1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/MustExecute.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "loop-utils" 47 48 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 49 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 50 51 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 52 MemorySSAUpdater *MSSAU, 53 bool PreserveLCSSA) { 54 bool Changed = false; 55 56 // We re-use a vector for the in-loop predecesosrs. 57 SmallVector<BasicBlock *, 4> InLoopPredecessors; 58 59 auto RewriteExit = [&](BasicBlock *BB) { 60 assert(InLoopPredecessors.empty() && 61 "Must start with an empty predecessors list!"); 62 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 63 64 // See if there are any non-loop predecessors of this exit block and 65 // keep track of the in-loop predecessors. 66 bool IsDedicatedExit = true; 67 for (auto *PredBB : predecessors(BB)) 68 if (L->contains(PredBB)) { 69 if (isa<IndirectBrInst>(PredBB->getTerminator())) 70 // We cannot rewrite exiting edges from an indirectbr. 71 return false; 72 if (isa<CallBrInst>(PredBB->getTerminator())) 73 // We cannot rewrite exiting edges from a callbr. 74 return false; 75 76 InLoopPredecessors.push_back(PredBB); 77 } else { 78 IsDedicatedExit = false; 79 } 80 81 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 82 83 // Nothing to do if this is already a dedicated exit. 84 if (IsDedicatedExit) 85 return false; 86 87 auto *NewExitBB = SplitBlockPredecessors( 88 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 89 90 if (!NewExitBB) 91 LLVM_DEBUG( 92 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 93 << *L << "\n"); 94 else 95 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 96 << NewExitBB->getName() << "\n"); 97 return true; 98 }; 99 100 // Walk the exit blocks directly rather than building up a data structure for 101 // them, but only visit each one once. 102 SmallPtrSet<BasicBlock *, 4> Visited; 103 for (auto *BB : L->blocks()) 104 for (auto *SuccBB : successors(BB)) { 105 // We're looking for exit blocks so skip in-loop successors. 106 if (L->contains(SuccBB)) 107 continue; 108 109 // Visit each exit block exactly once. 110 if (!Visited.insert(SuccBB).second) 111 continue; 112 113 Changed |= RewriteExit(SuccBB); 114 } 115 116 return Changed; 117 } 118 119 /// Returns the instructions that use values defined in the loop. 120 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 121 SmallVector<Instruction *, 8> UsedOutside; 122 123 for (auto *Block : L->getBlocks()) 124 // FIXME: I believe that this could use copy_if if the Inst reference could 125 // be adapted into a pointer. 126 for (auto &Inst : *Block) { 127 auto Users = Inst.users(); 128 if (any_of(Users, [&](User *U) { 129 auto *Use = cast<Instruction>(U); 130 return !L->contains(Use->getParent()); 131 })) 132 UsedOutside.push_back(&Inst); 133 } 134 135 return UsedOutside; 136 } 137 138 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 139 // By definition, all loop passes need the LoopInfo analysis and the 140 // Dominator tree it depends on. Because they all participate in the loop 141 // pass manager, they must also preserve these. 142 AU.addRequired<DominatorTreeWrapperPass>(); 143 AU.addPreserved<DominatorTreeWrapperPass>(); 144 AU.addRequired<LoopInfoWrapperPass>(); 145 AU.addPreserved<LoopInfoWrapperPass>(); 146 147 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 148 // here because users shouldn't directly get them from this header. 149 extern char &LoopSimplifyID; 150 extern char &LCSSAID; 151 AU.addRequiredID(LoopSimplifyID); 152 AU.addPreservedID(LoopSimplifyID); 153 AU.addRequiredID(LCSSAID); 154 AU.addPreservedID(LCSSAID); 155 // This is used in the LPPassManager to perform LCSSA verification on passes 156 // which preserve lcssa form 157 AU.addRequired<LCSSAVerificationPass>(); 158 AU.addPreserved<LCSSAVerificationPass>(); 159 160 // Loop passes are designed to run inside of a loop pass manager which means 161 // that any function analyses they require must be required by the first loop 162 // pass in the manager (so that it is computed before the loop pass manager 163 // runs) and preserved by all loop pasess in the manager. To make this 164 // reasonably robust, the set needed for most loop passes is maintained here. 165 // If your loop pass requires an analysis not listed here, you will need to 166 // carefully audit the loop pass manager nesting structure that results. 167 AU.addRequired<AAResultsWrapperPass>(); 168 AU.addPreserved<AAResultsWrapperPass>(); 169 AU.addPreserved<BasicAAWrapperPass>(); 170 AU.addPreserved<GlobalsAAWrapperPass>(); 171 AU.addPreserved<SCEVAAWrapperPass>(); 172 AU.addRequired<ScalarEvolutionWrapperPass>(); 173 AU.addPreserved<ScalarEvolutionWrapperPass>(); 174 // FIXME: When all loop passes preserve MemorySSA, it can be required and 175 // preserved here instead of the individual handling in each pass. 176 } 177 178 /// Manually defined generic "LoopPass" dependency initialization. This is used 179 /// to initialize the exact set of passes from above in \c 180 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 181 /// with: 182 /// 183 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 184 /// 185 /// As-if "LoopPass" were a pass. 186 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 187 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 189 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 190 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 192 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 193 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 194 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 196 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 197 } 198 199 /// Create MDNode for input string. 200 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 201 LLVMContext &Context = TheLoop->getHeader()->getContext(); 202 Metadata *MDs[] = { 203 MDString::get(Context, Name), 204 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 205 return MDNode::get(Context, MDs); 206 } 207 208 /// Set input string into loop metadata by keeping other values intact. 209 /// If the string is already in loop metadata update value if it is 210 /// different. 211 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 212 unsigned V) { 213 SmallVector<Metadata *, 4> MDs(1); 214 // If the loop already has metadata, retain it. 215 MDNode *LoopID = TheLoop->getLoopID(); 216 if (LoopID) { 217 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 218 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 219 // If it is of form key = value, try to parse it. 220 if (Node->getNumOperands() == 2) { 221 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 222 if (S && S->getString().equals(StringMD)) { 223 ConstantInt *IntMD = 224 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 225 if (IntMD && IntMD->getSExtValue() == V) 226 // It is already in place. Do nothing. 227 return; 228 // We need to update the value, so just skip it here and it will 229 // be added after copying other existed nodes. 230 continue; 231 } 232 } 233 MDs.push_back(Node); 234 } 235 } 236 // Add new metadata. 237 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 238 // Replace current metadata node with new one. 239 LLVMContext &Context = TheLoop->getHeader()->getContext(); 240 MDNode *NewLoopID = MDNode::get(Context, MDs); 241 // Set operand 0 to refer to the loop id itself. 242 NewLoopID->replaceOperandWith(0, NewLoopID); 243 TheLoop->setLoopID(NewLoopID); 244 } 245 246 /// Find string metadata for loop 247 /// 248 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 249 /// operand or null otherwise. If the string metadata is not found return 250 /// Optional's not-a-value. 251 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 252 StringRef Name) { 253 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 254 if (!MD) 255 return None; 256 switch (MD->getNumOperands()) { 257 case 1: 258 return nullptr; 259 case 2: 260 return &MD->getOperand(1); 261 default: 262 llvm_unreachable("loop metadata has 0 or 1 operand"); 263 } 264 } 265 266 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 267 StringRef Name) { 268 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 269 if (!MD) 270 return None; 271 switch (MD->getNumOperands()) { 272 case 1: 273 // When the value is absent it is interpreted as 'attribute set'. 274 return true; 275 case 2: 276 if (ConstantInt *IntMD = 277 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 278 return IntMD->getZExtValue(); 279 return true; 280 } 281 llvm_unreachable("unexpected number of options"); 282 } 283 284 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 285 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 286 } 287 288 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 289 StringRef Name) { 290 const MDOperand *AttrMD = 291 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 292 if (!AttrMD) 293 return None; 294 295 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 296 if (!IntMD) 297 return None; 298 299 return IntMD->getSExtValue(); 300 } 301 302 Optional<MDNode *> llvm::makeFollowupLoopID( 303 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 304 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 305 if (!OrigLoopID) { 306 if (AlwaysNew) 307 return nullptr; 308 return None; 309 } 310 311 assert(OrigLoopID->getOperand(0) == OrigLoopID); 312 313 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 314 bool InheritSomeAttrs = 315 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 316 SmallVector<Metadata *, 8> MDs; 317 MDs.push_back(nullptr); 318 319 bool Changed = false; 320 if (InheritAllAttrs || InheritSomeAttrs) { 321 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 322 MDNode *Op = cast<MDNode>(Existing.get()); 323 324 auto InheritThisAttribute = [InheritSomeAttrs, 325 InheritOptionsExceptPrefix](MDNode *Op) { 326 if (!InheritSomeAttrs) 327 return false; 328 329 // Skip malformatted attribute metadata nodes. 330 if (Op->getNumOperands() == 0) 331 return true; 332 Metadata *NameMD = Op->getOperand(0).get(); 333 if (!isa<MDString>(NameMD)) 334 return true; 335 StringRef AttrName = cast<MDString>(NameMD)->getString(); 336 337 // Do not inherit excluded attributes. 338 return !AttrName.startswith(InheritOptionsExceptPrefix); 339 }; 340 341 if (InheritThisAttribute(Op)) 342 MDs.push_back(Op); 343 else 344 Changed = true; 345 } 346 } else { 347 // Modified if we dropped at least one attribute. 348 Changed = OrigLoopID->getNumOperands() > 1; 349 } 350 351 bool HasAnyFollowup = false; 352 for (StringRef OptionName : FollowupOptions) { 353 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 354 if (!FollowupNode) 355 continue; 356 357 HasAnyFollowup = true; 358 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 359 MDs.push_back(Option.get()); 360 Changed = true; 361 } 362 } 363 364 // Attributes of the followup loop not specified explicity, so signal to the 365 // transformation pass to add suitable attributes. 366 if (!AlwaysNew && !HasAnyFollowup) 367 return None; 368 369 // If no attributes were added or remove, the previous loop Id can be reused. 370 if (!AlwaysNew && !Changed) 371 return OrigLoopID; 372 373 // No attributes is equivalent to having no !llvm.loop metadata at all. 374 if (MDs.size() == 1) 375 return nullptr; 376 377 // Build the new loop ID. 378 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 379 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 380 return FollowupLoopID; 381 } 382 383 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 384 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 385 } 386 387 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 388 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 389 } 390 391 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 392 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 393 return TM_SuppressedByUser; 394 395 Optional<int> Count = 396 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 397 if (Count.hasValue()) 398 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 399 400 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 401 return TM_ForcedByUser; 402 403 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 404 return TM_ForcedByUser; 405 406 if (hasDisableAllTransformsHint(L)) 407 return TM_Disable; 408 409 return TM_Unspecified; 410 } 411 412 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 413 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 414 return TM_SuppressedByUser; 415 416 Optional<int> Count = 417 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 418 if (Count.hasValue()) 419 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 420 421 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 422 return TM_ForcedByUser; 423 424 if (hasDisableAllTransformsHint(L)) 425 return TM_Disable; 426 427 return TM_Unspecified; 428 } 429 430 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 431 Optional<bool> Enable = 432 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 433 434 if (Enable == false) 435 return TM_SuppressedByUser; 436 437 Optional<int> VectorizeWidth = 438 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 439 Optional<int> InterleaveCount = 440 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 441 442 // 'Forcing' vector width and interleave count to one effectively disables 443 // this tranformation. 444 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) 445 return TM_SuppressedByUser; 446 447 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 448 return TM_Disable; 449 450 if (Enable == true) 451 return TM_ForcedByUser; 452 453 if (VectorizeWidth == 1 && InterleaveCount == 1) 454 return TM_Disable; 455 456 if (VectorizeWidth > 1 || InterleaveCount > 1) 457 return TM_Enable; 458 459 if (hasDisableAllTransformsHint(L)) 460 return TM_Disable; 461 462 return TM_Unspecified; 463 } 464 465 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 466 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 467 return TM_ForcedByUser; 468 469 if (hasDisableAllTransformsHint(L)) 470 return TM_Disable; 471 472 return TM_Unspecified; 473 } 474 475 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 476 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 477 return TM_SuppressedByUser; 478 479 if (hasDisableAllTransformsHint(L)) 480 return TM_Disable; 481 482 return TM_Unspecified; 483 } 484 485 /// Does a BFS from a given node to all of its children inside a given loop. 486 /// The returned vector of nodes includes the starting point. 487 SmallVector<DomTreeNode *, 16> 488 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 489 SmallVector<DomTreeNode *, 16> Worklist; 490 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 491 // Only include subregions in the top level loop. 492 BasicBlock *BB = DTN->getBlock(); 493 if (CurLoop->contains(BB)) 494 Worklist.push_back(DTN); 495 }; 496 497 AddRegionToWorklist(N); 498 499 for (size_t I = 0; I < Worklist.size(); I++) 500 for (DomTreeNode *Child : Worklist[I]->getChildren()) 501 AddRegionToWorklist(Child); 502 503 return Worklist; 504 } 505 506 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 507 ScalarEvolution *SE = nullptr, 508 LoopInfo *LI = nullptr) { 509 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 510 auto *Preheader = L->getLoopPreheader(); 511 assert(Preheader && "Preheader should exist!"); 512 513 // Now that we know the removal is safe, remove the loop by changing the 514 // branch from the preheader to go to the single exit block. 515 // 516 // Because we're deleting a large chunk of code at once, the sequence in which 517 // we remove things is very important to avoid invalidation issues. 518 519 // Tell ScalarEvolution that the loop is deleted. Do this before 520 // deleting the loop so that ScalarEvolution can look at the loop 521 // to determine what it needs to clean up. 522 if (SE) 523 SE->forgetLoop(L); 524 525 auto *ExitBlock = L->getUniqueExitBlock(); 526 assert(ExitBlock && "Should have a unique exit block!"); 527 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 528 529 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 530 assert(OldBr && "Preheader must end with a branch"); 531 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 532 // Connect the preheader to the exit block. Keep the old edge to the header 533 // around to perform the dominator tree update in two separate steps 534 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 535 // preheader -> header. 536 // 537 // 538 // 0. Preheader 1. Preheader 2. Preheader 539 // | | | | 540 // V | V | 541 // Header <--\ | Header <--\ | Header <--\ 542 // | | | | | | | | | | | 543 // | V | | | V | | | V | 544 // | Body --/ | | Body --/ | | Body --/ 545 // V V V V V 546 // Exit Exit Exit 547 // 548 // By doing this is two separate steps we can perform the dominator tree 549 // update without using the batch update API. 550 // 551 // Even when the loop is never executed, we cannot remove the edge from the 552 // source block to the exit block. Consider the case where the unexecuted loop 553 // branches back to an outer loop. If we deleted the loop and removed the edge 554 // coming to this inner loop, this will break the outer loop structure (by 555 // deleting the backedge of the outer loop). If the outer loop is indeed a 556 // non-loop, it will be deleted in a future iteration of loop deletion pass. 557 IRBuilder<> Builder(OldBr); 558 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 559 // Remove the old branch. The conditional branch becomes a new terminator. 560 OldBr->eraseFromParent(); 561 562 // Rewrite phis in the exit block to get their inputs from the Preheader 563 // instead of the exiting block. 564 for (PHINode &P : ExitBlock->phis()) { 565 // Set the zero'th element of Phi to be from the preheader and remove all 566 // other incoming values. Given the loop has dedicated exits, all other 567 // incoming values must be from the exiting blocks. 568 int PredIndex = 0; 569 P.setIncomingBlock(PredIndex, Preheader); 570 // Removes all incoming values from all other exiting blocks (including 571 // duplicate values from an exiting block). 572 // Nuke all entries except the zero'th entry which is the preheader entry. 573 // NOTE! We need to remove Incoming Values in the reverse order as done 574 // below, to keep the indices valid for deletion (removeIncomingValues 575 // updates getNumIncomingValues and shifts all values down into the operand 576 // being deleted). 577 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 578 P.removeIncomingValue(e - i, false); 579 580 assert((P.getNumIncomingValues() == 1 && 581 P.getIncomingBlock(PredIndex) == Preheader) && 582 "Should have exactly one value and that's from the preheader!"); 583 } 584 585 // Disconnect the loop body by branching directly to its exit. 586 Builder.SetInsertPoint(Preheader->getTerminator()); 587 Builder.CreateBr(ExitBlock); 588 // Remove the old branch. 589 Preheader->getTerminator()->eraseFromParent(); 590 591 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 592 if (DT) { 593 // Update the dominator tree by informing it about the new edge from the 594 // preheader to the exit and the removed edge. 595 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}, 596 {DominatorTree::Delete, Preheader, L->getHeader()}}); 597 } 598 599 // Use a map to unique and a vector to guarantee deterministic ordering. 600 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 601 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 602 603 // Given LCSSA form is satisfied, we should not have users of instructions 604 // within the dead loop outside of the loop. However, LCSSA doesn't take 605 // unreachable uses into account. We handle them here. 606 // We could do it after drop all references (in this case all users in the 607 // loop will be already eliminated and we have less work to do but according 608 // to API doc of User::dropAllReferences only valid operation after dropping 609 // references, is deletion. So let's substitute all usages of 610 // instruction from the loop with undef value of corresponding type first. 611 for (auto *Block : L->blocks()) 612 for (Instruction &I : *Block) { 613 auto *Undef = UndefValue::get(I.getType()); 614 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 615 Use &U = *UI; 616 ++UI; 617 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 618 if (L->contains(Usr->getParent())) 619 continue; 620 // If we have a DT then we can check that uses outside a loop only in 621 // unreachable block. 622 if (DT) 623 assert(!DT->isReachableFromEntry(U) && 624 "Unexpected user in reachable block"); 625 U.set(Undef); 626 } 627 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 628 if (!DVI) 629 continue; 630 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 631 if (Key != DeadDebugSet.end()) 632 continue; 633 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 634 DeadDebugInst.push_back(DVI); 635 } 636 637 // After the loop has been deleted all the values defined and modified 638 // inside the loop are going to be unavailable. 639 // Since debug values in the loop have been deleted, inserting an undef 640 // dbg.value truncates the range of any dbg.value before the loop where the 641 // loop used to be. This is particularly important for constant values. 642 DIBuilder DIB(*ExitBlock->getModule()); 643 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 644 assert(InsertDbgValueBefore && 645 "There should be a non-PHI instruction in exit block, else these " 646 "instructions will have no parent."); 647 for (auto *DVI : DeadDebugInst) 648 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 649 DVI->getVariable(), DVI->getExpression(), 650 DVI->getDebugLoc(), InsertDbgValueBefore); 651 652 // Remove the block from the reference counting scheme, so that we can 653 // delete it freely later. 654 for (auto *Block : L->blocks()) 655 Block->dropAllReferences(); 656 657 if (LI) { 658 // Erase the instructions and the blocks without having to worry 659 // about ordering because we already dropped the references. 660 // NOTE: This iteration is safe because erasing the block does not remove 661 // its entry from the loop's block list. We do that in the next section. 662 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 663 LpI != LpE; ++LpI) 664 (*LpI)->eraseFromParent(); 665 666 // Finally, the blocks from loopinfo. This has to happen late because 667 // otherwise our loop iterators won't work. 668 669 SmallPtrSet<BasicBlock *, 8> blocks; 670 blocks.insert(L->block_begin(), L->block_end()); 671 for (BasicBlock *BB : blocks) 672 LI->removeBlock(BB); 673 674 // The last step is to update LoopInfo now that we've eliminated this loop. 675 // Note: LoopInfo::erase remove the given loop and relink its subloops with 676 // its parent. While removeLoop/removeChildLoop remove the given loop but 677 // not relink its subloops, which is what we want. 678 if (Loop *ParentLoop = L->getParentLoop()) { 679 Loop::iterator I = find(ParentLoop->begin(), ParentLoop->end(), L); 680 assert(I != ParentLoop->end() && "Couldn't find loop"); 681 ParentLoop->removeChildLoop(I); 682 } else { 683 Loop::iterator I = find(LI->begin(), LI->end(), L); 684 assert(I != LI->end() && "Couldn't find loop"); 685 LI->removeLoop(I); 686 } 687 LI->destroy(L); 688 } 689 } 690 691 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 692 // Support loops with an exiting latch and other existing exists only 693 // deoptimize. 694 695 // Get the branch weights for the loop's backedge. 696 BasicBlock *Latch = L->getLoopLatch(); 697 if (!Latch) 698 return None; 699 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 700 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 701 return None; 702 703 assert((LatchBR->getSuccessor(0) == L->getHeader() || 704 LatchBR->getSuccessor(1) == L->getHeader()) && 705 "At least one edge out of the latch must go to the header"); 706 707 SmallVector<BasicBlock *, 4> ExitBlocks; 708 L->getUniqueNonLatchExitBlocks(ExitBlocks); 709 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 710 return !EB->getTerminatingDeoptimizeCall(); 711 })) 712 return None; 713 714 // To estimate the number of times the loop body was executed, we want to 715 // know the number of times the backedge was taken, vs. the number of times 716 // we exited the loop. 717 uint64_t BackedgeTakenWeight, LatchExitWeight; 718 if (!LatchBR->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) 719 return None; 720 721 if (LatchBR->getSuccessor(0) != L->getHeader()) 722 std::swap(BackedgeTakenWeight, LatchExitWeight); 723 724 if (!BackedgeTakenWeight || !LatchExitWeight) 725 return 0; 726 727 // Divide the count of the backedge by the count of the edge exiting the loop, 728 // rounding to nearest. 729 return llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); 730 } 731 732 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 733 ScalarEvolution &SE) { 734 Loop *OuterL = InnerLoop->getParentLoop(); 735 if (!OuterL) 736 return true; 737 738 // Get the backedge taken count for the inner loop 739 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 740 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 741 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 742 !InnerLoopBECountSC->getType()->isIntegerTy()) 743 return false; 744 745 // Get whether count is invariant to the outer loop 746 ScalarEvolution::LoopDisposition LD = 747 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 748 if (LD != ScalarEvolution::LoopInvariant) 749 return false; 750 751 return true; 752 } 753 754 Value *llvm::createMinMaxOp(IRBuilder<> &Builder, 755 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 756 Value *Left, Value *Right) { 757 CmpInst::Predicate P = CmpInst::ICMP_NE; 758 switch (RK) { 759 default: 760 llvm_unreachable("Unknown min/max recurrence kind"); 761 case RecurrenceDescriptor::MRK_UIntMin: 762 P = CmpInst::ICMP_ULT; 763 break; 764 case RecurrenceDescriptor::MRK_UIntMax: 765 P = CmpInst::ICMP_UGT; 766 break; 767 case RecurrenceDescriptor::MRK_SIntMin: 768 P = CmpInst::ICMP_SLT; 769 break; 770 case RecurrenceDescriptor::MRK_SIntMax: 771 P = CmpInst::ICMP_SGT; 772 break; 773 case RecurrenceDescriptor::MRK_FloatMin: 774 P = CmpInst::FCMP_OLT; 775 break; 776 case RecurrenceDescriptor::MRK_FloatMax: 777 P = CmpInst::FCMP_OGT; 778 break; 779 } 780 781 // We only match FP sequences that are 'fast', so we can unconditionally 782 // set it on any generated instructions. 783 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 784 FastMathFlags FMF; 785 FMF.setFast(); 786 Builder.setFastMathFlags(FMF); 787 788 Value *Cmp; 789 if (RK == RecurrenceDescriptor::MRK_FloatMin || 790 RK == RecurrenceDescriptor::MRK_FloatMax) 791 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 792 else 793 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 794 795 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 796 return Select; 797 } 798 799 // Helper to generate an ordered reduction. 800 Value * 801 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, 802 unsigned Op, 803 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 804 ArrayRef<Value *> RedOps) { 805 unsigned VF = Src->getType()->getVectorNumElements(); 806 807 // Extract and apply reduction ops in ascending order: 808 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 809 Value *Result = Acc; 810 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 811 Value *Ext = 812 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 813 814 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 815 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 816 "bin.rdx"); 817 } else { 818 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 819 "Invalid min/max"); 820 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 821 } 822 823 if (!RedOps.empty()) 824 propagateIRFlags(Result, RedOps); 825 } 826 827 return Result; 828 } 829 830 // Helper to generate a log2 shuffle reduction. 831 Value * 832 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 833 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 834 ArrayRef<Value *> RedOps) { 835 unsigned VF = Src->getType()->getVectorNumElements(); 836 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 837 // and vector ops, reducing the set of values being computed by half each 838 // round. 839 assert(isPowerOf2_32(VF) && 840 "Reduction emission only supported for pow2 vectors!"); 841 Value *TmpVec = Src; 842 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 843 for (unsigned i = VF; i != 1; i >>= 1) { 844 // Move the upper half of the vector to the lower half. 845 for (unsigned j = 0; j != i / 2; ++j) 846 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 847 848 // Fill the rest of the mask with undef. 849 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 850 UndefValue::get(Builder.getInt32Ty())); 851 852 Value *Shuf = Builder.CreateShuffleVector( 853 TmpVec, UndefValue::get(TmpVec->getType()), 854 ConstantVector::get(ShuffleMask), "rdx.shuf"); 855 856 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 857 // The builder propagates its fast-math-flags setting. 858 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 859 "bin.rdx"); 860 } else { 861 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 862 "Invalid min/max"); 863 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 864 } 865 if (!RedOps.empty()) 866 propagateIRFlags(TmpVec, RedOps); 867 } 868 // The result is in the first element of the vector. 869 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 870 } 871 872 /// Create a simple vector reduction specified by an opcode and some 873 /// flags (if generating min/max reductions). 874 Value *llvm::createSimpleTargetReduction( 875 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 876 Value *Src, TargetTransformInfo::ReductionFlags Flags, 877 ArrayRef<Value *> RedOps) { 878 assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 879 880 std::function<Value *()> BuildFunc; 881 using RD = RecurrenceDescriptor; 882 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 883 884 switch (Opcode) { 885 case Instruction::Add: 886 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 887 break; 888 case Instruction::Mul: 889 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 890 break; 891 case Instruction::And: 892 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 893 break; 894 case Instruction::Or: 895 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 896 break; 897 case Instruction::Xor: 898 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 899 break; 900 case Instruction::FAdd: 901 BuildFunc = [&]() { 902 auto Rdx = Builder.CreateFAddReduce( 903 Constant::getNullValue(Src->getType()->getVectorElementType()), Src); 904 return Rdx; 905 }; 906 break; 907 case Instruction::FMul: 908 BuildFunc = [&]() { 909 Type *Ty = Src->getType()->getVectorElementType(); 910 auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); 911 return Rdx; 912 }; 913 break; 914 case Instruction::ICmp: 915 if (Flags.IsMaxOp) { 916 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 917 BuildFunc = [&]() { 918 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 919 }; 920 } else { 921 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 922 BuildFunc = [&]() { 923 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 924 }; 925 } 926 break; 927 case Instruction::FCmp: 928 if (Flags.IsMaxOp) { 929 MinMaxKind = RD::MRK_FloatMax; 930 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 931 } else { 932 MinMaxKind = RD::MRK_FloatMin; 933 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 934 } 935 break; 936 default: 937 llvm_unreachable("Unhandled opcode"); 938 break; 939 } 940 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 941 return BuildFunc(); 942 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 943 } 944 945 /// Create a vector reduction using a given recurrence descriptor. 946 Value *llvm::createTargetReduction(IRBuilder<> &B, 947 const TargetTransformInfo *TTI, 948 RecurrenceDescriptor &Desc, Value *Src, 949 bool NoNaN) { 950 // TODO: Support in-order reductions based on the recurrence descriptor. 951 using RD = RecurrenceDescriptor; 952 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 953 TargetTransformInfo::ReductionFlags Flags; 954 Flags.NoNaN = NoNaN; 955 956 // All ops in the reduction inherit fast-math-flags from the recurrence 957 // descriptor. 958 IRBuilder<>::FastMathFlagGuard FMFGuard(B); 959 B.setFastMathFlags(Desc.getFastMathFlags()); 960 961 switch (RecKind) { 962 case RD::RK_FloatAdd: 963 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 964 case RD::RK_FloatMult: 965 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 966 case RD::RK_IntegerAdd: 967 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 968 case RD::RK_IntegerMult: 969 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 970 case RD::RK_IntegerAnd: 971 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 972 case RD::RK_IntegerOr: 973 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 974 case RD::RK_IntegerXor: 975 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 976 case RD::RK_IntegerMinMax: { 977 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 978 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 979 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 980 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 981 } 982 case RD::RK_FloatMinMax: { 983 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 984 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 985 } 986 default: 987 llvm_unreachable("Unhandled RecKind"); 988 } 989 } 990 991 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 992 auto *VecOp = dyn_cast<Instruction>(I); 993 if (!VecOp) 994 return; 995 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 996 : dyn_cast<Instruction>(OpValue); 997 if (!Intersection) 998 return; 999 const unsigned Opcode = Intersection->getOpcode(); 1000 VecOp->copyIRFlags(Intersection); 1001 for (auto *V : VL) { 1002 auto *Instr = dyn_cast<Instruction>(V); 1003 if (!Instr) 1004 continue; 1005 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1006 VecOp->andIRFlags(V); 1007 } 1008 } 1009 1010 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1011 ScalarEvolution &SE) { 1012 const SCEV *Zero = SE.getZero(S->getType()); 1013 return SE.isAvailableAtLoopEntry(S, L) && 1014 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1015 } 1016 1017 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1018 ScalarEvolution &SE) { 1019 const SCEV *Zero = SE.getZero(S->getType()); 1020 return SE.isAvailableAtLoopEntry(S, L) && 1021 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1022 } 1023 1024 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1025 bool Signed) { 1026 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1027 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1028 APInt::getMinValue(BitWidth); 1029 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1030 return SE.isAvailableAtLoopEntry(S, L) && 1031 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1032 SE.getConstant(Min)); 1033 } 1034 1035 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1036 bool Signed) { 1037 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1038 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1039 APInt::getMaxValue(BitWidth); 1040 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1041 return SE.isAvailableAtLoopEntry(S, L) && 1042 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1043 SE.getConstant(Max)); 1044 } 1045