader->getTerminator(); 507 assert(!OldTerm->mayHaveSideEffects() && 508 "Preheader must end with a side-effect-free terminator"); 509 assert(OldTerm->getNumSuccessors() == 1 && 510 "Preheader must have a single successor"); 511 // Connect the preheader to the exit block. Keep the old edge to the header 512 // around to perform the dominator tree update in two separate steps 513 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 514 // preheader -> header. 515 // 516 // 517 // 0. Preheader 1. Preheader 2. Preheader 518 // | | | | 519 // V | V | 520 // Header <--\ | Header <--\ | Header <--\ 521 // | | | | | | | | | | | 522 // | V | | | V | | | V | 523 // | Body --/ | | Body --/ | | Body --/ 524 // V V V V V 525 // Exit Exit Exit 526 // 527 // By doing this is two separate steps we can perform the dominator tree 528 // update without using the batch update API. 529 // 530 // Even when the loop is never executed, we cannot remove the edge from the 531 // source block to the exit block. Consider the case where the unexecuted loop 532 // branches back to an outer loop. If we deleted the loop and removed the edge 533 // coming to this inner loop, this will break the outer loop structure (by 534 // deleting the backedge of the outer loop). If the outer loop is indeed a 535 // non-loop, it will be deleted in a future iteration of loop deletion pass. 536 IRBuilder<> Builder(OldTerm); 537 538 auto *ExitBlock = L->getUniqueExitBlock(); 539 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 540 if (ExitBlock) { 541 assert(ExitBlock && "Should have a unique exit block!"); 542 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 543 544 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 545 // Remove the old branch. The conditional branch becomes a new terminator. 546 OldTerm->eraseFromParent(); 547 548 // Rewrite phis in the exit block to get their inputs from the Preheader 549 // instead of the exiting block. 550 for (PHINode &P : ExitBlock->phis()) { 551 // Set the zero'th element of Phi to be from the preheader and remove all 552 // other incoming values. Given the loop has dedicated exits, all other 553 // incoming values must be from the exiting blocks. 554 int PredIndex = 0; 555 P.setIncomingBlock(PredIndex, Preheader); 556 // Removes all incoming values from all other exiting blocks (including 557 // duplicate values from an exiting block). 558 // Nuke all entries except the zero'th entry which is the preheader entry. 559 P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; }, 560 /* DeletePHIIfEmpty */ false); 561 562 assert((P.getNumIncomingValues() == 1 && 563 P.getIncomingBlock(PredIndex) == Preheader) && 564 "Should have exactly one value and that's from the preheader!"); 565 } 566 567 if (DT) { 568 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 569 if (MSSA) { 570 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 571 *DT); 572 if (VerifyMemorySSA) 573 MSSA->verifyMemorySSA(); 574 } 575 } 576 577 // Disconnect the loop body by branching directly to its exit. 578 Builder.SetInsertPoint(Preheader->getTerminator()); 579 Builder.CreateBr(ExitBlock); 580 // Remove the old branch. 581 Preheader->getTerminator()->eraseFromParent(); 582 } else { 583 assert(L->hasNoExitBlocks() && 584 "Loop should have either zero or one exit blocks."); 585 586 Builder.SetInsertPoint(OldTerm); 587 Builder.CreateUnreachable(); 588 Preheader->getTerminator()->eraseFromParent(); 589 } 590 591 if (DT) { 592 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 593 if (MSSA) { 594 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 595 *DT); 596 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 597 L->block_end()); 598 MSSAU->removeBlocks(DeadBlockSet); 599 if (VerifyMemorySSA) 600 MSSA->verifyMemorySSA(); 601 } 602 } 603 604 // Use a map to unique and a vector to guarantee deterministic ordering. 605 llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet; 606 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 607 llvm::SmallVector<DPValue *, 4> DeadDPValues; 608 609 if (ExitBlock) { 610 // Given LCSSA form is satisfied, we should not have users of instructions 611 // within the dead loop outside of the loop. However, LCSSA doesn't take 612 // unreachable uses into account. We handle them here. 613 // We could do it after drop all references (in this case all users in the 614 // loop will be already eliminated and we have less work to do but according 615 // to API doc of User::dropAllReferences only valid operation after dropping 616 // references, is deletion. So let's substitute all usages of 617 // instruction from the loop with poison value of corresponding type first. 618 for (auto *Block : L->blocks()) 619 for (Instruction &I : *Block) { 620 auto *Poison = PoisonValue::get(I.getType()); 621 for (Use &U : llvm::make_early_inc_range(I.uses())) { 622 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 623 if (L->contains(Usr->getParent())) 624 continue; 625 // If we have a DT then we can check that uses outside a loop only in 626 // unreachable block. 627 if (DT) 628 assert(!DT->isReachableFromEntry(U) && 629 "Unexpected user in reachable block"); 630 U.set(Poison); 631 } 632 633 // RemoveDIs: do the same as below for DPValues. 634 if (Block->IsNewDbgInfoFormat) { 635 for (DPValue &DPV : 636 llvm::make_early_inc_range(I.getDbgValueRange())) { 637 DebugVariable Key(DPV.getVariable(), DPV.getExpression(), 638 DPV.getDebugLoc().get()); 639 if (!DeadDebugSet.insert(Key).second) 640 continue; 641 // Unlinks the DPV from it's container, for later insertion. 642 DPV.removeFromParent(); 643 DeadDPValues.push_back(&DPV); 644 } 645 } 646 647 // For one of each variable encountered, preserve a debug intrinsic (set 648 // to Poison) and transfer it to the loop exit. This terminates any 649 // variable locations that were set during the loop. 650 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 651 if (!DVI) 652 continue; 653 if (!DeadDebugSet.insert(DebugVariable(DVI)).second) 654 continue; 655 DeadDebugInst.push_back(DVI); 656 } 657 658 // After the loop has been deleted all the values defined and modified 659 // inside the loop are going to be unavailable. Values computed in the 660 // loop will have been deleted, automatically causing their debug uses 661 // be be replaced with undef. Loop invariant values will still be available. 662 // Move dbg.values out the loop so that earlier location ranges are still 663 // terminated and loop invariant assignments are preserved. 664 DIBuilder DIB(*ExitBlock->getModule()); 665 BasicBlock::iterator InsertDbgValueBefore = 666 ExitBlock->getFirstInsertionPt(); 667 assert(InsertDbgValueBefore != ExitBlock->end() && 668 "There should be a non-PHI instruction in exit block, else these " 669 "instructions will have no parent."); 670 671 for (auto *DVI : DeadDebugInst) 672 DVI->moveBefore(*ExitBlock, InsertDbgValueBefore); 673 674 // Due to the "head" bit in BasicBlock::iterator, we're going to insert 675 // each DPValue right at the start of the block, wheras dbg.values would be 676 // repeatedly inserted before the first instruction. To replicate this 677 // behaviour, do it backwards. 678 for (DPValue *DPV : llvm::reverse(DeadDPValues)) 679 ExitBlock->insertDPValueBefore(DPV, InsertDbgValueBefore); 680 } 681 682 // Remove the block from the reference counting scheme, so that we can 683 // delete it freely later. 684 for (auto *Block : L->blocks()) 685 Block->dropAllReferences(); 686 687 if (MSSA && VerifyMemorySSA) 688 MSSA->verifyMemorySSA(); 689 690 if (LI) { 691 // Erase the instructions and the blocks without having to worry 692 // about ordering because we already dropped the references. 693 // NOTE: This iteration is safe because erasing the block does not remove 694 // its entry from the loop's block list. We do that in the next section. 695 for (BasicBlock *BB : L->blocks()) 696 BB->eraseFromParent(); 697 698 // Finally, the blocks from loopinfo. This has to happen late because 699 // otherwise our loop iterators won't work. 700 701 SmallPtrSet<BasicBlock *, 8> blocks; 702 blocks.insert(L->block_begin(), L->block_end()); 703 for (BasicBlock *BB : blocks) 704 LI->removeBlock(BB); 705 706 // The last step is to update LoopInfo now that we've eliminated this loop. 707 // Note: LoopInfo::erase remove the given loop and relink its subloops with 708 // its parent. While removeLoop/removeChildLoop remove the given loop but 709 // not relink its subloops, which is what we want. 710 if (Loop *ParentLoop = L->getParentLoop()) { 711 Loop::iterator I = find(*ParentLoop, L); 712 assert(I != ParentLoop->end() && "Couldn't find loop"); 713 ParentLoop->removeChildLoop(I); 714 } else { 715 Loop::iterator I = find(*LI, L); 716 assert(I != LI->end() && "Couldn't find loop"); 717 LI->removeLoop(I); 718 } 719 LI->destroy(L); 720 } 721 } 722 723 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 724 LoopInfo &LI, MemorySSA *MSSA) { 725 auto *Latch = L->getLoopLatch(); 726 assert(Latch && "multiple latches not yet supported"); 727 auto *Header = L->getHeader(); 728 Loop *OutermostLoop = L->getOutermostLoop(); 729 730 SE.forgetLoop(L); 731 SE.forgetBlockAndLoopDispositions(); 732 733 std::unique_ptr<MemorySSAUpdater> MSSAU; 734 if (MSSA) 735 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 736 737 // Update the CFG and domtree. We chose to special case a couple of 738 // of common cases for code quality and test readability reasons. 739 [&]() -> void { 740 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) { 741 if (!BI->isConditional()) { 742 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 743 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU, 744 MSSAU.get()); 745 return; 746 } 747 748 // Conditional latch/exit - note that latch can be shared by inner 749 // and outer loop so the other target doesn't need to an exit 750 if (L->isLoopExiting(Latch)) { 751 // TODO: Generalize ConstantFoldTerminator so that it can be used 752 // here without invalidating LCSSA or MemorySSA. (Tricky case for 753 // LCSSA: header is an exit block of a preceeding sibling loop w/o 754 // dedicated exits.) 755 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0; 756 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx); 757 758 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 759 Header->removePredecessor(Latch, true); 760 761 IRBuilder<> Builder(BI); 762 auto *NewBI = Builder.CreateBr(ExitBB); 763 // Transfer the metadata to the new branch instruction (minus the 764 // loop info since this is no longer a loop) 765 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg, 766 LLVMContext::MD_annotation}); 767 768 BI->eraseFromParent(); 769 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}}); 770 if (MSSA) 771 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT); 772 return; 773 } 774 } 775 776 // General case. By splitting the backedge, and then explicitly making it 777 // unreachable we gracefully handle corner cases such as switch and invoke 778 // termiantors. 779 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 780 781 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 782 (void)changeToUnreachable(BackedgeBB->getTerminator(), 783 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 784 }(); 785 786 // Erase (and destroy) this loop instance. Handles relinking sub-loops 787 // and blocks within the loop as needed. 788 LI.erase(L); 789 790 // If the loop we broke had a parent, then changeToUnreachable might have 791 // caused a block to be removed from the parent loop (see loop_nest_lcssa 792 // test case in zero-btc.ll for an example), thus changing the parent's 793 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 794 // loop which might have a had a block removed. 795 if (OutermostLoop != L) 796 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 797 } 798 799 800 /// Checks if \p L has an exiting latch branch. There may also be other 801 /// exiting blocks. Returns branch instruction terminating the loop 802 /// latch if above check is successful, nullptr otherwise. 803 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 804 BasicBlock *Latch = L->getLoopLatch(); 805 if (!Latch) 806 return nullptr; 807 808 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 809 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 810 return nullptr; 811 812 assert((LatchBR->getSuccessor(0) == L->getHeader() || 813 LatchBR->getSuccessor(1) == L->getHeader()) && 814 "At least one edge out of the latch must go to the header"); 815 816 return LatchBR; 817 } 818 819 /// Return the estimated trip count for any exiting branch which dominates 820 /// the loop latch. 821 static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch, 822 Loop *L, 823 uint64_t &OrigExitWeight) { 824 // To estimate the number of times the loop body was executed, we want to 825 // know the number of times the backedge was taken, vs. the number of times 826 // we exited the loop. 827 uint64_t LoopWeight, ExitWeight; 828 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight)) 829 return std::nullopt; 830 831 if (L->contains(ExitingBranch->getSuccessor(1))) 832 std::swap(LoopWeight, ExitWeight); 833 834 if (!ExitWeight) 835 // Don't have a way to return predicated infinite 836 return std::nullopt; 837 838 OrigExitWeight = ExitWeight; 839 840 // Estimated exit count is a ratio of the loop weight by the weight of the 841 // edge exiting the loop, rounded to nearest. 842 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight); 843 // Estimated trip count is one plus estimated exit count. 844 return ExitCount + 1; 845 } 846 847 std::optional<unsigned> 848 llvm::getLoopEstimatedTripCount(Loop *L, 849 unsigned *EstimatedLoopInvocationWeight) { 850 // Currently we take the estimate exit count only from the loop latch, 851 // ignoring other exiting blocks. This can overestimate the trip count 852 // if we exit through another exit, but can never underestimate it. 853 // TODO: incorporate information from other exits 854 if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) { 855 uint64_t ExitWeight; 856 if (std::optional<uint64_t> EstTripCount = 857 getEstimatedTripCount(LatchBranch, L, ExitWeight)) { 858 if (EstimatedLoopInvocationWeight) 859 *EstimatedLoopInvocationWeight = ExitWeight; 860 return *EstTripCount; 861 } 862 } 863 return std::nullopt; 864 } 865 866 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 867 unsigned EstimatedloopInvocationWeight) { 868 // At the moment, we currently support changing the estimate trip count of 869 // the latch branch only. We could extend this API to manipulate estimated 870 // trip counts for any exit. 871 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 872 if (!LatchBranch) 873 return false; 874 875 // Calculate taken and exit weights. 876 unsigned LatchExitWeight = 0; 877 unsigned BackedgeTakenWeight = 0; 878 879 if (EstimatedTripCount > 0) { 880 LatchExitWeight = EstimatedloopInvocationWeight; 881 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 882 } 883 884 // Make a swap if back edge is taken when condition is "false". 885 if (LatchBranch->getSuccessor(0) != L->getHeader()) 886 std::swap(BackedgeTakenWeight, LatchExitWeight); 887 888 MDBuilder MDB(LatchBranch->getContext()); 889 890 // Set/Update profile metadata. 891 LatchBranch->setMetadata( 892 LLVMContext::MD_prof, 893 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 894 895 return true; 896 } 897 898 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 899 ScalarEvolution &SE) { 900 Loop *OuterL = InnerLoop->getParentLoop(); 901 if (!OuterL) 902 return true; 903 904 // Get the backedge taken count for the inner loop 905 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 906 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 907 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 908 !InnerLoopBECountSC->getType()->isIntegerTy()) 909 return false; 910 911 // Get whether count is invariant to the outer loop 912 ScalarEvolution::LoopDisposition LD = 913 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 914 if (LD != ScalarEvolution::LoopInvariant) 915 return false; 916 917 return true; 918 } 919 920 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) { 921 switch (RK) { 922 default: 923 llvm_unreachable("Unknown min/max recurrence kind"); 924 case RecurKind::UMin: 925 return Intrinsic::umin; 926 case RecurKind::UMax: 927 return Intrinsic::umax; 928 case RecurKind::SMin: 929 return Intrinsic::smin; 930 case RecurKind::SMax: 931 return Intrinsic::smax; 932 case RecurKind::FMin: 933 return Intrinsic::minnum; 934 case RecurKind::FMax: 935 return Intrinsic::maxnum; 936 case RecurKind::FMinimum: 937 return Intrinsic::minimum; 938 case RecurKind::FMaximum: 939 return Intrinsic::maximum; 940 } 941 } 942 943 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) { 944 switch (RK) { 945 default: 946 llvm_unreachable("Unknown min/max recurrence kind"); 947 case RecurKind::UMin: 948 return CmpInst::ICMP_ULT; 949 case RecurKind::UMax: 950 return CmpInst::ICMP_UGT; 951 case RecurKind::SMin: 952 return CmpInst::ICMP_SLT; 953 case RecurKind::SMax: 954 return CmpInst::ICMP_SGT; 955 case RecurKind::FMin: 956 return CmpInst::FCMP_OLT; 957 case RecurKind::FMax: 958 return CmpInst::FCMP_OGT; 959 // We do not add FMinimum/FMaximum recurrence kind here since there is no 960 // equivalent predicate which compares signed zeroes according to the 961 // semantics of the intrinsics (llvm.minimum/maximum). 962 } 963 } 964 965 Value *llvm::createAnyOfOp(IRBuilderBase &Builder, Value *StartVal, 966 RecurKind RK, Value *Left, Value *Right) { 967 if (auto VTy = dyn_cast<VectorType>(Left->getType())) 968 StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal); 969 Value *Cmp = 970 Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp"); 971 return Builder.CreateSelect(Cmp, Left, Right, "rdx.select"); 972 } 973 974 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 975 Value *Right) { 976 Type *Ty = Left->getType(); 977 if (Ty->isIntOrIntVectorTy() || 978 (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) { 979 // TODO: Add float minnum/maxnum support when FMF nnan is set. 980 Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK); 981 return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr, 982 "rdx.minmax"); 983 } 984 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK); 985 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 986 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 987 return Select; 988 } 989 990 // Helper to generate an ordered reduction. 991 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 992 unsigned Op, RecurKind RdxKind) { 993 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 994 995 // Extract and apply reduction ops in ascending order: 996 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 997 Value *Result = Acc; 998 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 999 Value *Ext = 1000 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 1001 1002 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1003 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 1004 "bin.rdx"); 1005 } else { 1006 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1007 "Invalid min/max"); 1008 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 1009 } 1010 } 1011 1012 return Result; 1013 } 1014 1015 // Helper to generate a log2 shuffle reduction. 1016 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 1017 unsigned Op, RecurKind RdxKind) { 1018 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 1019 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 1020 // and vector ops, reducing the set of values being computed by half each 1021 // round. 1022 assert(isPowerOf2_32(VF) && 1023 "Reduction emission only supported for pow2 vectors!"); 1024 // Note: fast-math-flags flags are controlled by the builder configuration 1025 // and are assumed to apply to all generated arithmetic instructions. Other 1026 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part 1027 // of the builder configuration, and since they're not passed explicitly, 1028 // will never be relevant here. Note that it would be generally unsound to 1029 // propagate these from an intrinsic call to the expansion anyways as we/ 1030 // change the order of operations. 1031 Value *TmpVec = Src; 1032 SmallVector<int, 32> ShuffleMask(VF); 1033 for (unsigned i = VF; i != 1; i >>= 1) { 1034 // Move the upper half of the vector to the lower half. 1035 for (unsigned j = 0; j != i / 2; ++j) 1036 ShuffleMask[j] = i / 2 + j; 1037 1038 // Fill the rest of the mask with undef. 1039 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 1040 1041 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 1042 1043 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 1044 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 1045 "bin.rdx"); 1046 } else { 1047 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 1048 "Invalid min/max"); 1049 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 1050 } 1051 } 1052 // The result is in the first element of the vector. 1053 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 1054 } 1055 1056 Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src, 1057 const RecurrenceDescriptor &Desc, 1058 PHINode *OrigPhi) { 1059 assert( 1060 RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) && 1061 "Unexpected reduction kind"); 1062 Value *InitVal = Desc.getRecurrenceStartValue(); 1063 Value *NewVal = nullptr; 1064 1065 // First use the original phi to determine the new value we're trying to 1066 // select from in the loop. 1067 SelectInst *SI = nullptr; 1068 for (auto *U : OrigPhi->users()) { 1069 if ((SI = dyn_cast<SelectInst>(U))) 1070 break; 1071 } 1072 assert(SI && "One user of the original phi should be a select"); 1073 1074 if (SI->getTrueValue() == OrigPhi) 1075 NewVal = SI->getFalseValue(); 1076 else { 1077 assert(SI->getFalseValue() == OrigPhi && 1078 "At least one input to the select should be the original Phi"); 1079 NewVal = SI->getTrueValue(); 1080 } 1081 1082 // Create a splat vector with the new value and compare this to the vector 1083 // we want to reduce. 1084 ElementCount EC = cast<VectorType>(Src->getType())->getElementCount(); 1085 Value *Right = Builder.CreateVectorSplat(EC, InitVal); 1086 Value *Cmp = 1087 Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp"); 1088 1089 // If any predicate is true it means that we want to select the new value. 1090 Cmp = Builder.CreateOrReduce(Cmp); 1091 return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select"); 1092 } 1093 1094 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src, 1095 RecurKind RdxKind) { 1096 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1097 switch (RdxKind) { 1098 case RecurKind::Add: 1099 return Builder.CreateAddReduce(Src); 1100 case RecurKind::Mul: 1101 return Builder.CreateMulReduce(Src); 1102 case RecurKind::And: 1103 return Builder.CreateAndReduce(Src); 1104 case RecurKind::Or: 1105 return Builder.CreateOrReduce(Src); 1106 case RecurKind::Xor: 1107 return Builder.CreateXorReduce(Src); 1108 case RecurKind::FMulAdd: 1109 case RecurKind::FAdd: 1110 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1111 Src); 1112 case RecurKind::FMul: 1113 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1114 case RecurKind::SMax: 1115 return Builder.CreateIntMaxReduce(Src, true); 1116 case RecurKind::SMin: 1117 return Builder.CreateIntMinReduce(Src, true); 1118 case RecurKind::UMax: 1119 return Builder.CreateIntMaxReduce(Src, false); 1120 case RecurKind::UMin: 1121 return Builder.CreateIntMinReduce(Src, false); 1122 case RecurKind::FMax: 1123 return Builder.CreateFPMaxReduce(Src); 1124 case RecurKind::FMin: 1125 return Builder.CreateFPMinReduce(Src); 1126 case RecurKind::FMinimum: 1127 return Builder.CreateFPMinimumReduce(Src); 1128 case RecurKind::FMaximum: 1129 return Builder.CreateFPMaximumReduce(Src); 1130 default: 1131 llvm_unreachable("Unhandled opcode"); 1132 } 1133 } 1134 1135 Value *llvm::createTargetReduction(IRBuilderBase &B, 1136 const RecurrenceDescriptor &Desc, Value *Src, 1137 PHINode *OrigPhi) { 1138 // TODO: Support in-order reductions based on the recurrence descriptor. 1139 // All ops in the reduction inherit fast-math-flags from the recurrence 1140 // descriptor. 1141 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1142 B.setFastMathFlags(Desc.getFastMathFlags()); 1143 1144 RecurKind RK = Desc.getRecurrenceKind(); 1145 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) 1146 return createAnyOfTargetReduction(B, Src, Desc, OrigPhi); 1147 1148 return createSimpleTargetReduction(B, Src, RK); 1149 } 1150 1151 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1152 const RecurrenceDescriptor &Desc, 1153 Value *Src, Value *Start) { 1154 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1155 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1156 "Unexpected reduction kind"); 1157 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1158 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1159 1160 return B.CreateFAddReduce(Start, Src); 1161 } 1162 1163 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue, 1164 bool IncludeWrapFlags) { 1165 auto *VecOp = dyn_cast<Instruction>(I); 1166 if (!VecOp) 1167 return; 1168 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1169 : dyn_cast<Instruction>(OpValue); 1170 if (!Intersection) 1171 return; 1172 const unsigned Opcode = Intersection->getOpcode(); 1173 VecOp->copyIRFlags(Intersection, IncludeWrapFlags); 1174 for (auto *V : VL) { 1175 auto *Instr = dyn_cast<Instruction>(V); 1176 if (!Instr) 1177 continue; 1178 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1179 VecOp->andIRFlags(V); 1180 } 1181 } 1182 1183 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1184 ScalarEvolution &SE) { 1185 const SCEV *Zero = SE.getZero(S->getType()); 1186 return SE.isAvailableAtLoopEntry(S, L) && 1187 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1188 } 1189 1190 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1191 ScalarEvolution &SE) { 1192 const SCEV *Zero = SE.getZero(S->getType()); 1193 return SE.isAvailableAtLoopEntry(S, L) && 1194 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1195 } 1196 1197 bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L, 1198 ScalarEvolution &SE) { 1199 const SCEV *Zero = SE.getZero(S->getType()); 1200 return SE.isAvailableAtLoopEntry(S, L) && 1201 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero); 1202 } 1203 1204 bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, 1205 ScalarEvolution &SE) { 1206 const SCEV *Zero = SE.getZero(S->getType()); 1207 return SE.isAvailableAtLoopEntry(S, L) && 1208 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero); 1209 } 1210 1211 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1212 bool Signed) { 1213 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1214 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1215 APInt::getMinValue(BitWidth); 1216 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1217 return SE.isAvailableAtLoopEntry(S, L) && 1218 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1219 SE.getConstant(Min)); 1220 } 1221 1222 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1223 bool Signed) { 1224 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1225 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1226 APInt::getMaxValue(BitWidth); 1227 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1228 return SE.isAvailableAtLoopEntry(S, L) && 1229 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1230 SE.getConstant(Max)); 1231 } 1232 1233 //===----------------------------------------------------------------------===// 1234 // rewriteLoopExitValues - Optimize IV users outside the loop. 1235 // As a side effect, reduces the amount of IV processing within the loop. 1236 //===----------------------------------------------------------------------===// 1237 1238 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1239 SmallPtrSet<const Instruction *, 8> Visited; 1240 SmallVector<const Instruction *, 8> WorkList; 1241 Visited.insert(I); 1242 WorkList.push_back(I); 1243 while (!WorkList.empty()) { 1244 const Instruction *Curr = WorkList.pop_back_val(); 1245 // This use is outside the loop, nothing to do. 1246 if (!L->contains(Curr)) 1247 continue; 1248 // Do we assume it is a "hard" use which will not be eliminated easily? 1249 if (Curr->mayHaveSideEffects()) 1250 return true; 1251 // Otherwise, add all its users to worklist. 1252 for (const auto *U : Curr->users()) { 1253 auto *UI = cast<Instruction>(U); 1254 if (Visited.insert(UI).second) 1255 WorkList.push_back(UI); 1256 } 1257 } 1258 return false; 1259 } 1260 1261 // Collect information about PHI nodes which can be transformed in 1262 // rewriteLoopExitValues. 1263 struct RewritePhi { 1264 PHINode *PN; // For which PHI node is this replacement? 1265 unsigned Ith; // For which incoming value? 1266 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1267 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1268 bool HighCost; // Is this expansion a high-cost? 1269 1270 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1271 bool H) 1272 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1273 HighCost(H) {} 1274 }; 1275 1276 // Check whether it is possible to delete the loop after rewriting exit 1277 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1278 // aggressively. 1279 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1280 BasicBlock *Preheader = L->getLoopPreheader(); 1281 // If there is no preheader, the loop will not be deleted. 1282 if (!Preheader) 1283 return false; 1284 1285 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1286 // We obviate multiple ExitingBlocks case for simplicity. 1287 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1288 // after exit value rewriting, we can enhance the logic here. 1289 SmallVector<BasicBlock *, 4> ExitingBlocks; 1290 L->getExitingBlocks(ExitingBlocks); 1291 SmallVector<BasicBlock *, 8> ExitBlocks; 1292 L->getUniqueExitBlocks(ExitBlocks); 1293 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1294 return false; 1295 1296 BasicBlock *ExitBlock = ExitBlocks[0]; 1297 BasicBlock::iterator BI = ExitBlock->begin(); 1298 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1299 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1300 1301 // If the Incoming value of P is found in RewritePhiSet, we know it 1302 // could be rewritten to use a loop invariant value in transformation 1303 // phase later. Skip it in the loop invariant check below. 1304 bool found = false; 1305 for (const RewritePhi &Phi : RewritePhiSet) { 1306 unsigned i = Phi.Ith; 1307 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1308 found = true; 1309 break; 1310 } 1311 } 1312 1313 Instruction *I; 1314 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1315 if (!L->hasLoopInvariantOperands(I)) 1316 return false; 1317 1318 ++BI; 1319 } 1320 1321 for (auto *BB : L->blocks()) 1322 if (llvm::any_of(*BB, [](Instruction &I) { 1323 return I.mayHaveSideEffects(); 1324 })) 1325 return false; 1326 1327 return true; 1328 } 1329 1330 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi, 1331 /// and returns true if this Phi is an induction phi in the loop. When 1332 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI. 1333 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, 1334 InductionDescriptor &ID) { 1335 if (!Phi) 1336 return false; 1337 if (!L->getLoopPreheader()) 1338 return false; 1339 if (Phi->getParent() != L->getHeader()) 1340 return false; 1341 return InductionDescriptor::isInductionPHI(Phi, L, SE, ID); 1342 } 1343 1344 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1345 ScalarEvolution *SE, 1346 const TargetTransformInfo *TTI, 1347 SCEVExpander &Rewriter, DominatorTree *DT, 1348 ReplaceExitVal ReplaceExitValue, 1349 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1350 // Check a pre-condition. 1351 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1352 "Indvars did not preserve LCSSA!"); 1353 1354 SmallVector<BasicBlock*, 8> ExitBlocks; 1355 L->getUniqueExitBlocks(ExitBlocks); 1356 1357 SmallVector<RewritePhi, 8> RewritePhiSet; 1358 // Find all values that are computed inside the loop, but used outside of it. 1359 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1360 // the exit blocks of the loop to find them. 1361 for (BasicBlock *ExitBB : ExitBlocks) { 1362 // If there are no PHI nodes in this exit block, then no values defined 1363 // inside the loop are used on this path, skip it. 1364 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1365 if (!PN) continue; 1366 1367 unsigned NumPreds = PN->getNumIncomingValues(); 1368 1369 // Iterate over all of the PHI nodes. 1370 BasicBlock::iterator BBI = ExitBB->begin(); 1371 while ((PN = dyn_cast<PHINode>(BBI++))) { 1372 if (PN->use_empty()) 1373 continue; // dead use, don't replace it 1374 1375 if (!SE->isSCEVable(PN->getType())) 1376 continue; 1377 1378 // Iterate over all of the values in all the PHI nodes. 1379 for (unsigned i = 0; i != NumPreds; ++i) { 1380 // If the value being merged in is not integer or is not defined 1381 // in the loop, skip it. 1382 Value *InVal = PN->getIncomingValue(i); 1383 if (!isa<Instruction>(InVal)) 1384 continue; 1385 1386 // If this pred is for a subloop, not L itself, skip it. 1387 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1388 continue; // The Block is in a subloop, skip it. 1389 1390 // Check that InVal is defined in the loop. 1391 Instruction *Inst = cast<Instruction>(InVal); 1392 if (!L->contains(Inst)) 1393 continue; 1394 1395 // Find exit values which are induction variables in the loop, and are 1396 // unused in the loop, with the only use being the exit block PhiNode, 1397 // and the induction variable update binary operator. 1398 // The exit value can be replaced with the final value when it is cheap 1399 // to do so. 1400 if (ReplaceExitValue == UnusedIndVarInLoop) { 1401 InductionDescriptor ID; 1402 PHINode *IndPhi = dyn_cast<PHINode>(Inst); 1403 if (IndPhi) { 1404 if (!checkIsIndPhi(IndPhi, L, SE, ID)) 1405 continue; 1406 // This is an induction PHI. Check that the only users are PHI 1407 // nodes, and induction variable update binary operators. 1408 if (llvm::any_of(Inst->users(), [&](User *U) { 1409 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U)) 1410 return true; 1411 BinaryOperator *B = dyn_cast<BinaryOperator>(U); 1412 if (B && B != ID.getInductionBinOp()) 1413 return true; 1414 return false; 1415 })) 1416 continue; 1417 } else { 1418 // If it is not an induction phi, it must be an induction update 1419 // binary operator with an induction phi user. 1420 BinaryOperator *B = dyn_cast<BinaryOperator>(Inst); 1421 if (!B) 1422 continue; 1423 if (llvm::any_of(Inst->users(), [&](User *U) { 1424 PHINode *Phi = dyn_cast<PHINode>(U); 1425 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID)) 1426 return true; 1427 return false; 1428 })) 1429 continue; 1430 if (B != ID.getInductionBinOp()) 1431 continue; 1432 } 1433 } 1434 1435 // Okay, this instruction has a user outside of the current loop 1436 // and varies predictably *inside* the loop. Evaluate the value it 1437 // contains when the loop exits, if possible. We prefer to start with 1438 // expressions which are true for all exits (so as to maximize 1439 // expression reuse by the SCEVExpander), but resort to per-exit 1440 // evaluation if that fails. 1441 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1442 if (isa<SCEVCouldNotCompute>(ExitValue) || 1443 !SE->isLoopInvariant(ExitValue, L) || 1444 !Rewriter.isSafeToExpand(ExitValue)) { 1445 // TODO: This should probably be sunk into SCEV in some way; maybe a 1446 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1447 // most SCEV expressions and other recurrence types (e.g. shift 1448 // recurrences). Is there existing code we can reuse? 1449 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1450 if (isa<SCEVCouldNotCompute>(ExitCount)) 1451 continue; 1452 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1453 if (AddRec->getLoop() == L) 1454 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1455 if (isa<SCEVCouldNotCompute>(ExitValue) || 1456 !SE->isLoopInvariant(ExitValue, L) || 1457 !Rewriter.isSafeToExpand(ExitValue)) 1458 continue; 1459 } 1460 1461 // Computing the value outside of the loop brings no benefit if it is 1462 // definitely used inside the loop in a way which can not be optimized 1463 // away. Avoid doing so unless we know we have a value which computes 1464 // the ExitValue already. TODO: This should be merged into SCEV 1465 // expander to leverage its knowledge of existing expressions. 1466 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1467 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1468 continue; 1469 1470 // Check if expansions of this SCEV would count as being high cost. 1471 bool HighCost = Rewriter.isHighCostExpansion( 1472 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1473 1474 // Note that we must not perform expansions until after 1475 // we query *all* the costs, because if we perform temporary expansion 1476 // inbetween, one that we might not intend to keep, said expansion 1477 // *may* affect cost calculation of the next SCEV's we'll query, 1478 // and next SCEV may errneously get smaller cost. 1479 1480 // Collect all the candidate PHINodes to be rewritten. 1481 Instruction *InsertPt = 1482 (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ? 1483 &*Inst->getParent()->getFirstInsertionPt() : Inst; 1484 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost); 1485 } 1486 } 1487 } 1488 1489 // TODO: evaluate whether it is beneficial to change how we calculate 1490 // high-cost: if we have SCEV 'A' which we know we will expand, should we 1491 // calculate the cost of other SCEV's after expanding SCEV 'A', thus 1492 // potentially giving cost bonus to those other SCEV's? 1493 1494 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1495 int NumReplaced = 0; 1496 1497 // Transformation. 1498 for (const RewritePhi &Phi : RewritePhiSet) { 1499 PHINode *PN = Phi.PN; 1500 1501 // Only do the rewrite when the ExitValue can be expanded cheaply. 1502 // If LoopCanBeDel is true, rewrite exit value aggressively. 1503 if ((ReplaceExitValue == OnlyCheapRepl || 1504 ReplaceExitValue == UnusedIndVarInLoop) && 1505 !LoopCanBeDel && Phi.HighCost) 1506 continue; 1507 1508 Value *ExitVal = Rewriter.expandCodeFor( 1509 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint); 1510 1511 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal 1512 << '\n' 1513 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1514 1515 #ifndef NDEBUG 1516 // If we reuse an instruction from a loop which is neither L nor one of 1517 // its containing loops, we end up breaking LCSSA form for this loop by 1518 // creating a new use of its instruction. 1519 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1520 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1521 if (EVL != L) 1522 assert(EVL->contains(L) && "LCSSA breach detected!"); 1523 #endif 1524 1525 NumReplaced++; 1526 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1527 PN->setIncomingValue(Phi.Ith, ExitVal); 1528 // It's necessary to tell ScalarEvolution about this explicitly so that 1529 // it can walk the def-use list and forget all SCEVs, as it may not be 1530 // watching the PHI itself. Once the new exit value is in place, there 1531 // may not be a def-use connection between the loop and every instruction 1532 // which got a SCEVAddRecExpr for that loop. 1533 SE->forgetValue(PN); 1534 1535 // If this instruction is dead now, delete it. Don't do it now to avoid 1536 // invalidating iterators. 1537 if (isInstructionTriviallyDead(Inst, TLI)) 1538 DeadInsts.push_back(Inst); 1539 1540 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1541 if (PN->getNumIncomingValues() == 1 && 1542 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1543 PN->replaceAllUsesWith(ExitVal); 1544 PN->eraseFromParent(); 1545 } 1546 } 1547 1548 // The insertion point instruction may have been deleted; clear it out 1549 // so that the rewriter doesn't trip over it later. 1550 Rewriter.clearInsertPoint(); 1551 return NumReplaced; 1552 } 1553 1554 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1555 /// \p OrigLoop. 1556 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1557 Loop *RemainderLoop, uint64_t UF) { 1558 assert(UF > 0 && "Zero unrolled factor is not supported"); 1559 assert(UnrolledLoop != RemainderLoop && 1560 "Unrolled and Remainder loops are expected to distinct"); 1561 1562 // Get number of iterations in the original scalar loop. 1563 unsigned OrigLoopInvocationWeight = 0; 1564 std::optional<unsigned> OrigAverageTripCount = 1565 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1566 if (!OrigAverageTripCount) 1567 return; 1568 1569 // Calculate number of iterations in unrolled loop. 1570 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1571 // Calculate number of iterations for remainder loop. 1572 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1573 1574 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1575 OrigLoopInvocationWeight); 1576 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1577 OrigLoopInvocationWeight); 1578 } 1579 1580 /// Utility that implements appending of loops onto a worklist. 1581 /// Loops are added in preorder (analogous for reverse postorder for trees), 1582 /// and the worklist is processed LIFO. 1583 template <typename RangeT> 1584 void llvm::appendReversedLoopsToWorklist( 1585 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1586 // We use an internal worklist to build up the preorder traversal without 1587 // recursion. 1588 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1589 1590 // We walk the initial sequence of loops in reverse because we generally want 1591 // to visit defs before uses and the worklist is LIFO. 1592 for (Loop *RootL : Loops) { 1593 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1594 assert(PreOrderWorklist.empty() && 1595 "Must start with an empty preorder walk worklist."); 1596 PreOrderWorklist.push_back(RootL); 1597 do { 1598 Loop *L = PreOrderWorklist.pop_back_val(); 1599 PreOrderWorklist.append(L->begin(), L->end()); 1600 PreOrderLoops.push_back(L); 1601 } while (!PreOrderWorklist.empty()); 1602 1603 Worklist.insert(std::move(PreOrderLoops)); 1604 PreOrderLoops.clear(); 1605 } 1606 } 1607 1608 template <typename RangeT> 1609 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1610 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1611 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1612 } 1613 1614 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1615 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1616 1617 template void 1618 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1619 SmallPriorityWorklist<Loop *, 4> &Worklist); 1620 1621 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1622 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1623 appendReversedLoopsToWorklist(LI, Worklist); 1624 } 1625 1626 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1627 LoopInfo *LI, LPPassManager *LPM) { 1628 Loop &New = *LI->AllocateLoop(); 1629 if (PL) 1630 PL->addChildLoop(&New); 1631 else 1632 LI->addTopLevelLoop(&New); 1633 1634 if (LPM) 1635 LPM->addLoop(New); 1636 1637 // Add all of the blocks in L to the new loop. 1638 for (BasicBlock *BB : L->blocks()) 1639 if (LI->getLoopFor(BB) == L) 1640 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI); 1641 1642 // Add all of the subloops to the new loop. 1643 for (Loop *I : *L) 1644 cloneLoop(I, &New, VM, LI, LPM); 1645 1646 return &New; 1647 } 1648 1649 /// IR Values for the lower and upper bounds of a pointer evolution. We 1650 /// need to use value-handles because SCEV expansion can invalidate previously 1651 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1652 /// a previous one. 1653 struct PointerBounds { 1654 TrackingVH<Value> Start; 1655 TrackingVH<Value> End; 1656 Value *StrideToCheck; 1657 }; 1658 1659 /// Expand code for the lower and upper bound of the pointer group \p CG 1660 /// in \p TheLoop. \return the values for the bounds. 1661 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1662 Loop *TheLoop, Instruction *Loc, 1663 SCEVExpander &Exp, bool HoistRuntimeChecks) { 1664 LLVMContext &Ctx = Loc->getContext(); 1665 Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace); 1666 1667 Value *Start = nullptr, *End = nullptr; 1668 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1669 const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr; 1670 1671 // If the Low and High values are themselves loop-variant, then we may want 1672 // to expand the range to include those covered by the outer loop as well. 1673 // There is a trade-off here with the advantage being that creating checks 1674 // using the expanded range permits the runtime memory checks to be hoisted 1675 // out of the outer loop. This reduces the cost of entering the inner loop, 1676 // which can be significant for low trip counts. The disadvantage is that 1677 // there is a chance we may now never enter the vectorized inner loop, 1678 // whereas using a restricted range check could have allowed us to enter at 1679 // least once. This is why the behaviour is not currently the default and is 1680 // controlled by the parameter 'HoistRuntimeChecks'. 1681 if (HoistRuntimeChecks && TheLoop->getParentLoop() && 1682 isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) { 1683 auto *HighAR = cast<SCEVAddRecExpr>(High); 1684 auto *LowAR = cast<SCEVAddRecExpr>(Low); 1685 const Loop *OuterLoop = TheLoop->getParentLoop(); 1686 const SCEV *Recur = LowAR->getStepRecurrence(*Exp.getSE()); 1687 if (Recur == HighAR->getStepRecurrence(*Exp.getSE()) && 1688 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) { 1689 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1690 const SCEV *OuterExitCount = 1691 Exp.getSE()->getExitCount(OuterLoop, OuterLoopLatch); 1692 if (!isa<SCEVCouldNotCompute>(OuterExitCount) && 1693 OuterExitCount->getType()->isIntegerTy()) { 1694 const SCEV *NewHigh = cast<SCEVAddRecExpr>(High)->evaluateAtIteration( 1695 OuterExitCount, *Exp.getSE()); 1696 if (!isa<SCEVCouldNotCompute>(NewHigh)) { 1697 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include " 1698 "outer loop in order to permit hoisting\n"); 1699 High = NewHigh; 1700 Low = cast<SCEVAddRecExpr>(Low)->getStart(); 1701 // If there is a possibility that the stride is negative then we have 1702 // to generate extra checks to ensure the stride is positive. 1703 if (!Exp.getSE()->isKnownNonNegative(Recur)) { 1704 Stride = Recur; 1705 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is " 1706 "positive: " 1707 << *Stride << '\n'); 1708 } 1709 } 1710 } 1711 } 1712 } 1713 1714 Start = Exp.expandCodeFor(Low, PtrArithTy, Loc); 1715 End = Exp.expandCodeFor(High, PtrArithTy, Loc); 1716 if (CG->NeedsFreeze) { 1717 IRBuilder<> Builder(Loc); 1718 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr"); 1719 End = Builder.CreateFreeze(End, End->getName() + ".fr"); 1720 } 1721 Value *StrideVal = 1722 Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr; 1723 LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n"); 1724 return {Start, End, StrideVal}; 1725 } 1726 1727 /// Turns a collection of checks into a collection of expanded upper and 1728 /// lower bounds for both pointers in the check. 1729 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1730 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1731 Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) { 1732 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1733 1734 // Here we're relying on the SCEV Expander's cache to only emit code for the 1735 // same bounds once. 1736 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1737 [&](const RuntimePointerCheck &Check) { 1738 PointerBounds First = expandBounds(Check.first, L, Loc, Exp, 1739 HoistRuntimeChecks), 1740 Second = expandBounds(Check.second, L, Loc, Exp, 1741 HoistRuntimeChecks); 1742 return std::make_pair(First, Second); 1743 }); 1744 1745 return ChecksWithBounds; 1746 } 1747 1748 Value *llvm::addRuntimeChecks( 1749 Instruction *Loc, Loop *TheLoop, 1750 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1751 SCEVExpander &Exp, bool HoistRuntimeChecks) { 1752 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1753 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1754 auto ExpandedChecks = 1755 expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks); 1756 1757 LLVMContext &Ctx = Loc->getContext(); 1758 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1759 Loc->getModule()->getDataLayout()); 1760 ChkBuilder.SetInsertPoint(Loc); 1761 // Our instructions might fold to a constant. 1762 Value *MemoryRuntimeCheck = nullptr; 1763 1764 for (const auto &Check : ExpandedChecks) { 1765 const PointerBounds &A = Check.first, &B = Check.second; 1766 // Check if two pointers (A and B) conflict where conflict is computed as: 1767 // start(A) <= end(B) && start(B) <= end(A) 1768 1769 assert((A.Start->getType()->getPointerAddressSpace() == 1770 B.End->getType()->getPointerAddressSpace()) && 1771 (B.Start->getType()->getPointerAddressSpace() == 1772 A.End->getType()->getPointerAddressSpace()) && 1773 "Trying to bounds check pointers with different address spaces"); 1774 1775 // [A|B].Start points to the first accessed byte under base [A|B]. 1776 // [A|B].End points to the last accessed byte, plus one. 1777 // There is no conflict when the intervals are disjoint: 1778 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1779 // 1780 // bound0 = (B.Start < A.End) 1781 // bound1 = (A.Start < B.End) 1782 // IsConflict = bound0 & bound1 1783 Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0"); 1784 Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1"); 1785 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1786 if (A.StrideToCheck) { 1787 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT( 1788 A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0), 1789 "stride.check"); 1790 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride); 1791 } 1792 if (B.StrideToCheck) { 1793 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT( 1794 B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0), 1795 "stride.check"); 1796 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride); 1797 } 1798 if (MemoryRuntimeCheck) { 1799 IsConflict = 1800 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1801 } 1802 MemoryRuntimeCheck = IsConflict; 1803 } 1804 1805 return MemoryRuntimeCheck; 1806 } 1807 1808 Value *llvm::addDiffRuntimeChecks( 1809 Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander, 1810 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) { 1811 1812 LLVMContext &Ctx = Loc->getContext(); 1813 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1814 Loc->getModule()->getDataLayout()); 1815 ChkBuilder.SetInsertPoint(Loc); 1816 // Our instructions might fold to a constant. 1817 Value *MemoryRuntimeCheck = nullptr; 1818 1819 auto &SE = *Expander.getSE(); 1820 // Map to keep track of created compares, The key is the pair of operands for 1821 // the compare, to allow detecting and re-using redundant compares. 1822 DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares; 1823 for (const auto &C : Checks) { 1824 Type *Ty = C.SinkStart->getType(); 1825 // Compute VF * IC * AccessSize. 1826 auto *VFTimesUFTimesSize = 1827 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()), 1828 ConstantInt::get(Ty, IC * C.AccessSize)); 1829 Value *Diff = Expander.expandCodeFor( 1830 SE.getMinusSCEV(C.SinkStart, C.SrcStart), Ty, Loc); 1831 1832 // Check if the same compare has already been created earlier. In that case, 1833 // there is no need to check it again. 1834 Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize}); 1835 if (IsConflict) 1836 continue; 1837 1838 IsConflict = 1839 ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check"); 1840 SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict}); 1841 if (C.NeedsFreeze) 1842 IsConflict = 1843 ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr"); 1844 if (MemoryRuntimeCheck) { 1845 IsConflict = 1846 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1847 } 1848 MemoryRuntimeCheck = IsConflict; 1849 } 1850 1851 return MemoryRuntimeCheck; 1852 } 1853 1854 std::optional<IVConditionInfo> 1855 llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, 1856 const MemorySSA &MSSA, AAResults &AA) { 1857 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1858 if (!TI || !TI->isConditional()) 1859 return {}; 1860 1861 auto *CondI = dyn_cast<CmpInst>(TI->getCondition()); 1862 // The case with the condition outside the loop should already be handled 1863 // earlier. 1864 if (!CondI || !L.contains(CondI)) 1865 return {}; 1866 1867 SmallVector<Instruction *> InstToDuplicate; 1868 InstToDuplicate.push_back(CondI); 1869 1870 SmallVector<Value *, 4> WorkList; 1871 WorkList.append(CondI->op_begin(), CondI->op_end()); 1872 1873 SmallVector<MemoryAccess *, 4> AccessesToCheck; 1874 SmallVector<MemoryLocation, 4> AccessedLocs; 1875 while (!WorkList.empty()) { 1876 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 1877 if (!I || !L.contains(I)) 1878 continue; 1879 1880 // TODO: support additional instructions. 1881 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 1882 return {}; 1883 1884 // Do not duplicate volatile and atomic loads. 1885 if (auto *LI = dyn_cast<LoadInst>(I)) 1886 if (LI->isVolatile() || LI->isAtomic()) 1887 return {}; 1888 1889 InstToDuplicate.push_back(I); 1890 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 1891 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 1892 // Queue the defining access to check for alias checks. 1893 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 1894 AccessedLocs.push_back(MemoryLocation::get(I)); 1895 } else { 1896 // MemoryDefs may clobber the location or may be atomic memory 1897 // operations. Bail out. 1898 return {}; 1899 } 1900 } 1901 WorkList.append(I->op_begin(), I->op_end()); 1902 } 1903 1904 if (InstToDuplicate.empty()) 1905 return {}; 1906 1907 SmallVector<BasicBlock *, 4> ExitingBlocks; 1908 L.getExitingBlocks(ExitingBlocks); 1909 auto HasNoClobbersOnPath = 1910 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 1911 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 1912 SmallVector<MemoryAccess *, 4> AccessesToCheck) 1913 -> std::optional<IVConditionInfo> { 1914 IVConditionInfo Info; 1915 // First, collect all blocks in the loop that are on a patch from Succ 1916 // to the header. 1917 SmallVector<BasicBlock *, 4> WorkList; 1918 WorkList.push_back(Succ); 1919 WorkList.push_back(Header); 1920 SmallPtrSet<BasicBlock *, 4> Seen; 1921 Seen.insert(Header); 1922 Info.PathIsNoop &= 1923 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1924 1925 while (!WorkList.empty()) { 1926 BasicBlock *Current = WorkList.pop_back_val(); 1927 if (!L.contains(Current)) 1928 continue; 1929 const auto &SeenIns = Seen.insert(Current); 1930 if (!SeenIns.second) 1931 continue; 1932 1933 Info.PathIsNoop &= all_of( 1934 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1935 WorkList.append(succ_begin(Current), succ_end(Current)); 1936 } 1937 1938 // Require at least 2 blocks on a path through the loop. This skips 1939 // paths that directly exit the loop. 1940 if (Seen.size() < 2) 1941 return {}; 1942 1943 // Next, check if there are any MemoryDefs that are on the path through 1944 // the loop (in the Seen set) and they may-alias any of the locations in 1945 // AccessedLocs. If that is the case, they may modify the condition and 1946 // partial unswitching is not possible. 1947 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 1948 while (!AccessesToCheck.empty()) { 1949 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 1950 auto SeenI = SeenAccesses.insert(Current); 1951 if (!SeenI.second || !Seen.contains(Current->getBlock())) 1952 continue; 1953 1954 // Bail out if exceeded the threshold. 1955 if (SeenAccesses.size() >= MSSAThreshold) 1956 return {}; 1957 1958 // MemoryUse are read-only accesses. 1959 if (isa<MemoryUse>(Current)) 1960 continue; 1961 1962 // For a MemoryDef, check if is aliases any of the location feeding 1963 // the original condition. 1964 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 1965 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 1966 return isModSet( 1967 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 1968 })) 1969 return {}; 1970 } 1971 1972 for (Use &U : Current->uses()) 1973 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 1974 } 1975 1976 // We could also allow loops with known trip counts without mustprogress, 1977 // but ScalarEvolution may not be available. 1978 Info.PathIsNoop &= isMustProgress(&L); 1979 1980 // If the path is considered a no-op so far, check if it reaches a 1981 // single exit block without any phis. This ensures no values from the 1982 // loop are used outside of the loop. 1983 if (Info.PathIsNoop) { 1984 for (auto *Exiting : ExitingBlocks) { 1985 if (!Seen.contains(Exiting)) 1986 continue; 1987 for (auto *Succ : successors(Exiting)) { 1988 if (L.contains(Succ)) 1989 continue; 1990 1991 Info.PathIsNoop &= Succ->phis().empty() && 1992 (!Info.ExitForPath || Info.ExitForPath == Succ); 1993 if (!Info.PathIsNoop) 1994 break; 1995 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 1996 "cannot have multiple exit blocks"); 1997 Info.ExitForPath = Succ; 1998 } 1999 } 2000 } 2001 if (!Info.ExitForPath) 2002 Info.PathIsNoop = false; 2003 2004 Info.InstToDuplicate = InstToDuplicate; 2005 return Info; 2006 }; 2007 2008 // If we branch to the same successor, partial unswitching will not be 2009 // beneficial. 2010 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 2011 return {}; 2012 2013 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 2014 AccessesToCheck)) { 2015 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 2016 return Info; 2017 } 2018 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 2019 AccessesToCheck)) { 2020 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 2021 return Info; 2022 } 2023 2024 return {}; 2025 } 2026