1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/PriorityWorklist.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstSimplifyFolder.h" 26 #include "llvm/Analysis/LoopAccessAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 49 using namespace llvm; 50 using namespace llvm::PatternMatch; 51 52 #define DEBUG_TYPE "loop-utils" 53 54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 56 57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 58 MemorySSAUpdater *MSSAU, 59 bool PreserveLCSSA) { 60 bool Changed = false; 61 62 // We re-use a vector for the in-loop predecesosrs. 63 SmallVector<BasicBlock *, 4> InLoopPredecessors; 64 65 auto RewriteExit = [&](BasicBlock *BB) { 66 assert(InLoopPredecessors.empty() && 67 "Must start with an empty predecessors list!"); 68 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 69 70 // See if there are any non-loop predecessors of this exit block and 71 // keep track of the in-loop predecessors. 72 bool IsDedicatedExit = true; 73 for (auto *PredBB : predecessors(BB)) 74 if (L->contains(PredBB)) { 75 if (isa<IndirectBrInst>(PredBB->getTerminator())) 76 // We cannot rewrite exiting edges from an indirectbr. 77 return false; 78 79 InLoopPredecessors.push_back(PredBB); 80 } else { 81 IsDedicatedExit = false; 82 } 83 84 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 85 86 // Nothing to do if this is already a dedicated exit. 87 if (IsDedicatedExit) 88 return false; 89 90 auto *NewExitBB = SplitBlockPredecessors( 91 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 92 93 if (!NewExitBB) 94 LLVM_DEBUG( 95 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 96 << *L << "\n"); 97 else 98 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 99 << NewExitBB->getName() << "\n"); 100 return true; 101 }; 102 103 // Walk the exit blocks directly rather than building up a data structure for 104 // them, but only visit each one once. 105 SmallPtrSet<BasicBlock *, 4> Visited; 106 for (auto *BB : L->blocks()) 107 for (auto *SuccBB : successors(BB)) { 108 // We're looking for exit blocks so skip in-loop successors. 109 if (L->contains(SuccBB)) 110 continue; 111 112 // Visit each exit block exactly once. 113 if (!Visited.insert(SuccBB).second) 114 continue; 115 116 Changed |= RewriteExit(SuccBB); 117 } 118 119 return Changed; 120 } 121 122 /// Returns the instructions that use values defined in the loop. 123 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 124 SmallVector<Instruction *, 8> UsedOutside; 125 126 for (auto *Block : L->getBlocks()) 127 // FIXME: I believe that this could use copy_if if the Inst reference could 128 // be adapted into a pointer. 129 for (auto &Inst : *Block) { 130 auto Users = Inst.users(); 131 if (any_of(Users, [&](User *U) { 132 auto *Use = cast<Instruction>(U); 133 return !L->contains(Use->getParent()); 134 })) 135 UsedOutside.push_back(&Inst); 136 } 137 138 return UsedOutside; 139 } 140 141 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 142 // By definition, all loop passes need the LoopInfo analysis and the 143 // Dominator tree it depends on. Because they all participate in the loop 144 // pass manager, they must also preserve these. 145 AU.addRequired<DominatorTreeWrapperPass>(); 146 AU.addPreserved<DominatorTreeWrapperPass>(); 147 AU.addRequired<LoopInfoWrapperPass>(); 148 AU.addPreserved<LoopInfoWrapperPass>(); 149 150 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 151 // here because users shouldn't directly get them from this header. 152 extern char &LoopSimplifyID; 153 extern char &LCSSAID; 154 AU.addRequiredID(LoopSimplifyID); 155 AU.addPreservedID(LoopSimplifyID); 156 AU.addRequiredID(LCSSAID); 157 AU.addPreservedID(LCSSAID); 158 // This is used in the LPPassManager to perform LCSSA verification on passes 159 // which preserve lcssa form 160 AU.addRequired<LCSSAVerificationPass>(); 161 AU.addPreserved<LCSSAVerificationPass>(); 162 163 // Loop passes are designed to run inside of a loop pass manager which means 164 // that any function analyses they require must be required by the first loop 165 // pass in the manager (so that it is computed before the loop pass manager 166 // runs) and preserved by all loop pasess in the manager. To make this 167 // reasonably robust, the set needed for most loop passes is maintained here. 168 // If your loop pass requires an analysis not listed here, you will need to 169 // carefully audit the loop pass manager nesting structure that results. 170 AU.addRequired<AAResultsWrapperPass>(); 171 AU.addPreserved<AAResultsWrapperPass>(); 172 AU.addPreserved<BasicAAWrapperPass>(); 173 AU.addPreserved<GlobalsAAWrapperPass>(); 174 AU.addPreserved<SCEVAAWrapperPass>(); 175 AU.addRequired<ScalarEvolutionWrapperPass>(); 176 AU.addPreserved<ScalarEvolutionWrapperPass>(); 177 // FIXME: When all loop passes preserve MemorySSA, it can be required and 178 // preserved here instead of the individual handling in each pass. 179 } 180 181 /// Manually defined generic "LoopPass" dependency initialization. This is used 182 /// to initialize the exact set of passes from above in \c 183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 184 /// with: 185 /// 186 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 187 /// 188 /// As-if "LoopPass" were a pass. 189 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 192 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 193 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 194 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 196 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 198 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 200 } 201 202 /// Create MDNode for input string. 203 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 204 LLVMContext &Context = TheLoop->getHeader()->getContext(); 205 Metadata *MDs[] = { 206 MDString::get(Context, Name), 207 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 208 return MDNode::get(Context, MDs); 209 } 210 211 /// Set input string into loop metadata by keeping other values intact. 212 /// If the string is already in loop metadata update value if it is 213 /// different. 214 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 215 unsigned V) { 216 SmallVector<Metadata *, 4> MDs(1); 217 // If the loop already has metadata, retain it. 218 MDNode *LoopID = TheLoop->getLoopID(); 219 if (LoopID) { 220 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 221 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 222 // If it is of form key = value, try to parse it. 223 if (Node->getNumOperands() == 2) { 224 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 225 if (S && S->getString().equals(StringMD)) { 226 ConstantInt *IntMD = 227 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 228 if (IntMD && IntMD->getSExtValue() == V) 229 // It is already in place. Do nothing. 230 return; 231 // We need to update the value, so just skip it here and it will 232 // be added after copying other existed nodes. 233 continue; 234 } 235 } 236 MDs.push_back(Node); 237 } 238 } 239 // Add new metadata. 240 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 241 // Replace current metadata node with new one. 242 LLVMContext &Context = TheLoop->getHeader()->getContext(); 243 MDNode *NewLoopID = MDNode::get(Context, MDs); 244 // Set operand 0 to refer to the loop id itself. 245 NewLoopID->replaceOperandWith(0, NewLoopID); 246 TheLoop->setLoopID(NewLoopID); 247 } 248 249 Optional<ElementCount> 250 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 251 Optional<int> Width = 252 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 253 254 if (Width) { 255 Optional<int> IsScalable = getOptionalIntLoopAttribute( 256 TheLoop, "llvm.loop.vectorize.scalable.enable"); 257 return ElementCount::get(*Width, IsScalable.value_or(false)); 258 } 259 260 return None; 261 } 262 263 Optional<MDNode *> llvm::makeFollowupLoopID( 264 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 265 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 266 if (!OrigLoopID) { 267 if (AlwaysNew) 268 return nullptr; 269 return None; 270 } 271 272 assert(OrigLoopID->getOperand(0) == OrigLoopID); 273 274 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 275 bool InheritSomeAttrs = 276 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 277 SmallVector<Metadata *, 8> MDs; 278 MDs.push_back(nullptr); 279 280 bool Changed = false; 281 if (InheritAllAttrs || InheritSomeAttrs) { 282 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 283 MDNode *Op = cast<MDNode>(Existing.get()); 284 285 auto InheritThisAttribute = [InheritSomeAttrs, 286 InheritOptionsExceptPrefix](MDNode *Op) { 287 if (!InheritSomeAttrs) 288 return false; 289 290 // Skip malformatted attribute metadata nodes. 291 if (Op->getNumOperands() == 0) 292 return true; 293 Metadata *NameMD = Op->getOperand(0).get(); 294 if (!isa<MDString>(NameMD)) 295 return true; 296 StringRef AttrName = cast<MDString>(NameMD)->getString(); 297 298 // Do not inherit excluded attributes. 299 return !AttrName.startswith(InheritOptionsExceptPrefix); 300 }; 301 302 if (InheritThisAttribute(Op)) 303 MDs.push_back(Op); 304 else 305 Changed = true; 306 } 307 } else { 308 // Modified if we dropped at least one attribute. 309 Changed = OrigLoopID->getNumOperands() > 1; 310 } 311 312 bool HasAnyFollowup = false; 313 for (StringRef OptionName : FollowupOptions) { 314 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 315 if (!FollowupNode) 316 continue; 317 318 HasAnyFollowup = true; 319 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 320 MDs.push_back(Option.get()); 321 Changed = true; 322 } 323 } 324 325 // Attributes of the followup loop not specified explicity, so signal to the 326 // transformation pass to add suitable attributes. 327 if (!AlwaysNew && !HasAnyFollowup) 328 return None; 329 330 // If no attributes were added or remove, the previous loop Id can be reused. 331 if (!AlwaysNew && !Changed) 332 return OrigLoopID; 333 334 // No attributes is equivalent to having no !llvm.loop metadata at all. 335 if (MDs.size() == 1) 336 return nullptr; 337 338 // Build the new loop ID. 339 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 340 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 341 return FollowupLoopID; 342 } 343 344 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 345 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 346 } 347 348 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 349 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 350 } 351 352 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 353 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 354 return TM_SuppressedByUser; 355 356 Optional<int> Count = 357 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 358 if (Count) 359 return Count.value() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 360 361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 362 return TM_ForcedByUser; 363 364 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 365 return TM_ForcedByUser; 366 367 if (hasDisableAllTransformsHint(L)) 368 return TM_Disable; 369 370 return TM_Unspecified; 371 } 372 373 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 374 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 375 return TM_SuppressedByUser; 376 377 Optional<int> Count = 378 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 379 if (Count) 380 return Count.value() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 381 382 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 383 return TM_ForcedByUser; 384 385 if (hasDisableAllTransformsHint(L)) 386 return TM_Disable; 387 388 return TM_Unspecified; 389 } 390 391 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 392 Optional<bool> Enable = 393 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 394 395 if (Enable == false) 396 return TM_SuppressedByUser; 397 398 Optional<ElementCount> VectorizeWidth = 399 getOptionalElementCountLoopAttribute(L); 400 Optional<int> InterleaveCount = 401 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 402 403 // 'Forcing' vector width and interleave count to one effectively disables 404 // this tranformation. 405 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 406 InterleaveCount == 1) 407 return TM_SuppressedByUser; 408 409 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 410 return TM_Disable; 411 412 if (Enable == true) 413 return TM_ForcedByUser; 414 415 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 416 return TM_Disable; 417 418 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 419 return TM_Enable; 420 421 if (hasDisableAllTransformsHint(L)) 422 return TM_Disable; 423 424 return TM_Unspecified; 425 } 426 427 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 428 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 429 return TM_ForcedByUser; 430 431 if (hasDisableAllTransformsHint(L)) 432 return TM_Disable; 433 434 return TM_Unspecified; 435 } 436 437 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 438 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 439 return TM_SuppressedByUser; 440 441 if (hasDisableAllTransformsHint(L)) 442 return TM_Disable; 443 444 return TM_Unspecified; 445 } 446 447 /// Does a BFS from a given node to all of its children inside a given loop. 448 /// The returned vector of nodes includes the starting point. 449 SmallVector<DomTreeNode *, 16> 450 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 451 SmallVector<DomTreeNode *, 16> Worklist; 452 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 453 // Only include subregions in the top level loop. 454 BasicBlock *BB = DTN->getBlock(); 455 if (CurLoop->contains(BB)) 456 Worklist.push_back(DTN); 457 }; 458 459 AddRegionToWorklist(N); 460 461 for (size_t I = 0; I < Worklist.size(); I++) { 462 for (DomTreeNode *Child : Worklist[I]->children()) 463 AddRegionToWorklist(Child); 464 } 465 466 return Worklist; 467 } 468 469 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 470 LoopInfo *LI, MemorySSA *MSSA) { 471 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 472 auto *Preheader = L->getLoopPreheader(); 473 assert(Preheader && "Preheader should exist!"); 474 475 std::unique_ptr<MemorySSAUpdater> MSSAU; 476 if (MSSA) 477 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 478 479 // Now that we know the removal is safe, remove the loop by changing the 480 // branch from the preheader to go to the single exit block. 481 // 482 // Because we're deleting a large chunk of code at once, the sequence in which 483 // we remove things is very important to avoid invalidation issues. 484 485 // Tell ScalarEvolution that the loop is deleted. Do this before 486 // deleting the loop so that ScalarEvolution can look at the loop 487 // to determine what it needs to clean up. 488 if (SE) 489 SE->forgetLoop(L); 490 491 Instruction *OldTerm = Preheader->getTerminator(); 492 assert(!OldTerm->mayHaveSideEffects() && 493 "Preheader must end with a side-effect-free terminator"); 494 assert(OldTerm->getNumSuccessors() == 1 && 495 "Preheader must have a single successor"); 496 // Connect the preheader to the exit block. Keep the old edge to the header 497 // around to perform the dominator tree update in two separate steps 498 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 499 // preheader -> header. 500 // 501 // 502 // 0. Preheader 1. Preheader 2. Preheader 503 // | | | | 504 // V | V | 505 // Header <--\ | Header <--\ | Header <--\ 506 // | | | | | | | | | | | 507 // | V | | | V | | | V | 508 // | Body --/ | | Body --/ | | Body --/ 509 // V V V V V 510 // Exit Exit Exit 511 // 512 // By doing this is two separate steps we can perform the dominator tree 513 // update without using the batch update API. 514 // 515 // Even when the loop is never executed, we cannot remove the edge from the 516 // source block to the exit block. Consider the case where the unexecuted loop 517 // branches back to an outer loop. If we deleted the loop and removed the edge 518 // coming to this inner loop, this will break the outer loop structure (by 519 // deleting the backedge of the outer loop). If the outer loop is indeed a 520 // non-loop, it will be deleted in a future iteration of loop deletion pass. 521 IRBuilder<> Builder(OldTerm); 522 523 auto *ExitBlock = L->getUniqueExitBlock(); 524 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 525 if (ExitBlock) { 526 assert(ExitBlock && "Should have a unique exit block!"); 527 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 528 529 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 530 // Remove the old branch. The conditional branch becomes a new terminator. 531 OldTerm->eraseFromParent(); 532 533 // Rewrite phis in the exit block to get their inputs from the Preheader 534 // instead of the exiting block. 535 for (PHINode &P : ExitBlock->phis()) { 536 // Set the zero'th element of Phi to be from the preheader and remove all 537 // other incoming values. Given the loop has dedicated exits, all other 538 // incoming values must be from the exiting blocks. 539 int PredIndex = 0; 540 P.setIncomingBlock(PredIndex, Preheader); 541 // Removes all incoming values from all other exiting blocks (including 542 // duplicate values from an exiting block). 543 // Nuke all entries except the zero'th entry which is the preheader entry. 544 // NOTE! We need to remove Incoming Values in the reverse order as done 545 // below, to keep the indices valid for deletion (removeIncomingValues 546 // updates getNumIncomingValues and shifts all values down into the 547 // operand being deleted). 548 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 549 P.removeIncomingValue(e - i, false); 550 551 assert((P.getNumIncomingValues() == 1 && 552 P.getIncomingBlock(PredIndex) == Preheader) && 553 "Should have exactly one value and that's from the preheader!"); 554 } 555 556 if (DT) { 557 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 558 if (MSSA) { 559 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 560 *DT); 561 if (VerifyMemorySSA) 562 MSSA->verifyMemorySSA(); 563 } 564 } 565 566 // Disconnect the loop body by branching directly to its exit. 567 Builder.SetInsertPoint(Preheader->getTerminator()); 568 Builder.CreateBr(ExitBlock); 569 // Remove the old branch. 570 Preheader->getTerminator()->eraseFromParent(); 571 } else { 572 assert(L->hasNoExitBlocks() && 573 "Loop should have either zero or one exit blocks."); 574 575 Builder.SetInsertPoint(OldTerm); 576 Builder.CreateUnreachable(); 577 Preheader->getTerminator()->eraseFromParent(); 578 } 579 580 if (DT) { 581 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 582 if (MSSA) { 583 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 584 *DT); 585 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 586 L->block_end()); 587 MSSAU->removeBlocks(DeadBlockSet); 588 if (VerifyMemorySSA) 589 MSSA->verifyMemorySSA(); 590 } 591 } 592 593 // Use a map to unique and a vector to guarantee deterministic ordering. 594 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 595 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 596 597 if (ExitBlock) { 598 // Given LCSSA form is satisfied, we should not have users of instructions 599 // within the dead loop outside of the loop. However, LCSSA doesn't take 600 // unreachable uses into account. We handle them here. 601 // We could do it after drop all references (in this case all users in the 602 // loop will be already eliminated and we have less work to do but according 603 // to API doc of User::dropAllReferences only valid operation after dropping 604 // references, is deletion. So let's substitute all usages of 605 // instruction from the loop with poison value of corresponding type first. 606 for (auto *Block : L->blocks()) 607 for (Instruction &I : *Block) { 608 auto *Poison = PoisonValue::get(I.getType()); 609 for (Use &U : llvm::make_early_inc_range(I.uses())) { 610 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 611 if (L->contains(Usr->getParent())) 612 continue; 613 // If we have a DT then we can check that uses outside a loop only in 614 // unreachable block. 615 if (DT) 616 assert(!DT->isReachableFromEntry(U) && 617 "Unexpected user in reachable block"); 618 U.set(Poison); 619 } 620 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 621 if (!DVI) 622 continue; 623 auto Key = 624 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 625 if (Key != DeadDebugSet.end()) 626 continue; 627 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 628 DeadDebugInst.push_back(DVI); 629 } 630 631 // After the loop has been deleted all the values defined and modified 632 // inside the loop are going to be unavailable. 633 // Since debug values in the loop have been deleted, inserting an undef 634 // dbg.value truncates the range of any dbg.value before the loop where the 635 // loop used to be. This is particularly important for constant values. 636 DIBuilder DIB(*ExitBlock->getModule()); 637 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 638 assert(InsertDbgValueBefore && 639 "There should be a non-PHI instruction in exit block, else these " 640 "instructions will have no parent."); 641 for (auto *DVI : DeadDebugInst) 642 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 643 DVI->getVariable(), DVI->getExpression(), 644 DVI->getDebugLoc(), InsertDbgValueBefore); 645 } 646 647 // Remove the block from the reference counting scheme, so that we can 648 // delete it freely later. 649 for (auto *Block : L->blocks()) 650 Block->dropAllReferences(); 651 652 if (MSSA && VerifyMemorySSA) 653 MSSA->verifyMemorySSA(); 654 655 if (LI) { 656 // Erase the instructions and the blocks without having to worry 657 // about ordering because we already dropped the references. 658 // NOTE: This iteration is safe because erasing the block does not remove 659 // its entry from the loop's block list. We do that in the next section. 660 for (BasicBlock *BB : L->blocks()) 661 BB->eraseFromParent(); 662 663 // Finally, the blocks from loopinfo. This has to happen late because 664 // otherwise our loop iterators won't work. 665 666 SmallPtrSet<BasicBlock *, 8> blocks; 667 blocks.insert(L->block_begin(), L->block_end()); 668 for (BasicBlock *BB : blocks) 669 LI->removeBlock(BB); 670 671 // The last step is to update LoopInfo now that we've eliminated this loop. 672 // Note: LoopInfo::erase remove the given loop and relink its subloops with 673 // its parent. While removeLoop/removeChildLoop remove the given loop but 674 // not relink its subloops, which is what we want. 675 if (Loop *ParentLoop = L->getParentLoop()) { 676 Loop::iterator I = find(*ParentLoop, L); 677 assert(I != ParentLoop->end() && "Couldn't find loop"); 678 ParentLoop->removeChildLoop(I); 679 } else { 680 Loop::iterator I = find(*LI, L); 681 assert(I != LI->end() && "Couldn't find loop"); 682 LI->removeLoop(I); 683 } 684 LI->destroy(L); 685 } 686 } 687 688 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 689 LoopInfo &LI, MemorySSA *MSSA) { 690 auto *Latch = L->getLoopLatch(); 691 assert(Latch && "multiple latches not yet supported"); 692 auto *Header = L->getHeader(); 693 Loop *OutermostLoop = L->getOutermostLoop(); 694 695 SE.forgetLoop(L); 696 697 std::unique_ptr<MemorySSAUpdater> MSSAU; 698 if (MSSA) 699 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 700 701 // Update the CFG and domtree. We chose to special case a couple of 702 // of common cases for code quality and test readability reasons. 703 [&]() -> void { 704 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) { 705 if (!BI->isConditional()) { 706 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 707 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU, 708 MSSAU.get()); 709 return; 710 } 711 712 // Conditional latch/exit - note that latch can be shared by inner 713 // and outer loop so the other target doesn't need to an exit 714 if (L->isLoopExiting(Latch)) { 715 // TODO: Generalize ConstantFoldTerminator so that it can be used 716 // here without invalidating LCSSA or MemorySSA. (Tricky case for 717 // LCSSA: header is an exit block of a preceeding sibling loop w/o 718 // dedicated exits.) 719 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0; 720 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx); 721 722 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 723 Header->removePredecessor(Latch, true); 724 725 IRBuilder<> Builder(BI); 726 auto *NewBI = Builder.CreateBr(ExitBB); 727 // Transfer the metadata to the new branch instruction (minus the 728 // loop info since this is no longer a loop) 729 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg, 730 LLVMContext::MD_annotation}); 731 732 BI->eraseFromParent(); 733 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}}); 734 if (MSSA) 735 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT); 736 return; 737 } 738 } 739 740 // General case. By splitting the backedge, and then explicitly making it 741 // unreachable we gracefully handle corner cases such as switch and invoke 742 // termiantors. 743 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 744 745 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 746 (void)changeToUnreachable(BackedgeBB->getTerminator(), 747 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 748 }(); 749 750 // Erase (and destroy) this loop instance. Handles relinking sub-loops 751 // and blocks within the loop as needed. 752 LI.erase(L); 753 754 // If the loop we broke had a parent, then changeToUnreachable might have 755 // caused a block to be removed from the parent loop (see loop_nest_lcssa 756 // test case in zero-btc.ll for an example), thus changing the parent's 757 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 758 // loop which might have a had a block removed. 759 if (OutermostLoop != L) 760 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 761 } 762 763 764 /// Checks if \p L has an exiting latch branch. There may also be other 765 /// exiting blocks. Returns branch instruction terminating the loop 766 /// latch if above check is successful, nullptr otherwise. 767 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 768 BasicBlock *Latch = L->getLoopLatch(); 769 if (!Latch) 770 return nullptr; 771 772 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 773 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 774 return nullptr; 775 776 assert((LatchBR->getSuccessor(0) == L->getHeader() || 777 LatchBR->getSuccessor(1) == L->getHeader()) && 778 "At least one edge out of the latch must go to the header"); 779 780 return LatchBR; 781 } 782 783 /// Return the estimated trip count for any exiting branch which dominates 784 /// the loop latch. 785 static Optional<uint64_t> 786 getEstimatedTripCount(BranchInst *ExitingBranch, Loop *L, 787 uint64_t &OrigExitWeight) { 788 // To estimate the number of times the loop body was executed, we want to 789 // know the number of times the backedge was taken, vs. the number of times 790 // we exited the loop. 791 uint64_t LoopWeight, ExitWeight; 792 if (!ExitingBranch->extractProfMetadata(LoopWeight, ExitWeight)) 793 return None; 794 795 if (L->contains(ExitingBranch->getSuccessor(1))) 796 std::swap(LoopWeight, ExitWeight); 797 798 if (!ExitWeight) 799 // Don't have a way to return predicated infinite 800 return None; 801 802 OrigExitWeight = ExitWeight; 803 804 // Estimated exit count is a ratio of the loop weight by the weight of the 805 // edge exiting the loop, rounded to nearest. 806 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight); 807 // Estimated trip count is one plus estimated exit count. 808 return ExitCount + 1; 809 } 810 811 Optional<unsigned> 812 llvm::getLoopEstimatedTripCount(Loop *L, 813 unsigned *EstimatedLoopInvocationWeight) { 814 // Currently we take the estimate exit count only from the loop latch, 815 // ignoring other exiting blocks. This can overestimate the trip count 816 // if we exit through another exit, but can never underestimate it. 817 // TODO: incorporate information from other exits 818 if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) { 819 uint64_t ExitWeight; 820 if (Optional<uint64_t> EstTripCount = 821 getEstimatedTripCount(LatchBranch, L, ExitWeight)) { 822 if (EstimatedLoopInvocationWeight) 823 *EstimatedLoopInvocationWeight = ExitWeight; 824 return *EstTripCount; 825 } 826 } 827 return None; 828 } 829 830 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 831 unsigned EstimatedloopInvocationWeight) { 832 // At the moment, we currently support changing the estimate trip count of 833 // the latch branch only. We could extend this API to manipulate estimated 834 // trip counts for any exit. 835 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 836 if (!LatchBranch) 837 return false; 838 839 // Calculate taken and exit weights. 840 unsigned LatchExitWeight = 0; 841 unsigned BackedgeTakenWeight = 0; 842 843 if (EstimatedTripCount > 0) { 844 LatchExitWeight = EstimatedloopInvocationWeight; 845 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 846 } 847 848 // Make a swap if back edge is taken when condition is "false". 849 if (LatchBranch->getSuccessor(0) != L->getHeader()) 850 std::swap(BackedgeTakenWeight, LatchExitWeight); 851 852 MDBuilder MDB(LatchBranch->getContext()); 853 854 // Set/Update profile metadata. 855 LatchBranch->setMetadata( 856 LLVMContext::MD_prof, 857 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 858 859 return true; 860 } 861 862 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 863 ScalarEvolution &SE) { 864 Loop *OuterL = InnerLoop->getParentLoop(); 865 if (!OuterL) 866 return true; 867 868 // Get the backedge taken count for the inner loop 869 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 870 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 871 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 872 !InnerLoopBECountSC->getType()->isIntegerTy()) 873 return false; 874 875 // Get whether count is invariant to the outer loop 876 ScalarEvolution::LoopDisposition LD = 877 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 878 if (LD != ScalarEvolution::LoopInvariant) 879 return false; 880 881 return true; 882 } 883 884 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) { 885 switch (RK) { 886 default: 887 llvm_unreachable("Unknown min/max recurrence kind"); 888 case RecurKind::UMin: 889 return CmpInst::ICMP_ULT; 890 case RecurKind::UMax: 891 return CmpInst::ICMP_UGT; 892 case RecurKind::SMin: 893 return CmpInst::ICMP_SLT; 894 case RecurKind::SMax: 895 return CmpInst::ICMP_SGT; 896 case RecurKind::FMin: 897 return CmpInst::FCMP_OLT; 898 case RecurKind::FMax: 899 return CmpInst::FCMP_OGT; 900 } 901 } 902 903 Value *llvm::createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal, 904 RecurKind RK, Value *Left, Value *Right) { 905 if (auto VTy = dyn_cast<VectorType>(Left->getType())) 906 StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal); 907 Value *Cmp = 908 Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp"); 909 return Builder.CreateSelect(Cmp, Left, Right, "rdx.select"); 910 } 911 912 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 913 Value *Right) { 914 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK); 915 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 916 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 917 return Select; 918 } 919 920 // Helper to generate an ordered reduction. 921 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 922 unsigned Op, RecurKind RdxKind) { 923 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 924 925 // Extract and apply reduction ops in ascending order: 926 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 927 Value *Result = Acc; 928 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 929 Value *Ext = 930 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 931 932 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 933 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 934 "bin.rdx"); 935 } else { 936 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 937 "Invalid min/max"); 938 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 939 } 940 } 941 942 return Result; 943 } 944 945 // Helper to generate a log2 shuffle reduction. 946 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 947 unsigned Op, RecurKind RdxKind) { 948 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 949 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 950 // and vector ops, reducing the set of values being computed by half each 951 // round. 952 assert(isPowerOf2_32(VF) && 953 "Reduction emission only supported for pow2 vectors!"); 954 // Note: fast-math-flags flags are controlled by the builder configuration 955 // and are assumed to apply to all generated arithmetic instructions. Other 956 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part 957 // of the builder configuration, and since they're not passed explicitly, 958 // will never be relevant here. Note that it would be generally unsound to 959 // propagate these from an intrinsic call to the expansion anyways as we/ 960 // change the order of operations. 961 Value *TmpVec = Src; 962 SmallVector<int, 32> ShuffleMask(VF); 963 for (unsigned i = VF; i != 1; i >>= 1) { 964 // Move the upper half of the vector to the lower half. 965 for (unsigned j = 0; j != i / 2; ++j) 966 ShuffleMask[j] = i / 2 + j; 967 968 // Fill the rest of the mask with undef. 969 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 970 971 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 972 973 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 974 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 975 "bin.rdx"); 976 } else { 977 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 978 "Invalid min/max"); 979 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 980 } 981 } 982 // The result is in the first element of the vector. 983 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 984 } 985 986 Value *llvm::createSelectCmpTargetReduction(IRBuilderBase &Builder, 987 const TargetTransformInfo *TTI, 988 Value *Src, 989 const RecurrenceDescriptor &Desc, 990 PHINode *OrigPhi) { 991 assert(RecurrenceDescriptor::isSelectCmpRecurrenceKind( 992 Desc.getRecurrenceKind()) && 993 "Unexpected reduction kind"); 994 Value *InitVal = Desc.getRecurrenceStartValue(); 995 Value *NewVal = nullptr; 996 997 // First use the original phi to determine the new value we're trying to 998 // select from in the loop. 999 SelectInst *SI = nullptr; 1000 for (auto *U : OrigPhi->users()) { 1001 if ((SI = dyn_cast<SelectInst>(U))) 1002 break; 1003 } 1004 assert(SI && "One user of the original phi should be a select"); 1005 1006 if (SI->getTrueValue() == OrigPhi) 1007 NewVal = SI->getFalseValue(); 1008 else { 1009 assert(SI->getFalseValue() == OrigPhi && 1010 "At least one input to the select should be the original Phi"); 1011 NewVal = SI->getTrueValue(); 1012 } 1013 1014 // Create a splat vector with the new value and compare this to the vector 1015 // we want to reduce. 1016 ElementCount EC = cast<VectorType>(Src->getType())->getElementCount(); 1017 Value *Right = Builder.CreateVectorSplat(EC, InitVal); 1018 Value *Cmp = 1019 Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp"); 1020 1021 // If any predicate is true it means that we want to select the new value. 1022 Cmp = Builder.CreateOrReduce(Cmp); 1023 return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select"); 1024 } 1025 1026 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, 1027 const TargetTransformInfo *TTI, 1028 Value *Src, RecurKind RdxKind) { 1029 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1030 switch (RdxKind) { 1031 case RecurKind::Add: 1032 return Builder.CreateAddReduce(Src); 1033 case RecurKind::Mul: 1034 return Builder.CreateMulReduce(Src); 1035 case RecurKind::And: 1036 return Builder.CreateAndReduce(Src); 1037 case RecurKind::Or: 1038 return Builder.CreateOrReduce(Src); 1039 case RecurKind::Xor: 1040 return Builder.CreateXorReduce(Src); 1041 case RecurKind::FMulAdd: 1042 case RecurKind::FAdd: 1043 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1044 Src); 1045 case RecurKind::FMul: 1046 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1047 case RecurKind::SMax: 1048 return Builder.CreateIntMaxReduce(Src, true); 1049 case RecurKind::SMin: 1050 return Builder.CreateIntMinReduce(Src, true); 1051 case RecurKind::UMax: 1052 return Builder.CreateIntMaxReduce(Src, false); 1053 case RecurKind::UMin: 1054 return Builder.CreateIntMinReduce(Src, false); 1055 case RecurKind::FMax: 1056 return Builder.CreateFPMaxReduce(Src); 1057 case RecurKind::FMin: 1058 return Builder.CreateFPMinReduce(Src); 1059 default: 1060 llvm_unreachable("Unhandled opcode"); 1061 } 1062 } 1063 1064 Value *llvm::createTargetReduction(IRBuilderBase &B, 1065 const TargetTransformInfo *TTI, 1066 const RecurrenceDescriptor &Desc, Value *Src, 1067 PHINode *OrigPhi) { 1068 // TODO: Support in-order reductions based on the recurrence descriptor. 1069 // All ops in the reduction inherit fast-math-flags from the recurrence 1070 // descriptor. 1071 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1072 B.setFastMathFlags(Desc.getFastMathFlags()); 1073 1074 RecurKind RK = Desc.getRecurrenceKind(); 1075 if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 1076 return createSelectCmpTargetReduction(B, TTI, Src, Desc, OrigPhi); 1077 1078 return createSimpleTargetReduction(B, TTI, Src, RK); 1079 } 1080 1081 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1082 const RecurrenceDescriptor &Desc, 1083 Value *Src, Value *Start) { 1084 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1085 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1086 "Unexpected reduction kind"); 1087 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1088 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1089 1090 return B.CreateFAddReduce(Start, Src); 1091 } 1092 1093 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue, 1094 bool IncludeWrapFlags) { 1095 auto *VecOp = dyn_cast<Instruction>(I); 1096 if (!VecOp) 1097 return; 1098 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1099 : dyn_cast<Instruction>(OpValue); 1100 if (!Intersection) 1101 return; 1102 const unsigned Opcode = Intersection->getOpcode(); 1103 VecOp->copyIRFlags(Intersection, IncludeWrapFlags); 1104 for (auto *V : VL) { 1105 auto *Instr = dyn_cast<Instruction>(V); 1106 if (!Instr) 1107 continue; 1108 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1109 VecOp->andIRFlags(V); 1110 } 1111 } 1112 1113 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1114 ScalarEvolution &SE) { 1115 const SCEV *Zero = SE.getZero(S->getType()); 1116 return SE.isAvailableAtLoopEntry(S, L) && 1117 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1118 } 1119 1120 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1121 ScalarEvolution &SE) { 1122 const SCEV *Zero = SE.getZero(S->getType()); 1123 return SE.isAvailableAtLoopEntry(S, L) && 1124 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1125 } 1126 1127 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1128 bool Signed) { 1129 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1130 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1131 APInt::getMinValue(BitWidth); 1132 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1133 return SE.isAvailableAtLoopEntry(S, L) && 1134 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1135 SE.getConstant(Min)); 1136 } 1137 1138 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1139 bool Signed) { 1140 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1141 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1142 APInt::getMaxValue(BitWidth); 1143 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1144 return SE.isAvailableAtLoopEntry(S, L) && 1145 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1146 SE.getConstant(Max)); 1147 } 1148 1149 //===----------------------------------------------------------------------===// 1150 // rewriteLoopExitValues - Optimize IV users outside the loop. 1151 // As a side effect, reduces the amount of IV processing within the loop. 1152 //===----------------------------------------------------------------------===// 1153 1154 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1155 SmallPtrSet<const Instruction *, 8> Visited; 1156 SmallVector<const Instruction *, 8> WorkList; 1157 Visited.insert(I); 1158 WorkList.push_back(I); 1159 while (!WorkList.empty()) { 1160 const Instruction *Curr = WorkList.pop_back_val(); 1161 // This use is outside the loop, nothing to do. 1162 if (!L->contains(Curr)) 1163 continue; 1164 // Do we assume it is a "hard" use which will not be eliminated easily? 1165 if (Curr->mayHaveSideEffects()) 1166 return true; 1167 // Otherwise, add all its users to worklist. 1168 for (auto U : Curr->users()) { 1169 auto *UI = cast<Instruction>(U); 1170 if (Visited.insert(UI).second) 1171 WorkList.push_back(UI); 1172 } 1173 } 1174 return false; 1175 } 1176 1177 // Collect information about PHI nodes which can be transformed in 1178 // rewriteLoopExitValues. 1179 struct RewritePhi { 1180 PHINode *PN; // For which PHI node is this replacement? 1181 unsigned Ith; // For which incoming value? 1182 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1183 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1184 bool HighCost; // Is this expansion a high-cost? 1185 1186 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1187 bool H) 1188 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1189 HighCost(H) {} 1190 }; 1191 1192 // Check whether it is possible to delete the loop after rewriting exit 1193 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1194 // aggressively. 1195 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1196 BasicBlock *Preheader = L->getLoopPreheader(); 1197 // If there is no preheader, the loop will not be deleted. 1198 if (!Preheader) 1199 return false; 1200 1201 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1202 // We obviate multiple ExitingBlocks case for simplicity. 1203 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1204 // after exit value rewriting, we can enhance the logic here. 1205 SmallVector<BasicBlock *, 4> ExitingBlocks; 1206 L->getExitingBlocks(ExitingBlocks); 1207 SmallVector<BasicBlock *, 8> ExitBlocks; 1208 L->getUniqueExitBlocks(ExitBlocks); 1209 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1210 return false; 1211 1212 BasicBlock *ExitBlock = ExitBlocks[0]; 1213 BasicBlock::iterator BI = ExitBlock->begin(); 1214 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1215 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1216 1217 // If the Incoming value of P is found in RewritePhiSet, we know it 1218 // could be rewritten to use a loop invariant value in transformation 1219 // phase later. Skip it in the loop invariant check below. 1220 bool found = false; 1221 for (const RewritePhi &Phi : RewritePhiSet) { 1222 unsigned i = Phi.Ith; 1223 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1224 found = true; 1225 break; 1226 } 1227 } 1228 1229 Instruction *I; 1230 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1231 if (!L->hasLoopInvariantOperands(I)) 1232 return false; 1233 1234 ++BI; 1235 } 1236 1237 for (auto *BB : L->blocks()) 1238 if (llvm::any_of(*BB, [](Instruction &I) { 1239 return I.mayHaveSideEffects(); 1240 })) 1241 return false; 1242 1243 return true; 1244 } 1245 1246 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi, 1247 /// and returns true if this Phi is an induction phi in the loop. When 1248 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI. 1249 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, 1250 InductionDescriptor &ID) { 1251 if (!Phi) 1252 return false; 1253 if (!L->getLoopPreheader()) 1254 return false; 1255 if (Phi->getParent() != L->getHeader()) 1256 return false; 1257 return InductionDescriptor::isInductionPHI(Phi, L, SE, ID); 1258 } 1259 1260 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1261 ScalarEvolution *SE, 1262 const TargetTransformInfo *TTI, 1263 SCEVExpander &Rewriter, DominatorTree *DT, 1264 ReplaceExitVal ReplaceExitValue, 1265 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1266 // Check a pre-condition. 1267 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1268 "Indvars did not preserve LCSSA!"); 1269 1270 SmallVector<BasicBlock*, 8> ExitBlocks; 1271 L->getUniqueExitBlocks(ExitBlocks); 1272 1273 SmallVector<RewritePhi, 8> RewritePhiSet; 1274 // Find all values that are computed inside the loop, but used outside of it. 1275 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1276 // the exit blocks of the loop to find them. 1277 for (BasicBlock *ExitBB : ExitBlocks) { 1278 // If there are no PHI nodes in this exit block, then no values defined 1279 // inside the loop are used on this path, skip it. 1280 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1281 if (!PN) continue; 1282 1283 unsigned NumPreds = PN->getNumIncomingValues(); 1284 1285 // Iterate over all of the PHI nodes. 1286 BasicBlock::iterator BBI = ExitBB->begin(); 1287 while ((PN = dyn_cast<PHINode>(BBI++))) { 1288 if (PN->use_empty()) 1289 continue; // dead use, don't replace it 1290 1291 if (!SE->isSCEVable(PN->getType())) 1292 continue; 1293 1294 // Iterate over all of the values in all the PHI nodes. 1295 for (unsigned i = 0; i != NumPreds; ++i) { 1296 // If the value being merged in is not integer or is not defined 1297 // in the loop, skip it. 1298 Value *InVal = PN->getIncomingValue(i); 1299 if (!isa<Instruction>(InVal)) 1300 continue; 1301 1302 // If this pred is for a subloop, not L itself, skip it. 1303 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1304 continue; // The Block is in a subloop, skip it. 1305 1306 // Check that InVal is defined in the loop. 1307 Instruction *Inst = cast<Instruction>(InVal); 1308 if (!L->contains(Inst)) 1309 continue; 1310 1311 // Find exit values which are induction variables in the loop, and are 1312 // unused in the loop, with the only use being the exit block PhiNode, 1313 // and the induction variable update binary operator. 1314 // The exit value can be replaced with the final value when it is cheap 1315 // to do so. 1316 if (ReplaceExitValue == UnusedIndVarInLoop) { 1317 InductionDescriptor ID; 1318 PHINode *IndPhi = dyn_cast<PHINode>(Inst); 1319 if (IndPhi) { 1320 if (!checkIsIndPhi(IndPhi, L, SE, ID)) 1321 continue; 1322 // This is an induction PHI. Check that the only users are PHI 1323 // nodes, and induction variable update binary operators. 1324 if (llvm::any_of(Inst->users(), [&](User *U) { 1325 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U)) 1326 return true; 1327 BinaryOperator *B = dyn_cast<BinaryOperator>(U); 1328 if (B && B != ID.getInductionBinOp()) 1329 return true; 1330 return false; 1331 })) 1332 continue; 1333 } else { 1334 // If it is not an induction phi, it must be an induction update 1335 // binary operator with an induction phi user. 1336 BinaryOperator *B = dyn_cast<BinaryOperator>(Inst); 1337 if (!B) 1338 continue; 1339 if (llvm::any_of(Inst->users(), [&](User *U) { 1340 PHINode *Phi = dyn_cast<PHINode>(U); 1341 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID)) 1342 return true; 1343 return false; 1344 })) 1345 continue; 1346 if (B != ID.getInductionBinOp()) 1347 continue; 1348 } 1349 } 1350 1351 // Okay, this instruction has a user outside of the current loop 1352 // and varies predictably *inside* the loop. Evaluate the value it 1353 // contains when the loop exits, if possible. We prefer to start with 1354 // expressions which are true for all exits (so as to maximize 1355 // expression reuse by the SCEVExpander), but resort to per-exit 1356 // evaluation if that fails. 1357 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1358 if (isa<SCEVCouldNotCompute>(ExitValue) || 1359 !SE->isLoopInvariant(ExitValue, L) || 1360 !Rewriter.isSafeToExpand(ExitValue)) { 1361 // TODO: This should probably be sunk into SCEV in some way; maybe a 1362 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1363 // most SCEV expressions and other recurrence types (e.g. shift 1364 // recurrences). Is there existing code we can reuse? 1365 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1366 if (isa<SCEVCouldNotCompute>(ExitCount)) 1367 continue; 1368 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1369 if (AddRec->getLoop() == L) 1370 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1371 if (isa<SCEVCouldNotCompute>(ExitValue) || 1372 !SE->isLoopInvariant(ExitValue, L) || 1373 !Rewriter.isSafeToExpand(ExitValue)) 1374 continue; 1375 } 1376 1377 // Computing the value outside of the loop brings no benefit if it is 1378 // definitely used inside the loop in a way which can not be optimized 1379 // away. Avoid doing so unless we know we have a value which computes 1380 // the ExitValue already. TODO: This should be merged into SCEV 1381 // expander to leverage its knowledge of existing expressions. 1382 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1383 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1384 continue; 1385 1386 // Check if expansions of this SCEV would count as being high cost. 1387 bool HighCost = Rewriter.isHighCostExpansion( 1388 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1389 1390 // Note that we must not perform expansions until after 1391 // we query *all* the costs, because if we perform temporary expansion 1392 // inbetween, one that we might not intend to keep, said expansion 1393 // *may* affect cost calculation of the the next SCEV's we'll query, 1394 // and next SCEV may errneously get smaller cost. 1395 1396 // Collect all the candidate PHINodes to be rewritten. 1397 Instruction *InsertPt = 1398 (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ? 1399 &*Inst->getParent()->getFirstInsertionPt() : Inst; 1400 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost); 1401 } 1402 } 1403 } 1404 1405 // TODO: evaluate whether it is beneficial to change how we calculate 1406 // high-cost: if we have SCEV 'A' which we know we will expand, should we 1407 // calculate the cost of other SCEV's after expanding SCEV 'A', thus 1408 // potentially giving cost bonus to those other SCEV's? 1409 1410 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1411 int NumReplaced = 0; 1412 1413 // Transformation. 1414 for (const RewritePhi &Phi : RewritePhiSet) { 1415 PHINode *PN = Phi.PN; 1416 1417 // Only do the rewrite when the ExitValue can be expanded cheaply. 1418 // If LoopCanBeDel is true, rewrite exit value aggressively. 1419 if ((ReplaceExitValue == OnlyCheapRepl || 1420 ReplaceExitValue == UnusedIndVarInLoop) && 1421 !LoopCanBeDel && Phi.HighCost) 1422 continue; 1423 1424 Value *ExitVal = Rewriter.expandCodeFor( 1425 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint); 1426 1427 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal 1428 << '\n' 1429 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1430 1431 #ifndef NDEBUG 1432 // If we reuse an instruction from a loop which is neither L nor one of 1433 // its containing loops, we end up breaking LCSSA form for this loop by 1434 // creating a new use of its instruction. 1435 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1436 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1437 if (EVL != L) 1438 assert(EVL->contains(L) && "LCSSA breach detected!"); 1439 #endif 1440 1441 NumReplaced++; 1442 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1443 PN->setIncomingValue(Phi.Ith, ExitVal); 1444 // It's necessary to tell ScalarEvolution about this explicitly so that 1445 // it can walk the def-use list and forget all SCEVs, as it may not be 1446 // watching the PHI itself. Once the new exit value is in place, there 1447 // may not be a def-use connection between the loop and every instruction 1448 // which got a SCEVAddRecExpr for that loop. 1449 SE->forgetValue(PN); 1450 1451 // If this instruction is dead now, delete it. Don't do it now to avoid 1452 // invalidating iterators. 1453 if (isInstructionTriviallyDead(Inst, TLI)) 1454 DeadInsts.push_back(Inst); 1455 1456 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1457 if (PN->getNumIncomingValues() == 1 && 1458 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1459 PN->replaceAllUsesWith(ExitVal); 1460 PN->eraseFromParent(); 1461 } 1462 } 1463 1464 // The insertion point instruction may have been deleted; clear it out 1465 // so that the rewriter doesn't trip over it later. 1466 Rewriter.clearInsertPoint(); 1467 return NumReplaced; 1468 } 1469 1470 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1471 /// \p OrigLoop. 1472 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1473 Loop *RemainderLoop, uint64_t UF) { 1474 assert(UF > 0 && "Zero unrolled factor is not supported"); 1475 assert(UnrolledLoop != RemainderLoop && 1476 "Unrolled and Remainder loops are expected to distinct"); 1477 1478 // Get number of iterations in the original scalar loop. 1479 unsigned OrigLoopInvocationWeight = 0; 1480 Optional<unsigned> OrigAverageTripCount = 1481 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1482 if (!OrigAverageTripCount) 1483 return; 1484 1485 // Calculate number of iterations in unrolled loop. 1486 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1487 // Calculate number of iterations for remainder loop. 1488 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1489 1490 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1491 OrigLoopInvocationWeight); 1492 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1493 OrigLoopInvocationWeight); 1494 } 1495 1496 /// Utility that implements appending of loops onto a worklist. 1497 /// Loops are added in preorder (analogous for reverse postorder for trees), 1498 /// and the worklist is processed LIFO. 1499 template <typename RangeT> 1500 void llvm::appendReversedLoopsToWorklist( 1501 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1502 // We use an internal worklist to build up the preorder traversal without 1503 // recursion. 1504 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1505 1506 // We walk the initial sequence of loops in reverse because we generally want 1507 // to visit defs before uses and the worklist is LIFO. 1508 for (Loop *RootL : Loops) { 1509 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1510 assert(PreOrderWorklist.empty() && 1511 "Must start with an empty preorder walk worklist."); 1512 PreOrderWorklist.push_back(RootL); 1513 do { 1514 Loop *L = PreOrderWorklist.pop_back_val(); 1515 PreOrderWorklist.append(L->begin(), L->end()); 1516 PreOrderLoops.push_back(L); 1517 } while (!PreOrderWorklist.empty()); 1518 1519 Worklist.insert(std::move(PreOrderLoops)); 1520 PreOrderLoops.clear(); 1521 } 1522 } 1523 1524 template <typename RangeT> 1525 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1526 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1527 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1528 } 1529 1530 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1531 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1532 1533 template void 1534 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1535 SmallPriorityWorklist<Loop *, 4> &Worklist); 1536 1537 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1538 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1539 appendReversedLoopsToWorklist(LI, Worklist); 1540 } 1541 1542 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1543 LoopInfo *LI, LPPassManager *LPM) { 1544 Loop &New = *LI->AllocateLoop(); 1545 if (PL) 1546 PL->addChildLoop(&New); 1547 else 1548 LI->addTopLevelLoop(&New); 1549 1550 if (LPM) 1551 LPM->addLoop(New); 1552 1553 // Add all of the blocks in L to the new loop. 1554 for (BasicBlock *BB : L->blocks()) 1555 if (LI->getLoopFor(BB) == L) 1556 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI); 1557 1558 // Add all of the subloops to the new loop. 1559 for (Loop *I : *L) 1560 cloneLoop(I, &New, VM, LI, LPM); 1561 1562 return &New; 1563 } 1564 1565 /// IR Values for the lower and upper bounds of a pointer evolution. We 1566 /// need to use value-handles because SCEV expansion can invalidate previously 1567 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1568 /// a previous one. 1569 struct PointerBounds { 1570 TrackingVH<Value> Start; 1571 TrackingVH<Value> End; 1572 }; 1573 1574 /// Expand code for the lower and upper bound of the pointer group \p CG 1575 /// in \p TheLoop. \return the values for the bounds. 1576 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1577 Loop *TheLoop, Instruction *Loc, 1578 SCEVExpander &Exp) { 1579 LLVMContext &Ctx = Loc->getContext(); 1580 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace); 1581 1582 Value *Start = nullptr, *End = nullptr; 1583 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1584 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1585 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1586 if (CG->NeedsFreeze) { 1587 IRBuilder<> Builder(Loc); 1588 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr"); 1589 End = Builder.CreateFreeze(End, End->getName() + ".fr"); 1590 } 1591 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1592 return {Start, End}; 1593 } 1594 1595 /// Turns a collection of checks into a collection of expanded upper and 1596 /// lower bounds for both pointers in the check. 1597 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1598 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1599 Instruction *Loc, SCEVExpander &Exp) { 1600 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1601 1602 // Here we're relying on the SCEV Expander's cache to only emit code for the 1603 // same bounds once. 1604 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1605 [&](const RuntimePointerCheck &Check) { 1606 PointerBounds First = expandBounds(Check.first, L, Loc, Exp), 1607 Second = expandBounds(Check.second, L, Loc, Exp); 1608 return std::make_pair(First, Second); 1609 }); 1610 1611 return ChecksWithBounds; 1612 } 1613 1614 Value *llvm::addRuntimeChecks( 1615 Instruction *Loc, Loop *TheLoop, 1616 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1617 SCEVExpander &Exp) { 1618 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1619 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1620 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp); 1621 1622 LLVMContext &Ctx = Loc->getContext(); 1623 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1624 Loc->getModule()->getDataLayout()); 1625 ChkBuilder.SetInsertPoint(Loc); 1626 // Our instructions might fold to a constant. 1627 Value *MemoryRuntimeCheck = nullptr; 1628 1629 for (const auto &Check : ExpandedChecks) { 1630 const PointerBounds &A = Check.first, &B = Check.second; 1631 // Check if two pointers (A and B) conflict where conflict is computed as: 1632 // start(A) <= end(B) && start(B) <= end(A) 1633 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1634 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1635 1636 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1637 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1638 "Trying to bounds check pointers with different address spaces"); 1639 1640 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1641 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1642 1643 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1644 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1645 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1646 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1647 1648 // [A|B].Start points to the first accessed byte under base [A|B]. 1649 // [A|B].End points to the last accessed byte, plus one. 1650 // There is no conflict when the intervals are disjoint: 1651 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1652 // 1653 // bound0 = (B.Start < A.End) 1654 // bound1 = (A.Start < B.End) 1655 // IsConflict = bound0 & bound1 1656 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1657 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1658 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1659 if (MemoryRuntimeCheck) { 1660 IsConflict = 1661 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1662 } 1663 MemoryRuntimeCheck = IsConflict; 1664 } 1665 1666 return MemoryRuntimeCheck; 1667 } 1668 1669 Value *llvm::addDiffRuntimeChecks( 1670 Instruction *Loc, Loop *TheLoop, ArrayRef<PointerDiffInfo> Checks, 1671 SCEVExpander &Expander, 1672 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) { 1673 1674 LLVMContext &Ctx = Loc->getContext(); 1675 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1676 Loc->getModule()->getDataLayout()); 1677 ChkBuilder.SetInsertPoint(Loc); 1678 // Our instructions might fold to a constant. 1679 Value *MemoryRuntimeCheck = nullptr; 1680 1681 for (auto &C : Checks) { 1682 Type *Ty = C.SinkStart->getType(); 1683 // Compute VF * IC * AccessSize. 1684 auto *VFTimesUFTimesSize = 1685 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()), 1686 ConstantInt::get(Ty, IC * C.AccessSize)); 1687 Value *Sink = Expander.expandCodeFor(C.SinkStart, Ty, Loc); 1688 Value *Src = Expander.expandCodeFor(C.SrcStart, Ty, Loc); 1689 if (C.NeedsFreeze) { 1690 IRBuilder<> Builder(Loc); 1691 Sink = Builder.CreateFreeze(Sink, Sink->getName() + ".fr"); 1692 Src = Builder.CreateFreeze(Src, Src->getName() + ".fr"); 1693 } 1694 Value *Diff = ChkBuilder.CreateSub(Sink, Src); 1695 Value *IsConflict = 1696 ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check"); 1697 1698 if (MemoryRuntimeCheck) { 1699 IsConflict = 1700 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1701 } 1702 MemoryRuntimeCheck = IsConflict; 1703 } 1704 1705 return MemoryRuntimeCheck; 1706 } 1707 1708 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L, 1709 unsigned MSSAThreshold, 1710 MemorySSA &MSSA, 1711 AAResults &AA) { 1712 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1713 if (!TI || !TI->isConditional()) 1714 return {}; 1715 1716 auto *CondI = dyn_cast<CmpInst>(TI->getCondition()); 1717 // The case with the condition outside the loop should already be handled 1718 // earlier. 1719 if (!CondI || !L.contains(CondI)) 1720 return {}; 1721 1722 SmallVector<Instruction *> InstToDuplicate; 1723 InstToDuplicate.push_back(CondI); 1724 1725 SmallVector<Value *, 4> WorkList; 1726 WorkList.append(CondI->op_begin(), CondI->op_end()); 1727 1728 SmallVector<MemoryAccess *, 4> AccessesToCheck; 1729 SmallVector<MemoryLocation, 4> AccessedLocs; 1730 while (!WorkList.empty()) { 1731 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 1732 if (!I || !L.contains(I)) 1733 continue; 1734 1735 // TODO: support additional instructions. 1736 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 1737 return {}; 1738 1739 // Do not duplicate volatile and atomic loads. 1740 if (auto *LI = dyn_cast<LoadInst>(I)) 1741 if (LI->isVolatile() || LI->isAtomic()) 1742 return {}; 1743 1744 InstToDuplicate.push_back(I); 1745 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 1746 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 1747 // Queue the defining access to check for alias checks. 1748 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 1749 AccessedLocs.push_back(MemoryLocation::get(I)); 1750 } else { 1751 // MemoryDefs may clobber the location or may be atomic memory 1752 // operations. Bail out. 1753 return {}; 1754 } 1755 } 1756 WorkList.append(I->op_begin(), I->op_end()); 1757 } 1758 1759 if (InstToDuplicate.empty()) 1760 return {}; 1761 1762 SmallVector<BasicBlock *, 4> ExitingBlocks; 1763 L.getExitingBlocks(ExitingBlocks); 1764 auto HasNoClobbersOnPath = 1765 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 1766 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 1767 SmallVector<MemoryAccess *, 4> AccessesToCheck) 1768 -> Optional<IVConditionInfo> { 1769 IVConditionInfo Info; 1770 // First, collect all blocks in the loop that are on a patch from Succ 1771 // to the header. 1772 SmallVector<BasicBlock *, 4> WorkList; 1773 WorkList.push_back(Succ); 1774 WorkList.push_back(Header); 1775 SmallPtrSet<BasicBlock *, 4> Seen; 1776 Seen.insert(Header); 1777 Info.PathIsNoop &= 1778 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1779 1780 while (!WorkList.empty()) { 1781 BasicBlock *Current = WorkList.pop_back_val(); 1782 if (!L.contains(Current)) 1783 continue; 1784 const auto &SeenIns = Seen.insert(Current); 1785 if (!SeenIns.second) 1786 continue; 1787 1788 Info.PathIsNoop &= all_of( 1789 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1790 WorkList.append(succ_begin(Current), succ_end(Current)); 1791 } 1792 1793 // Require at least 2 blocks on a path through the loop. This skips 1794 // paths that directly exit the loop. 1795 if (Seen.size() < 2) 1796 return {}; 1797 1798 // Next, check if there are any MemoryDefs that are on the path through 1799 // the loop (in the Seen set) and they may-alias any of the locations in 1800 // AccessedLocs. If that is the case, they may modify the condition and 1801 // partial unswitching is not possible. 1802 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 1803 while (!AccessesToCheck.empty()) { 1804 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 1805 auto SeenI = SeenAccesses.insert(Current); 1806 if (!SeenI.second || !Seen.contains(Current->getBlock())) 1807 continue; 1808 1809 // Bail out if exceeded the threshold. 1810 if (SeenAccesses.size() >= MSSAThreshold) 1811 return {}; 1812 1813 // MemoryUse are read-only accesses. 1814 if (isa<MemoryUse>(Current)) 1815 continue; 1816 1817 // For a MemoryDef, check if is aliases any of the location feeding 1818 // the original condition. 1819 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 1820 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 1821 return isModSet( 1822 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 1823 })) 1824 return {}; 1825 } 1826 1827 for (Use &U : Current->uses()) 1828 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 1829 } 1830 1831 // We could also allow loops with known trip counts without mustprogress, 1832 // but ScalarEvolution may not be available. 1833 Info.PathIsNoop &= isMustProgress(&L); 1834 1835 // If the path is considered a no-op so far, check if it reaches a 1836 // single exit block without any phis. This ensures no values from the 1837 // loop are used outside of the loop. 1838 if (Info.PathIsNoop) { 1839 for (auto *Exiting : ExitingBlocks) { 1840 if (!Seen.contains(Exiting)) 1841 continue; 1842 for (auto *Succ : successors(Exiting)) { 1843 if (L.contains(Succ)) 1844 continue; 1845 1846 Info.PathIsNoop &= llvm::empty(Succ->phis()) && 1847 (!Info.ExitForPath || Info.ExitForPath == Succ); 1848 if (!Info.PathIsNoop) 1849 break; 1850 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 1851 "cannot have multiple exit blocks"); 1852 Info.ExitForPath = Succ; 1853 } 1854 } 1855 } 1856 if (!Info.ExitForPath) 1857 Info.PathIsNoop = false; 1858 1859 Info.InstToDuplicate = InstToDuplicate; 1860 return Info; 1861 }; 1862 1863 // If we branch to the same successor, partial unswitching will not be 1864 // beneficial. 1865 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 1866 return {}; 1867 1868 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 1869 AccessesToCheck)) { 1870 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 1871 return Info; 1872 } 1873 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 1874 AccessesToCheck)) { 1875 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 1876 return Info; 1877 } 1878 1879 return {}; 1880 } 1881