xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp (revision e0919a4bac2b57a086688ae8ec58058b91f61d86)
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/PriorityWorklist.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/InstSimplifyFolder.h"
25 #include "llvm/Analysis/LoopAccessAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ProfDataUtils.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
48 
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
51 
52 #define DEBUG_TYPE "loop-utils"
53 
54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
56 
57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
58                                    MemorySSAUpdater *MSSAU,
59                                    bool PreserveLCSSA) {
60   bool Changed = false;
61 
62   // We re-use a vector for the in-loop predecesosrs.
63   SmallVector<BasicBlock *, 4> InLoopPredecessors;
64 
65   auto RewriteExit = [&](BasicBlock *BB) {
66     assert(InLoopPredecessors.empty() &&
67            "Must start with an empty predecessors list!");
68     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
69 
70     // See if there are any non-loop predecessors of this exit block and
71     // keep track of the in-loop predecessors.
72     bool IsDedicatedExit = true;
73     for (auto *PredBB : predecessors(BB))
74       if (L->contains(PredBB)) {
75         if (isa<IndirectBrInst>(PredBB->getTerminator()))
76           // We cannot rewrite exiting edges from an indirectbr.
77           return false;
78 
79         InLoopPredecessors.push_back(PredBB);
80       } else {
81         IsDedicatedExit = false;
82       }
83 
84     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
85 
86     // Nothing to do if this is already a dedicated exit.
87     if (IsDedicatedExit)
88       return false;
89 
90     auto *NewExitBB = SplitBlockPredecessors(
91         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
92 
93     if (!NewExitBB)
94       LLVM_DEBUG(
95           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
96                  << *L << "\n");
97     else
98       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
99                         << NewExitBB->getName() << "\n");
100     return true;
101   };
102 
103   // Walk the exit blocks directly rather than building up a data structure for
104   // them, but only visit each one once.
105   SmallPtrSet<BasicBlock *, 4> Visited;
106   for (auto *BB : L->blocks())
107     for (auto *SuccBB : successors(BB)) {
108       // We're looking for exit blocks so skip in-loop successors.
109       if (L->contains(SuccBB))
110         continue;
111 
112       // Visit each exit block exactly once.
113       if (!Visited.insert(SuccBB).second)
114         continue;
115 
116       Changed |= RewriteExit(SuccBB);
117     }
118 
119   return Changed;
120 }
121 
122 /// Returns the instructions that use values defined in the loop.
123 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
124   SmallVector<Instruction *, 8> UsedOutside;
125 
126   for (auto *Block : L->getBlocks())
127     // FIXME: I believe that this could use copy_if if the Inst reference could
128     // be adapted into a pointer.
129     for (auto &Inst : *Block) {
130       auto Users = Inst.users();
131       if (any_of(Users, [&](User *U) {
132             auto *Use = cast<Instruction>(U);
133             return !L->contains(Use->getParent());
134           }))
135         UsedOutside.push_back(&Inst);
136     }
137 
138   return UsedOutside;
139 }
140 
141 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
142   // By definition, all loop passes need the LoopInfo analysis and the
143   // Dominator tree it depends on. Because they all participate in the loop
144   // pass manager, they must also preserve these.
145   AU.addRequired<DominatorTreeWrapperPass>();
146   AU.addPreserved<DominatorTreeWrapperPass>();
147   AU.addRequired<LoopInfoWrapperPass>();
148   AU.addPreserved<LoopInfoWrapperPass>();
149 
150   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
151   // here because users shouldn't directly get them from this header.
152   extern char &LoopSimplifyID;
153   extern char &LCSSAID;
154   AU.addRequiredID(LoopSimplifyID);
155   AU.addPreservedID(LoopSimplifyID);
156   AU.addRequiredID(LCSSAID);
157   AU.addPreservedID(LCSSAID);
158   // This is used in the LPPassManager to perform LCSSA verification on passes
159   // which preserve lcssa form
160   AU.addRequired<LCSSAVerificationPass>();
161   AU.addPreserved<LCSSAVerificationPass>();
162 
163   // Loop passes are designed to run inside of a loop pass manager which means
164   // that any function analyses they require must be required by the first loop
165   // pass in the manager (so that it is computed before the loop pass manager
166   // runs) and preserved by all loop pasess in the manager. To make this
167   // reasonably robust, the set needed for most loop passes is maintained here.
168   // If your loop pass requires an analysis not listed here, you will need to
169   // carefully audit the loop pass manager nesting structure that results.
170   AU.addRequired<AAResultsWrapperPass>();
171   AU.addPreserved<AAResultsWrapperPass>();
172   AU.addPreserved<BasicAAWrapperPass>();
173   AU.addPreserved<GlobalsAAWrapperPass>();
174   AU.addPreserved<SCEVAAWrapperPass>();
175   AU.addRequired<ScalarEvolutionWrapperPass>();
176   AU.addPreserved<ScalarEvolutionWrapperPass>();
177   // FIXME: When all loop passes preserve MemorySSA, it can be required and
178   // preserved here instead of the individual handling in each pass.
179 }
180 
181 /// Manually defined generic "LoopPass" dependency initialization. This is used
182 /// to initialize the exact set of passes from above in \c
183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
184 /// with:
185 ///
186 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
187 ///
188 /// As-if "LoopPass" were a pass.
189 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
190   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
191   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
192   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
193   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
194   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
195   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
196   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
197   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
198   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
199   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
200 }
201 
202 /// Create MDNode for input string.
203 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
204   LLVMContext &Context = TheLoop->getHeader()->getContext();
205   Metadata *MDs[] = {
206       MDString::get(Context, Name),
207       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
208   return MDNode::get(Context, MDs);
209 }
210 
211 /// Set input string into loop metadata by keeping other values intact.
212 /// If the string is already in loop metadata update value if it is
213 /// different.
214 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
215                                    unsigned V) {
216   SmallVector<Metadata *, 4> MDs(1);
217   // If the loop already has metadata, retain it.
218   MDNode *LoopID = TheLoop->getLoopID();
219   if (LoopID) {
220     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
221       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
222       // If it is of form key = value, try to parse it.
223       if (Node->getNumOperands() == 2) {
224         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
225         if (S && S->getString().equals(StringMD)) {
226           ConstantInt *IntMD =
227               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
228           if (IntMD && IntMD->getSExtValue() == V)
229             // It is already in place. Do nothing.
230             return;
231           // We need to update the value, so just skip it here and it will
232           // be added after copying other existed nodes.
233           continue;
234         }
235       }
236       MDs.push_back(Node);
237     }
238   }
239   // Add new metadata.
240   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
241   // Replace current metadata node with new one.
242   LLVMContext &Context = TheLoop->getHeader()->getContext();
243   MDNode *NewLoopID = MDNode::get(Context, MDs);
244   // Set operand 0 to refer to the loop id itself.
245   NewLoopID->replaceOperandWith(0, NewLoopID);
246   TheLoop->setLoopID(NewLoopID);
247 }
248 
249 std::optional<ElementCount>
250 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
251   std::optional<int> Width =
252       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
253 
254   if (Width) {
255     std::optional<int> IsScalable = getOptionalIntLoopAttribute(
256         TheLoop, "llvm.loop.vectorize.scalable.enable");
257     return ElementCount::get(*Width, IsScalable.value_or(false));
258   }
259 
260   return std::nullopt;
261 }
262 
263 std::optional<MDNode *> llvm::makeFollowupLoopID(
264     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
265     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
266   if (!OrigLoopID) {
267     if (AlwaysNew)
268       return nullptr;
269     return std::nullopt;
270   }
271 
272   assert(OrigLoopID->getOperand(0) == OrigLoopID);
273 
274   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
275   bool InheritSomeAttrs =
276       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
277   SmallVector<Metadata *, 8> MDs;
278   MDs.push_back(nullptr);
279 
280   bool Changed = false;
281   if (InheritAllAttrs || InheritSomeAttrs) {
282     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
283       MDNode *Op = cast<MDNode>(Existing.get());
284 
285       auto InheritThisAttribute = [InheritSomeAttrs,
286                                    InheritOptionsExceptPrefix](MDNode *Op) {
287         if (!InheritSomeAttrs)
288           return false;
289 
290         // Skip malformatted attribute metadata nodes.
291         if (Op->getNumOperands() == 0)
292           return true;
293         Metadata *NameMD = Op->getOperand(0).get();
294         if (!isa<MDString>(NameMD))
295           return true;
296         StringRef AttrName = cast<MDString>(NameMD)->getString();
297 
298         // Do not inherit excluded attributes.
299         return !AttrName.starts_with(InheritOptionsExceptPrefix);
300       };
301 
302       if (InheritThisAttribute(Op))
303         MDs.push_back(Op);
304       else
305         Changed = true;
306     }
307   } else {
308     // Modified if we dropped at least one attribute.
309     Changed = OrigLoopID->getNumOperands() > 1;
310   }
311 
312   bool HasAnyFollowup = false;
313   for (StringRef OptionName : FollowupOptions) {
314     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
315     if (!FollowupNode)
316       continue;
317 
318     HasAnyFollowup = true;
319     for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
320       MDs.push_back(Option.get());
321       Changed = true;
322     }
323   }
324 
325   // Attributes of the followup loop not specified explicity, so signal to the
326   // transformation pass to add suitable attributes.
327   if (!AlwaysNew && !HasAnyFollowup)
328     return std::nullopt;
329 
330   // If no attributes were added or remove, the previous loop Id can be reused.
331   if (!AlwaysNew && !Changed)
332     return OrigLoopID;
333 
334   // No attributes is equivalent to having no !llvm.loop metadata at all.
335   if (MDs.size() == 1)
336     return nullptr;
337 
338   // Build the new loop ID.
339   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
340   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
341   return FollowupLoopID;
342 }
343 
344 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
345   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
346 }
347 
348 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
349   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
350 }
351 
352 TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
353   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
354     return TM_SuppressedByUser;
355 
356   std::optional<int> Count =
357       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
358   if (Count)
359     return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
360 
361   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
362     return TM_ForcedByUser;
363 
364   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
365     return TM_ForcedByUser;
366 
367   if (hasDisableAllTransformsHint(L))
368     return TM_Disable;
369 
370   return TM_Unspecified;
371 }
372 
373 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
374   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
375     return TM_SuppressedByUser;
376 
377   std::optional<int> Count =
378       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
379   if (Count)
380     return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
381 
382   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
383     return TM_ForcedByUser;
384 
385   if (hasDisableAllTransformsHint(L))
386     return TM_Disable;
387 
388   return TM_Unspecified;
389 }
390 
391 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
392   std::optional<bool> Enable =
393       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
394 
395   if (Enable == false)
396     return TM_SuppressedByUser;
397 
398   std::optional<ElementCount> VectorizeWidth =
399       getOptionalElementCountLoopAttribute(L);
400   std::optional<int> InterleaveCount =
401       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
402 
403   // 'Forcing' vector width and interleave count to one effectively disables
404   // this tranformation.
405   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
406       InterleaveCount == 1)
407     return TM_SuppressedByUser;
408 
409   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
410     return TM_Disable;
411 
412   if (Enable == true)
413     return TM_ForcedByUser;
414 
415   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
416     return TM_Disable;
417 
418   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
419     return TM_Enable;
420 
421   if (hasDisableAllTransformsHint(L))
422     return TM_Disable;
423 
424   return TM_Unspecified;
425 }
426 
427 TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
428   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
429     return TM_ForcedByUser;
430 
431   if (hasDisableAllTransformsHint(L))
432     return TM_Disable;
433 
434   return TM_Unspecified;
435 }
436 
437 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
438   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
439     return TM_SuppressedByUser;
440 
441   if (hasDisableAllTransformsHint(L))
442     return TM_Disable;
443 
444   return TM_Unspecified;
445 }
446 
447 /// Does a BFS from a given node to all of its children inside a given loop.
448 /// The returned vector of nodes includes the starting point.
449 SmallVector<DomTreeNode *, 16>
450 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
451   SmallVector<DomTreeNode *, 16> Worklist;
452   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
453     // Only include subregions in the top level loop.
454     BasicBlock *BB = DTN->getBlock();
455     if (CurLoop->contains(BB))
456       Worklist.push_back(DTN);
457   };
458 
459   AddRegionToWorklist(N);
460 
461   for (size_t I = 0; I < Worklist.size(); I++) {
462     for (DomTreeNode *Child : Worklist[I]->children())
463       AddRegionToWorklist(Child);
464   }
465 
466   return Worklist;
467 }
468 
469 bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) {
470   int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
471   Value *IncV = PN->getIncomingValue(LatchIdx);
472 
473   for (User *U : PN->users())
474     if (U != Cond && U != IncV) return false;
475 
476   for (User *U : IncV->users())
477     if (U != Cond && U != PN) return false;
478   return true;
479 }
480 
481 
482 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
483                           LoopInfo *LI, MemorySSA *MSSA) {
484   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
485   auto *Preheader = L->getLoopPreheader();
486   assert(Preheader && "Preheader should exist!");
487 
488   std::unique_ptr<MemorySSAUpdater> MSSAU;
489   if (MSSA)
490     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
491 
492   // Now that we know the removal is safe, remove the loop by changing the
493   // branch from the preheader to go to the single exit block.
494   //
495   // Because we're deleting a large chunk of code at once, the sequence in which
496   // we remove things is very important to avoid invalidation issues.
497 
498   // Tell ScalarEvolution that the loop is deleted. Do this before
499   // deleting the loop so that ScalarEvolution can look at the loop
500   // to determine what it needs to clean up.
501   if (SE) {
502     SE->forgetLoop(L);
503     SE->forgetBlockAndLoopDispositions();
504   }
505 
506   Instruction *OldTerm = Preheader->getTerminator();
507   assert(!OldTerm->mayHaveSideEffects() &&
508          "Preheader must end with a side-effect-free terminator");
509   assert(OldTerm->getNumSuccessors() == 1 &&
510          "Preheader must have a single successor");
511   // Connect the preheader to the exit block. Keep the old edge to the header
512   // around to perform the dominator tree update in two separate steps
513   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
514   // preheader -> header.
515   //
516   //
517   // 0.  Preheader          1.  Preheader           2.  Preheader
518   //        |                    |   |                   |
519   //        V                    |   V                   |
520   //      Header <--\            | Header <--\           | Header <--\
521   //       |  |     |            |  |  |     |           |  |  |     |
522   //       |  V     |            |  |  V     |           |  |  V     |
523   //       | Body --/            |  | Body --/           |  | Body --/
524   //       V                     V  V                    V  V
525   //      Exit                   Exit                    Exit
526   //
527   // By doing this is two separate steps we can perform the dominator tree
528   // update without using the batch update API.
529   //
530   // Even when the loop is never executed, we cannot remove the edge from the
531   // source block to the exit block. Consider the case where the unexecuted loop
532   // branches back to an outer loop. If we deleted the loop and removed the edge
533   // coming to this inner loop, this will break the outer loop structure (by
534   // deleting the backedge of the outer loop). If the outer loop is indeed a
535   // non-loop, it will be deleted in a future iteration of loop deletion pass.
536   IRBuilder<> Builder(OldTerm);
537 
538   auto *ExitBlock = L->getUniqueExitBlock();
539   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
540   if (ExitBlock) {
541     assert(ExitBlock && "Should have a unique exit block!");
542     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
543 
544     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
545     // Remove the old branch. The conditional branch becomes a new terminator.
546     OldTerm->eraseFromParent();
547 
548     // Rewrite phis in the exit block to get their inputs from the Preheader
549     // instead of the exiting block.
550     for (PHINode &P : ExitBlock->phis()) {
551       // Set the zero'th element of Phi to be from the preheader and remove all
552       // other incoming values. Given the loop has dedicated exits, all other
553       // incoming values must be from the exiting blocks.
554       int PredIndex = 0;
555       P.setIncomingBlock(PredIndex, Preheader);
556       // Removes all incoming values from all other exiting blocks (including
557       // duplicate values from an exiting block).
558       // Nuke all entries except the zero'th entry which is the preheader entry.
559       P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
560                               /* DeletePHIIfEmpty */ false);
561 
562       assert((P.getNumIncomingValues() == 1 &&
563               P.getIncomingBlock(PredIndex) == Preheader) &&
564              "Should have exactly one value and that's from the preheader!");
565     }
566 
567     if (DT) {
568       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
569       if (MSSA) {
570         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
571                             *DT);
572         if (VerifyMemorySSA)
573           MSSA->verifyMemorySSA();
574       }
575     }
576 
577     // Disconnect the loop body by branching directly to its exit.
578     Builder.SetInsertPoint(Preheader->getTerminator());
579     Builder.CreateBr(ExitBlock);
580     // Remove the old branch.
581     Preheader->getTerminator()->eraseFromParent();
582   } else {
583     assert(L->hasNoExitBlocks() &&
584            "Loop should have either zero or one exit blocks.");
585 
586     Builder.SetInsertPoint(OldTerm);
587     Builder.CreateUnreachable();
588     Preheader->getTerminator()->eraseFromParent();
589   }
590 
591   if (DT) {
592     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
593     if (MSSA) {
594       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
595                           *DT);
596       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
597                                                    L->block_end());
598       MSSAU->removeBlocks(DeadBlockSet);
599       if (VerifyMemorySSA)
600         MSSA->verifyMemorySSA();
601     }
602   }
603 
604   // Use a map to unique and a vector to guarantee deterministic ordering.
605   llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet;
606   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
607   llvm::SmallVector<DPValue *, 4> DeadDPValues;
608 
609   if (ExitBlock) {
610     // Given LCSSA form is satisfied, we should not have users of instructions
611     // within the dead loop outside of the loop. However, LCSSA doesn't take
612     // unreachable uses into account. We handle them here.
613     // We could do it after drop all references (in this case all users in the
614     // loop will be already eliminated and we have less work to do but according
615     // to API doc of User::dropAllReferences only valid operation after dropping
616     // references, is deletion. So let's substitute all usages of
617     // instruction from the loop with poison value of corresponding type first.
618     for (auto *Block : L->blocks())
619       for (Instruction &I : *Block) {
620         auto *Poison = PoisonValue::get(I.getType());
621         for (Use &U : llvm::make_early_inc_range(I.uses())) {
622           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
623             if (L->contains(Usr->getParent()))
624               continue;
625           // If we have a DT then we can check that uses outside a loop only in
626           // unreachable block.
627           if (DT)
628             assert(!DT->isReachableFromEntry(U) &&
629                    "Unexpected user in reachable block");
630           U.set(Poison);
631         }
632 
633         // RemoveDIs: do the same as below for DPValues.
634         if (Block->IsNewDbgInfoFormat) {
635           for (DPValue &DPV :
636                llvm::make_early_inc_range(I.getDbgValueRange())) {
637             DebugVariable Key(DPV.getVariable(), DPV.getExpression(),
638                               DPV.getDebugLoc().get());
639             if (!DeadDebugSet.insert(Key).second)
640               continue;
641             // Unlinks the DPV from it's container, for later insertion.
642             DPV.removeFromParent();
643             DeadDPValues.push_back(&DPV);
644           }
645         }
646 
647         // For one of each variable encountered, preserve a debug intrinsic (set
648         // to Poison) and transfer it to the loop exit. This terminates any
649         // variable locations that were set during the loop.
650         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
651         if (!DVI)
652           continue;
653         if (!DeadDebugSet.insert(DebugVariable(DVI)).second)
654           continue;
655         DeadDebugInst.push_back(DVI);
656       }
657 
658     // After the loop has been deleted all the values defined and modified
659     // inside the loop are going to be unavailable. Values computed in the
660     // loop will have been deleted, automatically causing their debug uses
661     // be be replaced with undef. Loop invariant values will still be available.
662     // Move dbg.values out the loop so that earlier location ranges are still
663     // terminated and loop invariant assignments are preserved.
664     DIBuilder DIB(*ExitBlock->getModule());
665     BasicBlock::iterator InsertDbgValueBefore =
666         ExitBlock->getFirstInsertionPt();
667     assert(InsertDbgValueBefore != ExitBlock->end() &&
668            "There should be a non-PHI instruction in exit block, else these "
669            "instructions will have no parent.");
670 
671     for (auto *DVI : DeadDebugInst)
672       DVI->moveBefore(*ExitBlock, InsertDbgValueBefore);
673 
674     // Due to the "head" bit in BasicBlock::iterator, we're going to insert
675     // each DPValue right at the start of the block, wheras dbg.values would be
676     // repeatedly inserted before the first instruction. To replicate this
677     // behaviour, do it backwards.
678     for (DPValue *DPV : llvm::reverse(DeadDPValues))
679       ExitBlock->insertDPValueBefore(DPV, InsertDbgValueBefore);
680   }
681 
682   // Remove the block from the reference counting scheme, so that we can
683   // delete it freely later.
684   for (auto *Block : L->blocks())
685     Block->dropAllReferences();
686 
687   if (MSSA && VerifyMemorySSA)
688     MSSA->verifyMemorySSA();
689 
690   if (LI) {
691     // Erase the instructions and the blocks without having to worry
692     // about ordering because we already dropped the references.
693     // NOTE: This iteration is safe because erasing the block does not remove
694     // its entry from the loop's block list.  We do that in the next section.
695     for (BasicBlock *BB : L->blocks())
696       BB->eraseFromParent();
697 
698     // Finally, the blocks from loopinfo.  This has to happen late because
699     // otherwise our loop iterators won't work.
700 
701     SmallPtrSet<BasicBlock *, 8> blocks;
702     blocks.insert(L->block_begin(), L->block_end());
703     for (BasicBlock *BB : blocks)
704       LI->removeBlock(BB);
705 
706     // The last step is to update LoopInfo now that we've eliminated this loop.
707     // Note: LoopInfo::erase remove the given loop and relink its subloops with
708     // its parent. While removeLoop/removeChildLoop remove the given loop but
709     // not relink its subloops, which is what we want.
710     if (Loop *ParentLoop = L->getParentLoop()) {
711       Loop::iterator I = find(*ParentLoop, L);
712       assert(I != ParentLoop->end() && "Couldn't find loop");
713       ParentLoop->removeChildLoop(I);
714     } else {
715       Loop::iterator I = find(*LI, L);
716       assert(I != LI->end() && "Couldn't find loop");
717       LI->removeLoop(I);
718     }
719     LI->destroy(L);
720   }
721 }
722 
723 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
724                              LoopInfo &LI, MemorySSA *MSSA) {
725   auto *Latch = L->getLoopLatch();
726   assert(Latch && "multiple latches not yet supported");
727   auto *Header = L->getHeader();
728   Loop *OutermostLoop = L->getOutermostLoop();
729 
730   SE.forgetLoop(L);
731   SE.forgetBlockAndLoopDispositions();
732 
733   std::unique_ptr<MemorySSAUpdater> MSSAU;
734   if (MSSA)
735     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
736 
737   // Update the CFG and domtree.  We chose to special case a couple of
738   // of common cases for code quality and test readability reasons.
739   [&]() -> void {
740     if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
741       if (!BI->isConditional()) {
742         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
743         (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
744                                   MSSAU.get());
745         return;
746       }
747 
748       // Conditional latch/exit - note that latch can be shared by inner
749       // and outer loop so the other target doesn't need to an exit
750       if (L->isLoopExiting(Latch)) {
751         // TODO: Generalize ConstantFoldTerminator so that it can be used
752         // here without invalidating LCSSA or MemorySSA.  (Tricky case for
753         // LCSSA: header is an exit block of a preceeding sibling loop w/o
754         // dedicated exits.)
755         const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
756         BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
757 
758         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
759         Header->removePredecessor(Latch, true);
760 
761         IRBuilder<> Builder(BI);
762         auto *NewBI = Builder.CreateBr(ExitBB);
763         // Transfer the metadata to the new branch instruction (minus the
764         // loop info since this is no longer a loop)
765         NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
766                                   LLVMContext::MD_annotation});
767 
768         BI->eraseFromParent();
769         DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
770         if (MSSA)
771           MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
772         return;
773       }
774     }
775 
776     // General case.  By splitting the backedge, and then explicitly making it
777     // unreachable we gracefully handle corner cases such as switch and invoke
778     // termiantors.
779     auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
780 
781     DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
782     (void)changeToUnreachable(BackedgeBB->getTerminator(),
783                               /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
784   }();
785 
786   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
787   // and blocks within the loop as needed.
788   LI.erase(L);
789 
790   // If the loop we broke had a parent, then changeToUnreachable might have
791   // caused a block to be removed from the parent loop (see loop_nest_lcssa
792   // test case in zero-btc.ll for an example), thus changing the parent's
793   // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
794   // loop which might have a had a block removed.
795   if (OutermostLoop != L)
796     formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
797 }
798 
799 
800 /// Checks if \p L has an exiting latch branch.  There may also be other
801 /// exiting blocks.  Returns branch instruction terminating the loop
802 /// latch if above check is successful, nullptr otherwise.
803 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
804   BasicBlock *Latch = L->getLoopLatch();
805   if (!Latch)
806     return nullptr;
807 
808   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
809   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
810     return nullptr;
811 
812   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
813           LatchBR->getSuccessor(1) == L->getHeader()) &&
814          "At least one edge out of the latch must go to the header");
815 
816   return LatchBR;
817 }
818 
819 /// Return the estimated trip count for any exiting branch which dominates
820 /// the loop latch.
821 static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch,
822                                                      Loop *L,
823                                                      uint64_t &OrigExitWeight) {
824   // To estimate the number of times the loop body was executed, we want to
825   // know the number of times the backedge was taken, vs. the number of times
826   // we exited the loop.
827   uint64_t LoopWeight, ExitWeight;
828   if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
829     return std::nullopt;
830 
831   if (L->contains(ExitingBranch->getSuccessor(1)))
832     std::swap(LoopWeight, ExitWeight);
833 
834   if (!ExitWeight)
835     // Don't have a way to return predicated infinite
836     return std::nullopt;
837 
838   OrigExitWeight = ExitWeight;
839 
840   // Estimated exit count is a ratio of the loop weight by the weight of the
841   // edge exiting the loop, rounded to nearest.
842   uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
843   // Estimated trip count is one plus estimated exit count.
844   return ExitCount + 1;
845 }
846 
847 std::optional<unsigned>
848 llvm::getLoopEstimatedTripCount(Loop *L,
849                                 unsigned *EstimatedLoopInvocationWeight) {
850   // Currently we take the estimate exit count only from the loop latch,
851   // ignoring other exiting blocks.  This can overestimate the trip count
852   // if we exit through another exit, but can never underestimate it.
853   // TODO: incorporate information from other exits
854   if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
855     uint64_t ExitWeight;
856     if (std::optional<uint64_t> EstTripCount =
857             getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
858       if (EstimatedLoopInvocationWeight)
859         *EstimatedLoopInvocationWeight = ExitWeight;
860       return *EstTripCount;
861     }
862   }
863   return std::nullopt;
864 }
865 
866 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
867                                      unsigned EstimatedloopInvocationWeight) {
868   // At the moment, we currently support changing the estimate trip count of
869   // the latch branch only.  We could extend this API to manipulate estimated
870   // trip counts for any exit.
871   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
872   if (!LatchBranch)
873     return false;
874 
875   // Calculate taken and exit weights.
876   unsigned LatchExitWeight = 0;
877   unsigned BackedgeTakenWeight = 0;
878 
879   if (EstimatedTripCount > 0) {
880     LatchExitWeight = EstimatedloopInvocationWeight;
881     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
882   }
883 
884   // Make a swap if back edge is taken when condition is "false".
885   if (LatchBranch->getSuccessor(0) != L->getHeader())
886     std::swap(BackedgeTakenWeight, LatchExitWeight);
887 
888   MDBuilder MDB(LatchBranch->getContext());
889 
890   // Set/Update profile metadata.
891   LatchBranch->setMetadata(
892       LLVMContext::MD_prof,
893       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
894 
895   return true;
896 }
897 
898 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
899                                               ScalarEvolution &SE) {
900   Loop *OuterL = InnerLoop->getParentLoop();
901   if (!OuterL)
902     return true;
903 
904   // Get the backedge taken count for the inner loop
905   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
906   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
907   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
908       !InnerLoopBECountSC->getType()->isIntegerTy())
909     return false;
910 
911   // Get whether count is invariant to the outer loop
912   ScalarEvolution::LoopDisposition LD =
913       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
914   if (LD != ScalarEvolution::LoopInvariant)
915     return false;
916 
917   return true;
918 }
919 
920 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) {
921   switch (RK) {
922   default:
923     llvm_unreachable("Unknown min/max recurrence kind");
924   case RecurKind::UMin:
925     return Intrinsic::umin;
926   case RecurKind::UMax:
927     return Intrinsic::umax;
928   case RecurKind::SMin:
929     return Intrinsic::smin;
930   case RecurKind::SMax:
931     return Intrinsic::smax;
932   case RecurKind::FMin:
933     return Intrinsic::minnum;
934   case RecurKind::FMax:
935     return Intrinsic::maxnum;
936   case RecurKind::FMinimum:
937     return Intrinsic::minimum;
938   case RecurKind::FMaximum:
939     return Intrinsic::maximum;
940   }
941 }
942 
943 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
944   switch (RK) {
945   default:
946     llvm_unreachable("Unknown min/max recurrence kind");
947   case RecurKind::UMin:
948     return CmpInst::ICMP_ULT;
949   case RecurKind::UMax:
950     return CmpInst::ICMP_UGT;
951   case RecurKind::SMin:
952     return CmpInst::ICMP_SLT;
953   case RecurKind::SMax:
954     return CmpInst::ICMP_SGT;
955   case RecurKind::FMin:
956     return CmpInst::FCMP_OLT;
957   case RecurKind::FMax:
958     return CmpInst::FCMP_OGT;
959   // We do not add FMinimum/FMaximum recurrence kind here since there is no
960   // equivalent predicate which compares signed zeroes according to the
961   // semantics of the intrinsics (llvm.minimum/maximum).
962   }
963 }
964 
965 Value *llvm::createAnyOfOp(IRBuilderBase &Builder, Value *StartVal,
966                            RecurKind RK, Value *Left, Value *Right) {
967   if (auto VTy = dyn_cast<VectorType>(Left->getType()))
968     StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal);
969   Value *Cmp =
970       Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp");
971   return Builder.CreateSelect(Cmp, Left, Right, "rdx.select");
972 }
973 
974 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
975                             Value *Right) {
976   Type *Ty = Left->getType();
977   if (Ty->isIntOrIntVectorTy() ||
978       (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) {
979     // TODO: Add float minnum/maxnum support when FMF nnan is set.
980     Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK);
981     return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
982                                    "rdx.minmax");
983   }
984   CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
985   Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
986   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
987   return Select;
988 }
989 
990 // Helper to generate an ordered reduction.
991 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
992                                  unsigned Op, RecurKind RdxKind) {
993   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
994 
995   // Extract and apply reduction ops in ascending order:
996   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
997   Value *Result = Acc;
998   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
999     Value *Ext =
1000         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1001 
1002     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1003       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1004                                    "bin.rdx");
1005     } else {
1006       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1007              "Invalid min/max");
1008       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
1009     }
1010   }
1011 
1012   return Result;
1013 }
1014 
1015 // Helper to generate a log2 shuffle reduction.
1016 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
1017                                  unsigned Op, RecurKind RdxKind) {
1018   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1019   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1020   // and vector ops, reducing the set of values being computed by half each
1021   // round.
1022   assert(isPowerOf2_32(VF) &&
1023          "Reduction emission only supported for pow2 vectors!");
1024   // Note: fast-math-flags flags are controlled by the builder configuration
1025   // and are assumed to apply to all generated arithmetic instructions.  Other
1026   // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1027   // of the builder configuration, and since they're not passed explicitly,
1028   // will never be relevant here.  Note that it would be generally unsound to
1029   // propagate these from an intrinsic call to the expansion anyways as we/
1030   // change the order of operations.
1031   Value *TmpVec = Src;
1032   SmallVector<int, 32> ShuffleMask(VF);
1033   for (unsigned i = VF; i != 1; i >>= 1) {
1034     // Move the upper half of the vector to the lower half.
1035     for (unsigned j = 0; j != i / 2; ++j)
1036       ShuffleMask[j] = i / 2 + j;
1037 
1038     // Fill the rest of the mask with undef.
1039     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1040 
1041     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1042 
1043     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1044       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1045                                    "bin.rdx");
1046     } else {
1047       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1048              "Invalid min/max");
1049       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1050     }
1051   }
1052   // The result is in the first element of the vector.
1053   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1054 }
1055 
1056 Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src,
1057                                         const RecurrenceDescriptor &Desc,
1058                                         PHINode *OrigPhi) {
1059   assert(
1060       RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) &&
1061       "Unexpected reduction kind");
1062   Value *InitVal = Desc.getRecurrenceStartValue();
1063   Value *NewVal = nullptr;
1064 
1065   // First use the original phi to determine the new value we're trying to
1066   // select from in the loop.
1067   SelectInst *SI = nullptr;
1068   for (auto *U : OrigPhi->users()) {
1069     if ((SI = dyn_cast<SelectInst>(U)))
1070       break;
1071   }
1072   assert(SI && "One user of the original phi should be a select");
1073 
1074   if (SI->getTrueValue() == OrigPhi)
1075     NewVal = SI->getFalseValue();
1076   else {
1077     assert(SI->getFalseValue() == OrigPhi &&
1078            "At least one input to the select should be the original Phi");
1079     NewVal = SI->getTrueValue();
1080   }
1081 
1082   // Create a splat vector with the new value and compare this to the vector
1083   // we want to reduce.
1084   ElementCount EC = cast<VectorType>(Src->getType())->getElementCount();
1085   Value *Right = Builder.CreateVectorSplat(EC, InitVal);
1086   Value *Cmp =
1087       Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp");
1088 
1089   // If any predicate is true it means that we want to select the new value.
1090   Cmp = Builder.CreateOrReduce(Cmp);
1091   return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select");
1092 }
1093 
1094 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src,
1095                                          RecurKind RdxKind) {
1096   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1097   switch (RdxKind) {
1098   case RecurKind::Add:
1099     return Builder.CreateAddReduce(Src);
1100   case RecurKind::Mul:
1101     return Builder.CreateMulReduce(Src);
1102   case RecurKind::And:
1103     return Builder.CreateAndReduce(Src);
1104   case RecurKind::Or:
1105     return Builder.CreateOrReduce(Src);
1106   case RecurKind::Xor:
1107     return Builder.CreateXorReduce(Src);
1108   case RecurKind::FMulAdd:
1109   case RecurKind::FAdd:
1110     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1111                                     Src);
1112   case RecurKind::FMul:
1113     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1114   case RecurKind::SMax:
1115     return Builder.CreateIntMaxReduce(Src, true);
1116   case RecurKind::SMin:
1117     return Builder.CreateIntMinReduce(Src, true);
1118   case RecurKind::UMax:
1119     return Builder.CreateIntMaxReduce(Src, false);
1120   case RecurKind::UMin:
1121     return Builder.CreateIntMinReduce(Src, false);
1122   case RecurKind::FMax:
1123     return Builder.CreateFPMaxReduce(Src);
1124   case RecurKind::FMin:
1125     return Builder.CreateFPMinReduce(Src);
1126   case RecurKind::FMinimum:
1127     return Builder.CreateFPMinimumReduce(Src);
1128   case RecurKind::FMaximum:
1129     return Builder.CreateFPMaximumReduce(Src);
1130   default:
1131     llvm_unreachable("Unhandled opcode");
1132   }
1133 }
1134 
1135 Value *llvm::createTargetReduction(IRBuilderBase &B,
1136                                    const RecurrenceDescriptor &Desc, Value *Src,
1137                                    PHINode *OrigPhi) {
1138   // TODO: Support in-order reductions based on the recurrence descriptor.
1139   // All ops in the reduction inherit fast-math-flags from the recurrence
1140   // descriptor.
1141   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1142   B.setFastMathFlags(Desc.getFastMathFlags());
1143 
1144   RecurKind RK = Desc.getRecurrenceKind();
1145   if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
1146     return createAnyOfTargetReduction(B, Src, Desc, OrigPhi);
1147 
1148   return createSimpleTargetReduction(B, Src, RK);
1149 }
1150 
1151 Value *llvm::createOrderedReduction(IRBuilderBase &B,
1152                                     const RecurrenceDescriptor &Desc,
1153                                     Value *Src, Value *Start) {
1154   assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
1155           Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
1156          "Unexpected reduction kind");
1157   assert(Src->getType()->isVectorTy() && "Expected a vector type");
1158   assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1159 
1160   return B.CreateFAddReduce(Start, Src);
1161 }
1162 
1163 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue,
1164                             bool IncludeWrapFlags) {
1165   auto *VecOp = dyn_cast<Instruction>(I);
1166   if (!VecOp)
1167     return;
1168   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1169                                             : dyn_cast<Instruction>(OpValue);
1170   if (!Intersection)
1171     return;
1172   const unsigned Opcode = Intersection->getOpcode();
1173   VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1174   for (auto *V : VL) {
1175     auto *Instr = dyn_cast<Instruction>(V);
1176     if (!Instr)
1177       continue;
1178     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1179       VecOp->andIRFlags(V);
1180   }
1181 }
1182 
1183 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1184                                  ScalarEvolution &SE) {
1185   const SCEV *Zero = SE.getZero(S->getType());
1186   return SE.isAvailableAtLoopEntry(S, L) &&
1187          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1188 }
1189 
1190 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1191                                     ScalarEvolution &SE) {
1192   const SCEV *Zero = SE.getZero(S->getType());
1193   return SE.isAvailableAtLoopEntry(S, L) &&
1194          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1195 }
1196 
1197 bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
1198                                  ScalarEvolution &SE) {
1199   const SCEV *Zero = SE.getZero(S->getType());
1200   return SE.isAvailableAtLoopEntry(S, L) &&
1201          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero);
1202 }
1203 
1204 bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L,
1205                                     ScalarEvolution &SE) {
1206   const SCEV *Zero = SE.getZero(S->getType());
1207   return SE.isAvailableAtLoopEntry(S, L) &&
1208          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero);
1209 }
1210 
1211 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1212                              bool Signed) {
1213   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1214   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1215     APInt::getMinValue(BitWidth);
1216   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1217   return SE.isAvailableAtLoopEntry(S, L) &&
1218          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1219                                      SE.getConstant(Min));
1220 }
1221 
1222 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1223                              bool Signed) {
1224   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1225   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1226     APInt::getMaxValue(BitWidth);
1227   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1228   return SE.isAvailableAtLoopEntry(S, L) &&
1229          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1230                                      SE.getConstant(Max));
1231 }
1232 
1233 //===----------------------------------------------------------------------===//
1234 // rewriteLoopExitValues - Optimize IV users outside the loop.
1235 // As a side effect, reduces the amount of IV processing within the loop.
1236 //===----------------------------------------------------------------------===//
1237 
1238 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1239   SmallPtrSet<const Instruction *, 8> Visited;
1240   SmallVector<const Instruction *, 8> WorkList;
1241   Visited.insert(I);
1242   WorkList.push_back(I);
1243   while (!WorkList.empty()) {
1244     const Instruction *Curr = WorkList.pop_back_val();
1245     // This use is outside the loop, nothing to do.
1246     if (!L->contains(Curr))
1247       continue;
1248     // Do we assume it is a "hard" use which will not be eliminated easily?
1249     if (Curr->mayHaveSideEffects())
1250       return true;
1251     // Otherwise, add all its users to worklist.
1252     for (const auto *U : Curr->users()) {
1253       auto *UI = cast<Instruction>(U);
1254       if (Visited.insert(UI).second)
1255         WorkList.push_back(UI);
1256     }
1257   }
1258   return false;
1259 }
1260 
1261 // Collect information about PHI nodes which can be transformed in
1262 // rewriteLoopExitValues.
1263 struct RewritePhi {
1264   PHINode *PN;               // For which PHI node is this replacement?
1265   unsigned Ith;              // For which incoming value?
1266   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1267   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1268   bool HighCost;               // Is this expansion a high-cost?
1269 
1270   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1271              bool H)
1272       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1273         HighCost(H) {}
1274 };
1275 
1276 // Check whether it is possible to delete the loop after rewriting exit
1277 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1278 // aggressively.
1279 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1280   BasicBlock *Preheader = L->getLoopPreheader();
1281   // If there is no preheader, the loop will not be deleted.
1282   if (!Preheader)
1283     return false;
1284 
1285   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1286   // We obviate multiple ExitingBlocks case for simplicity.
1287   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1288   // after exit value rewriting, we can enhance the logic here.
1289   SmallVector<BasicBlock *, 4> ExitingBlocks;
1290   L->getExitingBlocks(ExitingBlocks);
1291   SmallVector<BasicBlock *, 8> ExitBlocks;
1292   L->getUniqueExitBlocks(ExitBlocks);
1293   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1294     return false;
1295 
1296   BasicBlock *ExitBlock = ExitBlocks[0];
1297   BasicBlock::iterator BI = ExitBlock->begin();
1298   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1299     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1300 
1301     // If the Incoming value of P is found in RewritePhiSet, we know it
1302     // could be rewritten to use a loop invariant value in transformation
1303     // phase later. Skip it in the loop invariant check below.
1304     bool found = false;
1305     for (const RewritePhi &Phi : RewritePhiSet) {
1306       unsigned i = Phi.Ith;
1307       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1308         found = true;
1309         break;
1310       }
1311     }
1312 
1313     Instruction *I;
1314     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1315       if (!L->hasLoopInvariantOperands(I))
1316         return false;
1317 
1318     ++BI;
1319   }
1320 
1321   for (auto *BB : L->blocks())
1322     if (llvm::any_of(*BB, [](Instruction &I) {
1323           return I.mayHaveSideEffects();
1324         }))
1325       return false;
1326 
1327   return true;
1328 }
1329 
1330 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1331 /// and returns true if this Phi is an induction phi in the loop. When
1332 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1333 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
1334                           InductionDescriptor &ID) {
1335   if (!Phi)
1336     return false;
1337   if (!L->getLoopPreheader())
1338     return false;
1339   if (Phi->getParent() != L->getHeader())
1340     return false;
1341   return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
1342 }
1343 
1344 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1345                                 ScalarEvolution *SE,
1346                                 const TargetTransformInfo *TTI,
1347                                 SCEVExpander &Rewriter, DominatorTree *DT,
1348                                 ReplaceExitVal ReplaceExitValue,
1349                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1350   // Check a pre-condition.
1351   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1352          "Indvars did not preserve LCSSA!");
1353 
1354   SmallVector<BasicBlock*, 8> ExitBlocks;
1355   L->getUniqueExitBlocks(ExitBlocks);
1356 
1357   SmallVector<RewritePhi, 8> RewritePhiSet;
1358   // Find all values that are computed inside the loop, but used outside of it.
1359   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1360   // the exit blocks of the loop to find them.
1361   for (BasicBlock *ExitBB : ExitBlocks) {
1362     // If there are no PHI nodes in this exit block, then no values defined
1363     // inside the loop are used on this path, skip it.
1364     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1365     if (!PN) continue;
1366 
1367     unsigned NumPreds = PN->getNumIncomingValues();
1368 
1369     // Iterate over all of the PHI nodes.
1370     BasicBlock::iterator BBI = ExitBB->begin();
1371     while ((PN = dyn_cast<PHINode>(BBI++))) {
1372       if (PN->use_empty())
1373         continue; // dead use, don't replace it
1374 
1375       if (!SE->isSCEVable(PN->getType()))
1376         continue;
1377 
1378       // Iterate over all of the values in all the PHI nodes.
1379       for (unsigned i = 0; i != NumPreds; ++i) {
1380         // If the value being merged in is not integer or is not defined
1381         // in the loop, skip it.
1382         Value *InVal = PN->getIncomingValue(i);
1383         if (!isa<Instruction>(InVal))
1384           continue;
1385 
1386         // If this pred is for a subloop, not L itself, skip it.
1387         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1388           continue; // The Block is in a subloop, skip it.
1389 
1390         // Check that InVal is defined in the loop.
1391         Instruction *Inst = cast<Instruction>(InVal);
1392         if (!L->contains(Inst))
1393           continue;
1394 
1395         // Find exit values which are induction variables in the loop, and are
1396         // unused in the loop, with the only use being the exit block PhiNode,
1397         // and the induction variable update binary operator.
1398         // The exit value can be replaced with the final value when it is cheap
1399         // to do so.
1400         if (ReplaceExitValue == UnusedIndVarInLoop) {
1401           InductionDescriptor ID;
1402           PHINode *IndPhi = dyn_cast<PHINode>(Inst);
1403           if (IndPhi) {
1404             if (!checkIsIndPhi(IndPhi, L, SE, ID))
1405               continue;
1406             // This is an induction PHI. Check that the only users are PHI
1407             // nodes, and induction variable update binary operators.
1408             if (llvm::any_of(Inst->users(), [&](User *U) {
1409                   if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1410                     return true;
1411                   BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1412                   if (B && B != ID.getInductionBinOp())
1413                     return true;
1414                   return false;
1415                 }))
1416               continue;
1417           } else {
1418             // If it is not an induction phi, it must be an induction update
1419             // binary operator with an induction phi user.
1420             BinaryOperator *B = dyn_cast<BinaryOperator>(Inst);
1421             if (!B)
1422               continue;
1423             if (llvm::any_of(Inst->users(), [&](User *U) {
1424                   PHINode *Phi = dyn_cast<PHINode>(U);
1425                   if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1426                     return true;
1427                   return false;
1428                 }))
1429               continue;
1430             if (B != ID.getInductionBinOp())
1431               continue;
1432           }
1433         }
1434 
1435         // Okay, this instruction has a user outside of the current loop
1436         // and varies predictably *inside* the loop.  Evaluate the value it
1437         // contains when the loop exits, if possible.  We prefer to start with
1438         // expressions which are true for all exits (so as to maximize
1439         // expression reuse by the SCEVExpander), but resort to per-exit
1440         // evaluation if that fails.
1441         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1442         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1443             !SE->isLoopInvariant(ExitValue, L) ||
1444             !Rewriter.isSafeToExpand(ExitValue)) {
1445           // TODO: This should probably be sunk into SCEV in some way; maybe a
1446           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1447           // most SCEV expressions and other recurrence types (e.g. shift
1448           // recurrences).  Is there existing code we can reuse?
1449           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1450           if (isa<SCEVCouldNotCompute>(ExitCount))
1451             continue;
1452           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1453             if (AddRec->getLoop() == L)
1454               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1455           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1456               !SE->isLoopInvariant(ExitValue, L) ||
1457               !Rewriter.isSafeToExpand(ExitValue))
1458             continue;
1459         }
1460 
1461         // Computing the value outside of the loop brings no benefit if it is
1462         // definitely used inside the loop in a way which can not be optimized
1463         // away. Avoid doing so unless we know we have a value which computes
1464         // the ExitValue already. TODO: This should be merged into SCEV
1465         // expander to leverage its knowledge of existing expressions.
1466         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1467             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1468           continue;
1469 
1470         // Check if expansions of this SCEV would count as being high cost.
1471         bool HighCost = Rewriter.isHighCostExpansion(
1472             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1473 
1474         // Note that we must not perform expansions until after
1475         // we query *all* the costs, because if we perform temporary expansion
1476         // inbetween, one that we might not intend to keep, said expansion
1477         // *may* affect cost calculation of the next SCEV's we'll query,
1478         // and next SCEV may errneously get smaller cost.
1479 
1480         // Collect all the candidate PHINodes to be rewritten.
1481         Instruction *InsertPt =
1482           (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
1483           &*Inst->getParent()->getFirstInsertionPt() : Inst;
1484         RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1485       }
1486     }
1487   }
1488 
1489   // TODO: evaluate whether it is beneficial to change how we calculate
1490   // high-cost: if we have SCEV 'A' which we know we will expand, should we
1491   // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1492   // potentially giving cost bonus to those other SCEV's?
1493 
1494   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1495   int NumReplaced = 0;
1496 
1497   // Transformation.
1498   for (const RewritePhi &Phi : RewritePhiSet) {
1499     PHINode *PN = Phi.PN;
1500 
1501     // Only do the rewrite when the ExitValue can be expanded cheaply.
1502     // If LoopCanBeDel is true, rewrite exit value aggressively.
1503     if ((ReplaceExitValue == OnlyCheapRepl ||
1504          ReplaceExitValue == UnusedIndVarInLoop) &&
1505         !LoopCanBeDel && Phi.HighCost)
1506       continue;
1507 
1508     Value *ExitVal = Rewriter.expandCodeFor(
1509         Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1510 
1511     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1512                       << '\n'
1513                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1514 
1515 #ifndef NDEBUG
1516     // If we reuse an instruction from a loop which is neither L nor one of
1517     // its containing loops, we end up breaking LCSSA form for this loop by
1518     // creating a new use of its instruction.
1519     if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1520       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1521         if (EVL != L)
1522           assert(EVL->contains(L) && "LCSSA breach detected!");
1523 #endif
1524 
1525     NumReplaced++;
1526     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1527     PN->setIncomingValue(Phi.Ith, ExitVal);
1528     // It's necessary to tell ScalarEvolution about this explicitly so that
1529     // it can walk the def-use list and forget all SCEVs, as it may not be
1530     // watching the PHI itself. Once the new exit value is in place, there
1531     // may not be a def-use connection between the loop and every instruction
1532     // which got a SCEVAddRecExpr for that loop.
1533     SE->forgetValue(PN);
1534 
1535     // If this instruction is dead now, delete it. Don't do it now to avoid
1536     // invalidating iterators.
1537     if (isInstructionTriviallyDead(Inst, TLI))
1538       DeadInsts.push_back(Inst);
1539 
1540     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1541     if (PN->getNumIncomingValues() == 1 &&
1542         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1543       PN->replaceAllUsesWith(ExitVal);
1544       PN->eraseFromParent();
1545     }
1546   }
1547 
1548   // The insertion point instruction may have been deleted; clear it out
1549   // so that the rewriter doesn't trip over it later.
1550   Rewriter.clearInsertPoint();
1551   return NumReplaced;
1552 }
1553 
1554 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1555 /// \p OrigLoop.
1556 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1557                                         Loop *RemainderLoop, uint64_t UF) {
1558   assert(UF > 0 && "Zero unrolled factor is not supported");
1559   assert(UnrolledLoop != RemainderLoop &&
1560          "Unrolled and Remainder loops are expected to distinct");
1561 
1562   // Get number of iterations in the original scalar loop.
1563   unsigned OrigLoopInvocationWeight = 0;
1564   std::optional<unsigned> OrigAverageTripCount =
1565       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1566   if (!OrigAverageTripCount)
1567     return;
1568 
1569   // Calculate number of iterations in unrolled loop.
1570   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1571   // Calculate number of iterations for remainder loop.
1572   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1573 
1574   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1575                             OrigLoopInvocationWeight);
1576   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1577                             OrigLoopInvocationWeight);
1578 }
1579 
1580 /// Utility that implements appending of loops onto a worklist.
1581 /// Loops are added in preorder (analogous for reverse postorder for trees),
1582 /// and the worklist is processed LIFO.
1583 template <typename RangeT>
1584 void llvm::appendReversedLoopsToWorklist(
1585     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1586   // We use an internal worklist to build up the preorder traversal without
1587   // recursion.
1588   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1589 
1590   // We walk the initial sequence of loops in reverse because we generally want
1591   // to visit defs before uses and the worklist is LIFO.
1592   for (Loop *RootL : Loops) {
1593     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1594     assert(PreOrderWorklist.empty() &&
1595            "Must start with an empty preorder walk worklist.");
1596     PreOrderWorklist.push_back(RootL);
1597     do {
1598       Loop *L = PreOrderWorklist.pop_back_val();
1599       PreOrderWorklist.append(L->begin(), L->end());
1600       PreOrderLoops.push_back(L);
1601     } while (!PreOrderWorklist.empty());
1602 
1603     Worklist.insert(std::move(PreOrderLoops));
1604     PreOrderLoops.clear();
1605   }
1606 }
1607 
1608 template <typename RangeT>
1609 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1610                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1611   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1612 }
1613 
1614 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1615     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1616 
1617 template void
1618 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1619                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1620 
1621 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1622                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1623   appendReversedLoopsToWorklist(LI, Worklist);
1624 }
1625 
1626 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1627                       LoopInfo *LI, LPPassManager *LPM) {
1628   Loop &New = *LI->AllocateLoop();
1629   if (PL)
1630     PL->addChildLoop(&New);
1631   else
1632     LI->addTopLevelLoop(&New);
1633 
1634   if (LPM)
1635     LPM->addLoop(New);
1636 
1637   // Add all of the blocks in L to the new loop.
1638   for (BasicBlock *BB : L->blocks())
1639     if (LI->getLoopFor(BB) == L)
1640       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1641 
1642   // Add all of the subloops to the new loop.
1643   for (Loop *I : *L)
1644     cloneLoop(I, &New, VM, LI, LPM);
1645 
1646   return &New;
1647 }
1648 
1649 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1650 /// need to use value-handles because SCEV expansion can invalidate previously
1651 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1652 /// a previous one.
1653 struct PointerBounds {
1654   TrackingVH<Value> Start;
1655   TrackingVH<Value> End;
1656   Value *StrideToCheck;
1657 };
1658 
1659 /// Expand code for the lower and upper bound of the pointer group \p CG
1660 /// in \p TheLoop.  \return the values for the bounds.
1661 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1662                                   Loop *TheLoop, Instruction *Loc,
1663                                   SCEVExpander &Exp, bool HoistRuntimeChecks) {
1664   LLVMContext &Ctx = Loc->getContext();
1665   Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);
1666 
1667   Value *Start = nullptr, *End = nullptr;
1668   LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1669   const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;
1670 
1671   // If the Low and High values are themselves loop-variant, then we may want
1672   // to expand the range to include those covered by the outer loop as well.
1673   // There is a trade-off here with the advantage being that creating checks
1674   // using the expanded range permits the runtime memory checks to be hoisted
1675   // out of the outer loop. This reduces the cost of entering the inner loop,
1676   // which can be significant for low trip counts. The disadvantage is that
1677   // there is a chance we may now never enter the vectorized inner loop,
1678   // whereas using a restricted range check could have allowed us to enter at
1679   // least once. This is why the behaviour is not currently the default and is
1680   // controlled by the parameter 'HoistRuntimeChecks'.
1681   if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
1682       isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) {
1683     auto *HighAR = cast<SCEVAddRecExpr>(High);
1684     auto *LowAR = cast<SCEVAddRecExpr>(Low);
1685     const Loop *OuterLoop = TheLoop->getParentLoop();
1686     const SCEV *Recur = LowAR->getStepRecurrence(*Exp.getSE());
1687     if (Recur == HighAR->getStepRecurrence(*Exp.getSE()) &&
1688         HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
1689       BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1690       const SCEV *OuterExitCount =
1691           Exp.getSE()->getExitCount(OuterLoop, OuterLoopLatch);
1692       if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
1693           OuterExitCount->getType()->isIntegerTy()) {
1694         const SCEV *NewHigh = cast<SCEVAddRecExpr>(High)->evaluateAtIteration(
1695             OuterExitCount, *Exp.getSE());
1696         if (!isa<SCEVCouldNotCompute>(NewHigh)) {
1697           LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
1698                                "outer loop in order to permit hoisting\n");
1699           High = NewHigh;
1700           Low = cast<SCEVAddRecExpr>(Low)->getStart();
1701           // If there is a possibility that the stride is negative then we have
1702           // to generate extra checks to ensure the stride is positive.
1703           if (!Exp.getSE()->isKnownNonNegative(Recur)) {
1704             Stride = Recur;
1705             LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
1706                                  "positive: "
1707                               << *Stride << '\n');
1708           }
1709         }
1710       }
1711     }
1712   }
1713 
1714   Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
1715   End = Exp.expandCodeFor(High, PtrArithTy, Loc);
1716   if (CG->NeedsFreeze) {
1717     IRBuilder<> Builder(Loc);
1718     Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
1719     End = Builder.CreateFreeze(End, End->getName() + ".fr");
1720   }
1721   Value *StrideVal =
1722       Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
1723   LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
1724   return {Start, End, StrideVal};
1725 }
1726 
1727 /// Turns a collection of checks into a collection of expanded upper and
1728 /// lower bounds for both pointers in the check.
1729 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1730 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1731              Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) {
1732   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1733 
1734   // Here we're relying on the SCEV Expander's cache to only emit code for the
1735   // same bounds once.
1736   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1737             [&](const RuntimePointerCheck &Check) {
1738               PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
1739                                                  HoistRuntimeChecks),
1740                             Second = expandBounds(Check.second, L, Loc, Exp,
1741                                                   HoistRuntimeChecks);
1742               return std::make_pair(First, Second);
1743             });
1744 
1745   return ChecksWithBounds;
1746 }
1747 
1748 Value *llvm::addRuntimeChecks(
1749     Instruction *Loc, Loop *TheLoop,
1750     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1751     SCEVExpander &Exp, bool HoistRuntimeChecks) {
1752   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1753   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1754   auto ExpandedChecks =
1755       expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);
1756 
1757   LLVMContext &Ctx = Loc->getContext();
1758   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1759                                            Loc->getModule()->getDataLayout());
1760   ChkBuilder.SetInsertPoint(Loc);
1761   // Our instructions might fold to a constant.
1762   Value *MemoryRuntimeCheck = nullptr;
1763 
1764   for (const auto &Check : ExpandedChecks) {
1765     const PointerBounds &A = Check.first, &B = Check.second;
1766     // Check if two pointers (A and B) conflict where conflict is computed as:
1767     // start(A) <= end(B) && start(B) <= end(A)
1768 
1769     assert((A.Start->getType()->getPointerAddressSpace() ==
1770             B.End->getType()->getPointerAddressSpace()) &&
1771            (B.Start->getType()->getPointerAddressSpace() ==
1772             A.End->getType()->getPointerAddressSpace()) &&
1773            "Trying to bounds check pointers with different address spaces");
1774 
1775     // [A|B].Start points to the first accessed byte under base [A|B].
1776     // [A|B].End points to the last accessed byte, plus one.
1777     // There is no conflict when the intervals are disjoint:
1778     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1779     //
1780     // bound0 = (B.Start < A.End)
1781     // bound1 = (A.Start < B.End)
1782     //  IsConflict = bound0 & bound1
1783     Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
1784     Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
1785     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1786     if (A.StrideToCheck) {
1787       Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1788           A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
1789           "stride.check");
1790       IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1791     }
1792     if (B.StrideToCheck) {
1793       Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1794           B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
1795           "stride.check");
1796       IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1797     }
1798     if (MemoryRuntimeCheck) {
1799       IsConflict =
1800           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1801     }
1802     MemoryRuntimeCheck = IsConflict;
1803   }
1804 
1805   return MemoryRuntimeCheck;
1806 }
1807 
1808 Value *llvm::addDiffRuntimeChecks(
1809     Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
1810     function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
1811 
1812   LLVMContext &Ctx = Loc->getContext();
1813   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1814                                            Loc->getModule()->getDataLayout());
1815   ChkBuilder.SetInsertPoint(Loc);
1816   // Our instructions might fold to a constant.
1817   Value *MemoryRuntimeCheck = nullptr;
1818 
1819   auto &SE = *Expander.getSE();
1820   // Map to keep track of created compares, The key is the pair of operands for
1821   // the compare, to allow detecting and re-using redundant compares.
1822   DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares;
1823   for (const auto &C : Checks) {
1824     Type *Ty = C.SinkStart->getType();
1825     // Compute VF * IC * AccessSize.
1826     auto *VFTimesUFTimesSize =
1827         ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
1828                              ConstantInt::get(Ty, IC * C.AccessSize));
1829     Value *Diff = Expander.expandCodeFor(
1830         SE.getMinusSCEV(C.SinkStart, C.SrcStart), Ty, Loc);
1831 
1832     // Check if the same compare has already been created earlier. In that case,
1833     // there is no need to check it again.
1834     Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize});
1835     if (IsConflict)
1836       continue;
1837 
1838     IsConflict =
1839         ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check");
1840     SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict});
1841     if (C.NeedsFreeze)
1842       IsConflict =
1843           ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
1844     if (MemoryRuntimeCheck) {
1845       IsConflict =
1846           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1847     }
1848     MemoryRuntimeCheck = IsConflict;
1849   }
1850 
1851   return MemoryRuntimeCheck;
1852 }
1853 
1854 std::optional<IVConditionInfo>
1855 llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold,
1856                             const MemorySSA &MSSA, AAResults &AA) {
1857   auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1858   if (!TI || !TI->isConditional())
1859     return {};
1860 
1861   auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
1862   // The case with the condition outside the loop should already be handled
1863   // earlier.
1864   if (!CondI || !L.contains(CondI))
1865     return {};
1866 
1867   SmallVector<Instruction *> InstToDuplicate;
1868   InstToDuplicate.push_back(CondI);
1869 
1870   SmallVector<Value *, 4> WorkList;
1871   WorkList.append(CondI->op_begin(), CondI->op_end());
1872 
1873   SmallVector<MemoryAccess *, 4> AccessesToCheck;
1874   SmallVector<MemoryLocation, 4> AccessedLocs;
1875   while (!WorkList.empty()) {
1876     Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1877     if (!I || !L.contains(I))
1878       continue;
1879 
1880     // TODO: support additional instructions.
1881     if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1882       return {};
1883 
1884     // Do not duplicate volatile and atomic loads.
1885     if (auto *LI = dyn_cast<LoadInst>(I))
1886       if (LI->isVolatile() || LI->isAtomic())
1887         return {};
1888 
1889     InstToDuplicate.push_back(I);
1890     if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1891       if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1892         // Queue the defining access to check for alias checks.
1893         AccessesToCheck.push_back(MemUse->getDefiningAccess());
1894         AccessedLocs.push_back(MemoryLocation::get(I));
1895       } else {
1896         // MemoryDefs may clobber the location or may be atomic memory
1897         // operations. Bail out.
1898         return {};
1899       }
1900     }
1901     WorkList.append(I->op_begin(), I->op_end());
1902   }
1903 
1904   if (InstToDuplicate.empty())
1905     return {};
1906 
1907   SmallVector<BasicBlock *, 4> ExitingBlocks;
1908   L.getExitingBlocks(ExitingBlocks);
1909   auto HasNoClobbersOnPath =
1910       [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1911        MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1912                       SmallVector<MemoryAccess *, 4> AccessesToCheck)
1913       -> std::optional<IVConditionInfo> {
1914     IVConditionInfo Info;
1915     // First, collect all blocks in the loop that are on a patch from Succ
1916     // to the header.
1917     SmallVector<BasicBlock *, 4> WorkList;
1918     WorkList.push_back(Succ);
1919     WorkList.push_back(Header);
1920     SmallPtrSet<BasicBlock *, 4> Seen;
1921     Seen.insert(Header);
1922     Info.PathIsNoop &=
1923         all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1924 
1925     while (!WorkList.empty()) {
1926       BasicBlock *Current = WorkList.pop_back_val();
1927       if (!L.contains(Current))
1928         continue;
1929       const auto &SeenIns = Seen.insert(Current);
1930       if (!SeenIns.second)
1931         continue;
1932 
1933       Info.PathIsNoop &= all_of(
1934           *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1935       WorkList.append(succ_begin(Current), succ_end(Current));
1936     }
1937 
1938     // Require at least 2 blocks on a path through the loop. This skips
1939     // paths that directly exit the loop.
1940     if (Seen.size() < 2)
1941       return {};
1942 
1943     // Next, check if there are any MemoryDefs that are on the path through
1944     // the loop (in the Seen set) and they may-alias any of the locations in
1945     // AccessedLocs. If that is the case, they may modify the condition and
1946     // partial unswitching is not possible.
1947     SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
1948     while (!AccessesToCheck.empty()) {
1949       MemoryAccess *Current = AccessesToCheck.pop_back_val();
1950       auto SeenI = SeenAccesses.insert(Current);
1951       if (!SeenI.second || !Seen.contains(Current->getBlock()))
1952         continue;
1953 
1954       // Bail out if exceeded the threshold.
1955       if (SeenAccesses.size() >= MSSAThreshold)
1956         return {};
1957 
1958       // MemoryUse are read-only accesses.
1959       if (isa<MemoryUse>(Current))
1960         continue;
1961 
1962       // For a MemoryDef, check if is aliases any of the location feeding
1963       // the original condition.
1964       if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
1965         if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
1966               return isModSet(
1967                   AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
1968             }))
1969           return {};
1970       }
1971 
1972       for (Use &U : Current->uses())
1973         AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
1974     }
1975 
1976     // We could also allow loops with known trip counts without mustprogress,
1977     // but ScalarEvolution may not be available.
1978     Info.PathIsNoop &= isMustProgress(&L);
1979 
1980     // If the path is considered a no-op so far, check if it reaches a
1981     // single exit block without any phis. This ensures no values from the
1982     // loop are used outside of the loop.
1983     if (Info.PathIsNoop) {
1984       for (auto *Exiting : ExitingBlocks) {
1985         if (!Seen.contains(Exiting))
1986           continue;
1987         for (auto *Succ : successors(Exiting)) {
1988           if (L.contains(Succ))
1989             continue;
1990 
1991           Info.PathIsNoop &= Succ->phis().empty() &&
1992                              (!Info.ExitForPath || Info.ExitForPath == Succ);
1993           if (!Info.PathIsNoop)
1994             break;
1995           assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
1996                  "cannot have multiple exit blocks");
1997           Info.ExitForPath = Succ;
1998         }
1999       }
2000     }
2001     if (!Info.ExitForPath)
2002       Info.PathIsNoop = false;
2003 
2004     Info.InstToDuplicate = InstToDuplicate;
2005     return Info;
2006   };
2007 
2008   // If we branch to the same successor, partial unswitching will not be
2009   // beneficial.
2010   if (TI->getSuccessor(0) == TI->getSuccessor(1))
2011     return {};
2012 
2013   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2014                                       AccessesToCheck)) {
2015     Info->KnownValue = ConstantInt::getTrue(TI->getContext());
2016     return Info;
2017   }
2018   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
2019                                       AccessesToCheck)) {
2020     Info->KnownValue = ConstantInt::getFalse(TI->getContext());
2021     return Info;
2022   }
2023 
2024   return {};
2025 }
2026