xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp (revision 7ec1ec4fdb98d87602c8501dae9b9cbd24b7d22b)
1  //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file defines common loop utility functions.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/Transforms/Utils/LoopUtils.h"
14  #include "llvm/ADT/DenseSet.h"
15  #include "llvm/ADT/Optional.h"
16  #include "llvm/ADT/PriorityWorklist.h"
17  #include "llvm/ADT/ScopeExit.h"
18  #include "llvm/ADT/SetVector.h"
19  #include "llvm/ADT/SmallPtrSet.h"
20  #include "llvm/ADT/SmallVector.h"
21  #include "llvm/Analysis/AliasAnalysis.h"
22  #include "llvm/Analysis/BasicAliasAnalysis.h"
23  #include "llvm/Analysis/DomTreeUpdater.h"
24  #include "llvm/Analysis/GlobalsModRef.h"
25  #include "llvm/Analysis/InstructionSimplify.h"
26  #include "llvm/Analysis/LoopAccessAnalysis.h"
27  #include "llvm/Analysis/LoopInfo.h"
28  #include "llvm/Analysis/LoopPass.h"
29  #include "llvm/Analysis/MemorySSA.h"
30  #include "llvm/Analysis/MemorySSAUpdater.h"
31  #include "llvm/Analysis/MustExecute.h"
32  #include "llvm/Analysis/ScalarEvolution.h"
33  #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34  #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35  #include "llvm/Analysis/TargetTransformInfo.h"
36  #include "llvm/Analysis/ValueTracking.h"
37  #include "llvm/IR/DIBuilder.h"
38  #include "llvm/IR/Dominators.h"
39  #include "llvm/IR/Instructions.h"
40  #include "llvm/IR/IntrinsicInst.h"
41  #include "llvm/IR/MDBuilder.h"
42  #include "llvm/IR/Module.h"
43  #include "llvm/IR/Operator.h"
44  #include "llvm/IR/PatternMatch.h"
45  #include "llvm/IR/ValueHandle.h"
46  #include "llvm/InitializePasses.h"
47  #include "llvm/Pass.h"
48  #include "llvm/Support/Debug.h"
49  #include "llvm/Support/KnownBits.h"
50  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51  #include "llvm/Transforms/Utils/Local.h"
52  #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53  
54  using namespace llvm;
55  using namespace llvm::PatternMatch;
56  
57  static cl::opt<bool> ForceReductionIntrinsic(
58      "force-reduction-intrinsics", cl::Hidden,
59      cl::desc("Force creating reduction intrinsics for testing."),
60      cl::init(false));
61  
62  #define DEBUG_TYPE "loop-utils"
63  
64  static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
65  static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
66  
67  bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
68                                     MemorySSAUpdater *MSSAU,
69                                     bool PreserveLCSSA) {
70    bool Changed = false;
71  
72    // We re-use a vector for the in-loop predecesosrs.
73    SmallVector<BasicBlock *, 4> InLoopPredecessors;
74  
75    auto RewriteExit = [&](BasicBlock *BB) {
76      assert(InLoopPredecessors.empty() &&
77             "Must start with an empty predecessors list!");
78      auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
79  
80      // See if there are any non-loop predecessors of this exit block and
81      // keep track of the in-loop predecessors.
82      bool IsDedicatedExit = true;
83      for (auto *PredBB : predecessors(BB))
84        if (L->contains(PredBB)) {
85          if (isa<IndirectBrInst>(PredBB->getTerminator()))
86            // We cannot rewrite exiting edges from an indirectbr.
87            return false;
88          if (isa<CallBrInst>(PredBB->getTerminator()))
89            // We cannot rewrite exiting edges from a callbr.
90            return false;
91  
92          InLoopPredecessors.push_back(PredBB);
93        } else {
94          IsDedicatedExit = false;
95        }
96  
97      assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
98  
99      // Nothing to do if this is already a dedicated exit.
100      if (IsDedicatedExit)
101        return false;
102  
103      auto *NewExitBB = SplitBlockPredecessors(
104          BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
105  
106      if (!NewExitBB)
107        LLVM_DEBUG(
108            dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
109                   << *L << "\n");
110      else
111        LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
112                          << NewExitBB->getName() << "\n");
113      return true;
114    };
115  
116    // Walk the exit blocks directly rather than building up a data structure for
117    // them, but only visit each one once.
118    SmallPtrSet<BasicBlock *, 4> Visited;
119    for (auto *BB : L->blocks())
120      for (auto *SuccBB : successors(BB)) {
121        // We're looking for exit blocks so skip in-loop successors.
122        if (L->contains(SuccBB))
123          continue;
124  
125        // Visit each exit block exactly once.
126        if (!Visited.insert(SuccBB).second)
127          continue;
128  
129        Changed |= RewriteExit(SuccBB);
130      }
131  
132    return Changed;
133  }
134  
135  /// Returns the instructions that use values defined in the loop.
136  SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
137    SmallVector<Instruction *, 8> UsedOutside;
138  
139    for (auto *Block : L->getBlocks())
140      // FIXME: I believe that this could use copy_if if the Inst reference could
141      // be adapted into a pointer.
142      for (auto &Inst : *Block) {
143        auto Users = Inst.users();
144        if (any_of(Users, [&](User *U) {
145              auto *Use = cast<Instruction>(U);
146              return !L->contains(Use->getParent());
147            }))
148          UsedOutside.push_back(&Inst);
149      }
150  
151    return UsedOutside;
152  }
153  
154  void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
155    // By definition, all loop passes need the LoopInfo analysis and the
156    // Dominator tree it depends on. Because they all participate in the loop
157    // pass manager, they must also preserve these.
158    AU.addRequired<DominatorTreeWrapperPass>();
159    AU.addPreserved<DominatorTreeWrapperPass>();
160    AU.addRequired<LoopInfoWrapperPass>();
161    AU.addPreserved<LoopInfoWrapperPass>();
162  
163    // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
164    // here because users shouldn't directly get them from this header.
165    extern char &LoopSimplifyID;
166    extern char &LCSSAID;
167    AU.addRequiredID(LoopSimplifyID);
168    AU.addPreservedID(LoopSimplifyID);
169    AU.addRequiredID(LCSSAID);
170    AU.addPreservedID(LCSSAID);
171    // This is used in the LPPassManager to perform LCSSA verification on passes
172    // which preserve lcssa form
173    AU.addRequired<LCSSAVerificationPass>();
174    AU.addPreserved<LCSSAVerificationPass>();
175  
176    // Loop passes are designed to run inside of a loop pass manager which means
177    // that any function analyses they require must be required by the first loop
178    // pass in the manager (so that it is computed before the loop pass manager
179    // runs) and preserved by all loop pasess in the manager. To make this
180    // reasonably robust, the set needed for most loop passes is maintained here.
181    // If your loop pass requires an analysis not listed here, you will need to
182    // carefully audit the loop pass manager nesting structure that results.
183    AU.addRequired<AAResultsWrapperPass>();
184    AU.addPreserved<AAResultsWrapperPass>();
185    AU.addPreserved<BasicAAWrapperPass>();
186    AU.addPreserved<GlobalsAAWrapperPass>();
187    AU.addPreserved<SCEVAAWrapperPass>();
188    AU.addRequired<ScalarEvolutionWrapperPass>();
189    AU.addPreserved<ScalarEvolutionWrapperPass>();
190    // FIXME: When all loop passes preserve MemorySSA, it can be required and
191    // preserved here instead of the individual handling in each pass.
192  }
193  
194  /// Manually defined generic "LoopPass" dependency initialization. This is used
195  /// to initialize the exact set of passes from above in \c
196  /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
197  /// with:
198  ///
199  ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
200  ///
201  /// As-if "LoopPass" were a pass.
202  void llvm::initializeLoopPassPass(PassRegistry &Registry) {
203    INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
204    INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
205    INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
206    INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
207    INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
208    INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
209    INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
210    INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
211    INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
212    INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
213  }
214  
215  /// Create MDNode for input string.
216  static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
217    LLVMContext &Context = TheLoop->getHeader()->getContext();
218    Metadata *MDs[] = {
219        MDString::get(Context, Name),
220        ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
221    return MDNode::get(Context, MDs);
222  }
223  
224  /// Set input string into loop metadata by keeping other values intact.
225  /// If the string is already in loop metadata update value if it is
226  /// different.
227  void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
228                                     unsigned V) {
229    SmallVector<Metadata *, 4> MDs(1);
230    // If the loop already has metadata, retain it.
231    MDNode *LoopID = TheLoop->getLoopID();
232    if (LoopID) {
233      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
234        MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
235        // If it is of form key = value, try to parse it.
236        if (Node->getNumOperands() == 2) {
237          MDString *S = dyn_cast<MDString>(Node->getOperand(0));
238          if (S && S->getString().equals(StringMD)) {
239            ConstantInt *IntMD =
240                mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
241            if (IntMD && IntMD->getSExtValue() == V)
242              // It is already in place. Do nothing.
243              return;
244            // We need to update the value, so just skip it here and it will
245            // be added after copying other existed nodes.
246            continue;
247          }
248        }
249        MDs.push_back(Node);
250      }
251    }
252    // Add new metadata.
253    MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
254    // Replace current metadata node with new one.
255    LLVMContext &Context = TheLoop->getHeader()->getContext();
256    MDNode *NewLoopID = MDNode::get(Context, MDs);
257    // Set operand 0 to refer to the loop id itself.
258    NewLoopID->replaceOperandWith(0, NewLoopID);
259    TheLoop->setLoopID(NewLoopID);
260  }
261  
262  /// Find string metadata for loop
263  ///
264  /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
265  /// operand or null otherwise.  If the string metadata is not found return
266  /// Optional's not-a-value.
267  Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
268                                                              StringRef Name) {
269    MDNode *MD = findOptionMDForLoop(TheLoop, Name);
270    if (!MD)
271      return None;
272    switch (MD->getNumOperands()) {
273    case 1:
274      return nullptr;
275    case 2:
276      return &MD->getOperand(1);
277    default:
278      llvm_unreachable("loop metadata has 0 or 1 operand");
279    }
280  }
281  
282  static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
283                                                     StringRef Name) {
284    MDNode *MD = findOptionMDForLoop(TheLoop, Name);
285    if (!MD)
286      return None;
287    switch (MD->getNumOperands()) {
288    case 1:
289      // When the value is absent it is interpreted as 'attribute set'.
290      return true;
291    case 2:
292      if (ConstantInt *IntMD =
293              mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
294        return IntMD->getZExtValue();
295      return true;
296    }
297    llvm_unreachable("unexpected number of options");
298  }
299  
300  static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
301    return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
302  }
303  
304  llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
305                                                        StringRef Name) {
306    const MDOperand *AttrMD =
307        findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
308    if (!AttrMD)
309      return None;
310  
311    ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
312    if (!IntMD)
313      return None;
314  
315    return IntMD->getSExtValue();
316  }
317  
318  Optional<MDNode *> llvm::makeFollowupLoopID(
319      MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
320      const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
321    if (!OrigLoopID) {
322      if (AlwaysNew)
323        return nullptr;
324      return None;
325    }
326  
327    assert(OrigLoopID->getOperand(0) == OrigLoopID);
328  
329    bool InheritAllAttrs = !InheritOptionsExceptPrefix;
330    bool InheritSomeAttrs =
331        InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
332    SmallVector<Metadata *, 8> MDs;
333    MDs.push_back(nullptr);
334  
335    bool Changed = false;
336    if (InheritAllAttrs || InheritSomeAttrs) {
337      for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
338        MDNode *Op = cast<MDNode>(Existing.get());
339  
340        auto InheritThisAttribute = [InheritSomeAttrs,
341                                     InheritOptionsExceptPrefix](MDNode *Op) {
342          if (!InheritSomeAttrs)
343            return false;
344  
345          // Skip malformatted attribute metadata nodes.
346          if (Op->getNumOperands() == 0)
347            return true;
348          Metadata *NameMD = Op->getOperand(0).get();
349          if (!isa<MDString>(NameMD))
350            return true;
351          StringRef AttrName = cast<MDString>(NameMD)->getString();
352  
353          // Do not inherit excluded attributes.
354          return !AttrName.startswith(InheritOptionsExceptPrefix);
355        };
356  
357        if (InheritThisAttribute(Op))
358          MDs.push_back(Op);
359        else
360          Changed = true;
361      }
362    } else {
363      // Modified if we dropped at least one attribute.
364      Changed = OrigLoopID->getNumOperands() > 1;
365    }
366  
367    bool HasAnyFollowup = false;
368    for (StringRef OptionName : FollowupOptions) {
369      MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
370      if (!FollowupNode)
371        continue;
372  
373      HasAnyFollowup = true;
374      for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
375        MDs.push_back(Option.get());
376        Changed = true;
377      }
378    }
379  
380    // Attributes of the followup loop not specified explicity, so signal to the
381    // transformation pass to add suitable attributes.
382    if (!AlwaysNew && !HasAnyFollowup)
383      return None;
384  
385    // If no attributes were added or remove, the previous loop Id can be reused.
386    if (!AlwaysNew && !Changed)
387      return OrigLoopID;
388  
389    // No attributes is equivalent to having no !llvm.loop metadata at all.
390    if (MDs.size() == 1)
391      return nullptr;
392  
393    // Build the new loop ID.
394    MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
395    FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
396    return FollowupLoopID;
397  }
398  
399  bool llvm::hasDisableAllTransformsHint(const Loop *L) {
400    return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
401  }
402  
403  bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
404    return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
405  }
406  
407  TransformationMode llvm::hasUnrollTransformation(Loop *L) {
408    if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
409      return TM_SuppressedByUser;
410  
411    Optional<int> Count =
412        getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
413    if (Count.hasValue())
414      return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
415  
416    if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
417      return TM_ForcedByUser;
418  
419    if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
420      return TM_ForcedByUser;
421  
422    if (hasDisableAllTransformsHint(L))
423      return TM_Disable;
424  
425    return TM_Unspecified;
426  }
427  
428  TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
429    if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
430      return TM_SuppressedByUser;
431  
432    Optional<int> Count =
433        getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
434    if (Count.hasValue())
435      return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
436  
437    if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
438      return TM_ForcedByUser;
439  
440    if (hasDisableAllTransformsHint(L))
441      return TM_Disable;
442  
443    return TM_Unspecified;
444  }
445  
446  TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
447    Optional<bool> Enable =
448        getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
449  
450    if (Enable == false)
451      return TM_SuppressedByUser;
452  
453    Optional<int> VectorizeWidth =
454        getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
455    Optional<int> InterleaveCount =
456        getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
457  
458    // 'Forcing' vector width and interleave count to one effectively disables
459    // this tranformation.
460    if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
461      return TM_SuppressedByUser;
462  
463    if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
464      return TM_Disable;
465  
466    if (Enable == true)
467      return TM_ForcedByUser;
468  
469    if (VectorizeWidth == 1 && InterleaveCount == 1)
470      return TM_Disable;
471  
472    if (VectorizeWidth > 1 || InterleaveCount > 1)
473      return TM_Enable;
474  
475    if (hasDisableAllTransformsHint(L))
476      return TM_Disable;
477  
478    return TM_Unspecified;
479  }
480  
481  TransformationMode llvm::hasDistributeTransformation(Loop *L) {
482    if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
483      return TM_ForcedByUser;
484  
485    if (hasDisableAllTransformsHint(L))
486      return TM_Disable;
487  
488    return TM_Unspecified;
489  }
490  
491  TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
492    if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
493      return TM_SuppressedByUser;
494  
495    if (hasDisableAllTransformsHint(L))
496      return TM_Disable;
497  
498    return TM_Unspecified;
499  }
500  
501  /// Does a BFS from a given node to all of its children inside a given loop.
502  /// The returned vector of nodes includes the starting point.
503  SmallVector<DomTreeNode *, 16>
504  llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
505    SmallVector<DomTreeNode *, 16> Worklist;
506    auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
507      // Only include subregions in the top level loop.
508      BasicBlock *BB = DTN->getBlock();
509      if (CurLoop->contains(BB))
510        Worklist.push_back(DTN);
511    };
512  
513    AddRegionToWorklist(N);
514  
515    for (size_t I = 0; I < Worklist.size(); I++) {
516      for (DomTreeNode *Child : Worklist[I]->children())
517        AddRegionToWorklist(Child);
518    }
519  
520    return Worklist;
521  }
522  
523  void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
524                            LoopInfo *LI, MemorySSA *MSSA) {
525    assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
526    auto *Preheader = L->getLoopPreheader();
527    assert(Preheader && "Preheader should exist!");
528  
529    std::unique_ptr<MemorySSAUpdater> MSSAU;
530    if (MSSA)
531      MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
532  
533    // Now that we know the removal is safe, remove the loop by changing the
534    // branch from the preheader to go to the single exit block.
535    //
536    // Because we're deleting a large chunk of code at once, the sequence in which
537    // we remove things is very important to avoid invalidation issues.
538  
539    // Tell ScalarEvolution that the loop is deleted. Do this before
540    // deleting the loop so that ScalarEvolution can look at the loop
541    // to determine what it needs to clean up.
542    if (SE)
543      SE->forgetLoop(L);
544  
545    auto *ExitBlock = L->getUniqueExitBlock();
546    assert(ExitBlock && "Should have a unique exit block!");
547    assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
548  
549    auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
550    assert(OldBr && "Preheader must end with a branch");
551    assert(OldBr->isUnconditional() && "Preheader must have a single successor");
552    // Connect the preheader to the exit block. Keep the old edge to the header
553    // around to perform the dominator tree update in two separate steps
554    // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
555    // preheader -> header.
556    //
557    //
558    // 0.  Preheader          1.  Preheader           2.  Preheader
559    //        |                    |   |                   |
560    //        V                    |   V                   |
561    //      Header <--\            | Header <--\           | Header <--\
562    //       |  |     |            |  |  |     |           |  |  |     |
563    //       |  V     |            |  |  V     |           |  |  V     |
564    //       | Body --/            |  | Body --/           |  | Body --/
565    //       V                     V  V                    V  V
566    //      Exit                   Exit                    Exit
567    //
568    // By doing this is two separate steps we can perform the dominator tree
569    // update without using the batch update API.
570    //
571    // Even when the loop is never executed, we cannot remove the edge from the
572    // source block to the exit block. Consider the case where the unexecuted loop
573    // branches back to an outer loop. If we deleted the loop and removed the edge
574    // coming to this inner loop, this will break the outer loop structure (by
575    // deleting the backedge of the outer loop). If the outer loop is indeed a
576    // non-loop, it will be deleted in a future iteration of loop deletion pass.
577    IRBuilder<> Builder(OldBr);
578    Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
579    // Remove the old branch. The conditional branch becomes a new terminator.
580    OldBr->eraseFromParent();
581  
582    // Rewrite phis in the exit block to get their inputs from the Preheader
583    // instead of the exiting block.
584    for (PHINode &P : ExitBlock->phis()) {
585      // Set the zero'th element of Phi to be from the preheader and remove all
586      // other incoming values. Given the loop has dedicated exits, all other
587      // incoming values must be from the exiting blocks.
588      int PredIndex = 0;
589      P.setIncomingBlock(PredIndex, Preheader);
590      // Removes all incoming values from all other exiting blocks (including
591      // duplicate values from an exiting block).
592      // Nuke all entries except the zero'th entry which is the preheader entry.
593      // NOTE! We need to remove Incoming Values in the reverse order as done
594      // below, to keep the indices valid for deletion (removeIncomingValues
595      // updates getNumIncomingValues and shifts all values down into the operand
596      // being deleted).
597      for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
598        P.removeIncomingValue(e - i, false);
599  
600      assert((P.getNumIncomingValues() == 1 &&
601              P.getIncomingBlock(PredIndex) == Preheader) &&
602             "Should have exactly one value and that's from the preheader!");
603    }
604  
605    DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
606    if (DT) {
607      DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
608      if (MSSA) {
609        MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, *DT);
610        if (VerifyMemorySSA)
611          MSSA->verifyMemorySSA();
612      }
613    }
614  
615    // Disconnect the loop body by branching directly to its exit.
616    Builder.SetInsertPoint(Preheader->getTerminator());
617    Builder.CreateBr(ExitBlock);
618    // Remove the old branch.
619    Preheader->getTerminator()->eraseFromParent();
620  
621    if (DT) {
622      DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
623      if (MSSA) {
624        MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
625                            *DT);
626        SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
627                                                     L->block_end());
628        MSSAU->removeBlocks(DeadBlockSet);
629        if (VerifyMemorySSA)
630          MSSA->verifyMemorySSA();
631      }
632    }
633  
634    // Use a map to unique and a vector to guarantee deterministic ordering.
635    llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
636    llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
637  
638    // Given LCSSA form is satisfied, we should not have users of instructions
639    // within the dead loop outside of the loop. However, LCSSA doesn't take
640    // unreachable uses into account. We handle them here.
641    // We could do it after drop all references (in this case all users in the
642    // loop will be already eliminated and we have less work to do but according
643    // to API doc of User::dropAllReferences only valid operation after dropping
644    // references, is deletion. So let's substitute all usages of
645    // instruction from the loop with undef value of corresponding type first.
646    for (auto *Block : L->blocks())
647      for (Instruction &I : *Block) {
648        auto *Undef = UndefValue::get(I.getType());
649        for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
650          Use &U = *UI;
651          ++UI;
652          if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
653            if (L->contains(Usr->getParent()))
654              continue;
655          // If we have a DT then we can check that uses outside a loop only in
656          // unreachable block.
657          if (DT)
658            assert(!DT->isReachableFromEntry(U) &&
659                   "Unexpected user in reachable block");
660          U.set(Undef);
661        }
662        auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
663        if (!DVI)
664          continue;
665        auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
666        if (Key != DeadDebugSet.end())
667          continue;
668        DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
669        DeadDebugInst.push_back(DVI);
670      }
671  
672    // After the loop has been deleted all the values defined and modified
673    // inside the loop are going to be unavailable.
674    // Since debug values in the loop have been deleted, inserting an undef
675    // dbg.value truncates the range of any dbg.value before the loop where the
676    // loop used to be. This is particularly important for constant values.
677    DIBuilder DIB(*ExitBlock->getModule());
678    Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
679    assert(InsertDbgValueBefore &&
680           "There should be a non-PHI instruction in exit block, else these "
681           "instructions will have no parent.");
682    for (auto *DVI : DeadDebugInst)
683      DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
684                                  DVI->getVariable(), DVI->getExpression(),
685                                  DVI->getDebugLoc(), InsertDbgValueBefore);
686  
687    // Remove the block from the reference counting scheme, so that we can
688    // delete it freely later.
689    for (auto *Block : L->blocks())
690      Block->dropAllReferences();
691  
692    if (MSSA && VerifyMemorySSA)
693      MSSA->verifyMemorySSA();
694  
695    if (LI) {
696      // Erase the instructions and the blocks without having to worry
697      // about ordering because we already dropped the references.
698      // NOTE: This iteration is safe because erasing the block does not remove
699      // its entry from the loop's block list.  We do that in the next section.
700      for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
701           LpI != LpE; ++LpI)
702        (*LpI)->eraseFromParent();
703  
704      // Finally, the blocks from loopinfo.  This has to happen late because
705      // otherwise our loop iterators won't work.
706  
707      SmallPtrSet<BasicBlock *, 8> blocks;
708      blocks.insert(L->block_begin(), L->block_end());
709      for (BasicBlock *BB : blocks)
710        LI->removeBlock(BB);
711  
712      // The last step is to update LoopInfo now that we've eliminated this loop.
713      // Note: LoopInfo::erase remove the given loop and relink its subloops with
714      // its parent. While removeLoop/removeChildLoop remove the given loop but
715      // not relink its subloops, which is what we want.
716      if (Loop *ParentLoop = L->getParentLoop()) {
717        Loop::iterator I = find(*ParentLoop, L);
718        assert(I != ParentLoop->end() && "Couldn't find loop");
719        ParentLoop->removeChildLoop(I);
720      } else {
721        Loop::iterator I = find(*LI, L);
722        assert(I != LI->end() && "Couldn't find loop");
723        LI->removeLoop(I);
724      }
725      LI->destroy(L);
726    }
727  }
728  
729  /// Checks if \p L has single exit through latch block except possibly
730  /// "deoptimizing" exits. Returns branch instruction terminating the loop
731  /// latch if above check is successful, nullptr otherwise.
732  static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
733    BasicBlock *Latch = L->getLoopLatch();
734    if (!Latch)
735      return nullptr;
736  
737    BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
738    if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
739      return nullptr;
740  
741    assert((LatchBR->getSuccessor(0) == L->getHeader() ||
742            LatchBR->getSuccessor(1) == L->getHeader()) &&
743           "At least one edge out of the latch must go to the header");
744  
745    SmallVector<BasicBlock *, 4> ExitBlocks;
746    L->getUniqueNonLatchExitBlocks(ExitBlocks);
747    if (any_of(ExitBlocks, [](const BasicBlock *EB) {
748          return !EB->getTerminatingDeoptimizeCall();
749        }))
750      return nullptr;
751  
752    return LatchBR;
753  }
754  
755  Optional<unsigned>
756  llvm::getLoopEstimatedTripCount(Loop *L,
757                                  unsigned *EstimatedLoopInvocationWeight) {
758    // Support loops with an exiting latch and other existing exists only
759    // deoptimize.
760    BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
761    if (!LatchBranch)
762      return None;
763  
764    // To estimate the number of times the loop body was executed, we want to
765    // know the number of times the backedge was taken, vs. the number of times
766    // we exited the loop.
767    uint64_t BackedgeTakenWeight, LatchExitWeight;
768    if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
769      return None;
770  
771    if (LatchBranch->getSuccessor(0) != L->getHeader())
772      std::swap(BackedgeTakenWeight, LatchExitWeight);
773  
774    if (!LatchExitWeight)
775      return None;
776  
777    if (EstimatedLoopInvocationWeight)
778      *EstimatedLoopInvocationWeight = LatchExitWeight;
779  
780    // Estimated backedge taken count is a ratio of the backedge taken weight by
781    // the weight of the edge exiting the loop, rounded to nearest.
782    uint64_t BackedgeTakenCount =
783        llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
784    // Estimated trip count is one plus estimated backedge taken count.
785    return BackedgeTakenCount + 1;
786  }
787  
788  bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
789                                       unsigned EstimatedloopInvocationWeight) {
790    // Support loops with an exiting latch and other existing exists only
791    // deoptimize.
792    BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
793    if (!LatchBranch)
794      return false;
795  
796    // Calculate taken and exit weights.
797    unsigned LatchExitWeight = 0;
798    unsigned BackedgeTakenWeight = 0;
799  
800    if (EstimatedTripCount > 0) {
801      LatchExitWeight = EstimatedloopInvocationWeight;
802      BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
803    }
804  
805    // Make a swap if back edge is taken when condition is "false".
806    if (LatchBranch->getSuccessor(0) != L->getHeader())
807      std::swap(BackedgeTakenWeight, LatchExitWeight);
808  
809    MDBuilder MDB(LatchBranch->getContext());
810  
811    // Set/Update profile metadata.
812    LatchBranch->setMetadata(
813        LLVMContext::MD_prof,
814        MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
815  
816    return true;
817  }
818  
819  bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
820                                                ScalarEvolution &SE) {
821    Loop *OuterL = InnerLoop->getParentLoop();
822    if (!OuterL)
823      return true;
824  
825    // Get the backedge taken count for the inner loop
826    BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
827    const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
828    if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
829        !InnerLoopBECountSC->getType()->isIntegerTy())
830      return false;
831  
832    // Get whether count is invariant to the outer loop
833    ScalarEvolution::LoopDisposition LD =
834        SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
835    if (LD != ScalarEvolution::LoopInvariant)
836      return false;
837  
838    return true;
839  }
840  
841  Value *llvm::createMinMaxOp(IRBuilderBase &Builder,
842                              RecurrenceDescriptor::MinMaxRecurrenceKind RK,
843                              Value *Left, Value *Right) {
844    CmpInst::Predicate P = CmpInst::ICMP_NE;
845    switch (RK) {
846    default:
847      llvm_unreachable("Unknown min/max recurrence kind");
848    case RecurrenceDescriptor::MRK_UIntMin:
849      P = CmpInst::ICMP_ULT;
850      break;
851    case RecurrenceDescriptor::MRK_UIntMax:
852      P = CmpInst::ICMP_UGT;
853      break;
854    case RecurrenceDescriptor::MRK_SIntMin:
855      P = CmpInst::ICMP_SLT;
856      break;
857    case RecurrenceDescriptor::MRK_SIntMax:
858      P = CmpInst::ICMP_SGT;
859      break;
860    case RecurrenceDescriptor::MRK_FloatMin:
861      P = CmpInst::FCMP_OLT;
862      break;
863    case RecurrenceDescriptor::MRK_FloatMax:
864      P = CmpInst::FCMP_OGT;
865      break;
866    }
867  
868    // We only match FP sequences that are 'fast', so we can unconditionally
869    // set it on any generated instructions.
870    IRBuilderBase::FastMathFlagGuard FMFG(Builder);
871    FastMathFlags FMF;
872    FMF.setFast();
873    Builder.setFastMathFlags(FMF);
874    Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp");
875    Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
876    return Select;
877  }
878  
879  // Helper to generate an ordered reduction.
880  Value *
881  llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
882                            unsigned Op,
883                            RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
884                            ArrayRef<Value *> RedOps) {
885    unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
886  
887    // Extract and apply reduction ops in ascending order:
888    // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
889    Value *Result = Acc;
890    for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
891      Value *Ext =
892          Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
893  
894      if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
895        Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
896                                     "bin.rdx");
897      } else {
898        assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
899               "Invalid min/max");
900        Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
901      }
902  
903      if (!RedOps.empty())
904        propagateIRFlags(Result, RedOps);
905    }
906  
907    return Result;
908  }
909  
910  // Helper to generate a log2 shuffle reduction.
911  Value *
912  llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
913                            RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
914                            ArrayRef<Value *> RedOps) {
915    unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
916    // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
917    // and vector ops, reducing the set of values being computed by half each
918    // round.
919    assert(isPowerOf2_32(VF) &&
920           "Reduction emission only supported for pow2 vectors!");
921    Value *TmpVec = Src;
922    SmallVector<int, 32> ShuffleMask(VF);
923    for (unsigned i = VF; i != 1; i >>= 1) {
924      // Move the upper half of the vector to the lower half.
925      for (unsigned j = 0; j != i / 2; ++j)
926        ShuffleMask[j] = i / 2 + j;
927  
928      // Fill the rest of the mask with undef.
929      std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
930  
931      Value *Shuf = Builder.CreateShuffleVector(
932          TmpVec, UndefValue::get(TmpVec->getType()), ShuffleMask, "rdx.shuf");
933  
934      if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
935        // The builder propagates its fast-math-flags setting.
936        TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
937                                     "bin.rdx");
938      } else {
939        assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
940               "Invalid min/max");
941        TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
942      }
943      if (!RedOps.empty())
944        propagateIRFlags(TmpVec, RedOps);
945  
946      // We may compute the reassociated scalar ops in a way that does not
947      // preserve nsw/nuw etc. Conservatively, drop those flags.
948      if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
949        ReductionInst->dropPoisonGeneratingFlags();
950    }
951    // The result is in the first element of the vector.
952    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
953  }
954  
955  /// Create a simple vector reduction specified by an opcode and some
956  /// flags (if generating min/max reductions).
957  Value *llvm::createSimpleTargetReduction(
958      IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
959      Value *Src, TargetTransformInfo::ReductionFlags Flags,
960      ArrayRef<Value *> RedOps) {
961    auto *SrcVTy = cast<VectorType>(Src->getType());
962  
963    std::function<Value *()> BuildFunc;
964    using RD = RecurrenceDescriptor;
965    RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
966  
967    switch (Opcode) {
968    case Instruction::Add:
969      BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
970      break;
971    case Instruction::Mul:
972      BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
973      break;
974    case Instruction::And:
975      BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
976      break;
977    case Instruction::Or:
978      BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
979      break;
980    case Instruction::Xor:
981      BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
982      break;
983    case Instruction::FAdd:
984      BuildFunc = [&]() {
985        auto Rdx = Builder.CreateFAddReduce(
986            Constant::getNullValue(SrcVTy->getElementType()), Src);
987        return Rdx;
988      };
989      break;
990    case Instruction::FMul:
991      BuildFunc = [&]() {
992        Type *Ty = SrcVTy->getElementType();
993        auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
994        return Rdx;
995      };
996      break;
997    case Instruction::ICmp:
998      if (Flags.IsMaxOp) {
999        MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1000        BuildFunc = [&]() {
1001          return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1002        };
1003      } else {
1004        MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1005        BuildFunc = [&]() {
1006          return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1007        };
1008      }
1009      break;
1010    case Instruction::FCmp:
1011      if (Flags.IsMaxOp) {
1012        MinMaxKind = RD::MRK_FloatMax;
1013        BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1014      } else {
1015        MinMaxKind = RD::MRK_FloatMin;
1016        BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1017      }
1018      break;
1019    default:
1020      llvm_unreachable("Unhandled opcode");
1021      break;
1022    }
1023    if (ForceReductionIntrinsic ||
1024        TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1025      return BuildFunc();
1026    return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1027  }
1028  
1029  /// Create a vector reduction using a given recurrence descriptor.
1030  Value *llvm::createTargetReduction(IRBuilderBase &B,
1031                                     const TargetTransformInfo *TTI,
1032                                     RecurrenceDescriptor &Desc, Value *Src,
1033                                     bool NoNaN) {
1034    // TODO: Support in-order reductions based on the recurrence descriptor.
1035    using RD = RecurrenceDescriptor;
1036    RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1037    TargetTransformInfo::ReductionFlags Flags;
1038    Flags.NoNaN = NoNaN;
1039  
1040    // All ops in the reduction inherit fast-math-flags from the recurrence
1041    // descriptor.
1042    IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1043    B.setFastMathFlags(Desc.getFastMathFlags());
1044  
1045    switch (RecKind) {
1046    case RD::RK_FloatAdd:
1047      return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
1048    case RD::RK_FloatMult:
1049      return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1050    case RD::RK_IntegerAdd:
1051      return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1052    case RD::RK_IntegerMult:
1053      return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1054    case RD::RK_IntegerAnd:
1055      return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1056    case RD::RK_IntegerOr:
1057      return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1058    case RD::RK_IntegerXor:
1059      return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1060    case RD::RK_IntegerMinMax: {
1061      RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1062      Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1063      Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1064      return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
1065    }
1066    case RD::RK_FloatMinMax: {
1067      Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1068      return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
1069    }
1070    default:
1071      llvm_unreachable("Unhandled RecKind");
1072    }
1073  }
1074  
1075  void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1076    auto *VecOp = dyn_cast<Instruction>(I);
1077    if (!VecOp)
1078      return;
1079    auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1080                                              : dyn_cast<Instruction>(OpValue);
1081    if (!Intersection)
1082      return;
1083    const unsigned Opcode = Intersection->getOpcode();
1084    VecOp->copyIRFlags(Intersection);
1085    for (auto *V : VL) {
1086      auto *Instr = dyn_cast<Instruction>(V);
1087      if (!Instr)
1088        continue;
1089      if (OpValue == nullptr || Opcode == Instr->getOpcode())
1090        VecOp->andIRFlags(V);
1091    }
1092  }
1093  
1094  bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1095                                   ScalarEvolution &SE) {
1096    const SCEV *Zero = SE.getZero(S->getType());
1097    return SE.isAvailableAtLoopEntry(S, L) &&
1098           SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1099  }
1100  
1101  bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1102                                      ScalarEvolution &SE) {
1103    const SCEV *Zero = SE.getZero(S->getType());
1104    return SE.isAvailableAtLoopEntry(S, L) &&
1105           SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1106  }
1107  
1108  bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1109                               bool Signed) {
1110    unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1111    APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1112      APInt::getMinValue(BitWidth);
1113    auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1114    return SE.isAvailableAtLoopEntry(S, L) &&
1115           SE.isLoopEntryGuardedByCond(L, Predicate, S,
1116                                       SE.getConstant(Min));
1117  }
1118  
1119  bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1120                               bool Signed) {
1121    unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1122    APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1123      APInt::getMaxValue(BitWidth);
1124    auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1125    return SE.isAvailableAtLoopEntry(S, L) &&
1126           SE.isLoopEntryGuardedByCond(L, Predicate, S,
1127                                       SE.getConstant(Max));
1128  }
1129  
1130  //===----------------------------------------------------------------------===//
1131  // rewriteLoopExitValues - Optimize IV users outside the loop.
1132  // As a side effect, reduces the amount of IV processing within the loop.
1133  //===----------------------------------------------------------------------===//
1134  
1135  // Return true if the SCEV expansion generated by the rewriter can replace the
1136  // original value. SCEV guarantees that it produces the same value, but the way
1137  // it is produced may be illegal IR.  Ideally, this function will only be
1138  // called for verification.
1139  static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1140    // If an SCEV expression subsumed multiple pointers, its expansion could
1141    // reassociate the GEP changing the base pointer. This is illegal because the
1142    // final address produced by a GEP chain must be inbounds relative to its
1143    // underlying object. Otherwise basic alias analysis, among other things,
1144    // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1145    // producing an expression involving multiple pointers. Until then, we must
1146    // bail out here.
1147    //
1148    // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
1149    // because it understands lcssa phis while SCEV does not.
1150    Value *FromPtr = FromVal;
1151    Value *ToPtr = ToVal;
1152    if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1153      FromPtr = GEP->getPointerOperand();
1154  
1155    if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1156      ToPtr = GEP->getPointerOperand();
1157  
1158    if (FromPtr != FromVal || ToPtr != ToVal) {
1159      // Quickly check the common case
1160      if (FromPtr == ToPtr)
1161        return true;
1162  
1163      // SCEV may have rewritten an expression that produces the GEP's pointer
1164      // operand. That's ok as long as the pointer operand has the same base
1165      // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
1166      // base of a recurrence. This handles the case in which SCEV expansion
1167      // converts a pointer type recurrence into a nonrecurrent pointer base
1168      // indexed by an integer recurrence.
1169  
1170      // If the GEP base pointer is a vector of pointers, abort.
1171      if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1172        return false;
1173  
1174      const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1175      const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1176      if (FromBase == ToBase)
1177        return true;
1178  
1179      LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1180                        << *FromBase << " != " << *ToBase << "\n");
1181  
1182      return false;
1183    }
1184    return true;
1185  }
1186  
1187  static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1188    SmallPtrSet<const Instruction *, 8> Visited;
1189    SmallVector<const Instruction *, 8> WorkList;
1190    Visited.insert(I);
1191    WorkList.push_back(I);
1192    while (!WorkList.empty()) {
1193      const Instruction *Curr = WorkList.pop_back_val();
1194      // This use is outside the loop, nothing to do.
1195      if (!L->contains(Curr))
1196        continue;
1197      // Do we assume it is a "hard" use which will not be eliminated easily?
1198      if (Curr->mayHaveSideEffects())
1199        return true;
1200      // Otherwise, add all its users to worklist.
1201      for (auto U : Curr->users()) {
1202        auto *UI = cast<Instruction>(U);
1203        if (Visited.insert(UI).second)
1204          WorkList.push_back(UI);
1205      }
1206    }
1207    return false;
1208  }
1209  
1210  // Collect information about PHI nodes which can be transformed in
1211  // rewriteLoopExitValues.
1212  struct RewritePhi {
1213    PHINode *PN;               // For which PHI node is this replacement?
1214    unsigned Ith;              // For which incoming value?
1215    const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1216    Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1217    bool HighCost;               // Is this expansion a high-cost?
1218  
1219    Value *Expansion = nullptr;
1220    bool ValidRewrite = false;
1221  
1222    RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1223               bool H)
1224        : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1225          HighCost(H) {}
1226  };
1227  
1228  // Check whether it is possible to delete the loop after rewriting exit
1229  // value. If it is possible, ignore ReplaceExitValue and do rewriting
1230  // aggressively.
1231  static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1232    BasicBlock *Preheader = L->getLoopPreheader();
1233    // If there is no preheader, the loop will not be deleted.
1234    if (!Preheader)
1235      return false;
1236  
1237    // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1238    // We obviate multiple ExitingBlocks case for simplicity.
1239    // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1240    // after exit value rewriting, we can enhance the logic here.
1241    SmallVector<BasicBlock *, 4> ExitingBlocks;
1242    L->getExitingBlocks(ExitingBlocks);
1243    SmallVector<BasicBlock *, 8> ExitBlocks;
1244    L->getUniqueExitBlocks(ExitBlocks);
1245    if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1246      return false;
1247  
1248    BasicBlock *ExitBlock = ExitBlocks[0];
1249    BasicBlock::iterator BI = ExitBlock->begin();
1250    while (PHINode *P = dyn_cast<PHINode>(BI)) {
1251      Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1252  
1253      // If the Incoming value of P is found in RewritePhiSet, we know it
1254      // could be rewritten to use a loop invariant value in transformation
1255      // phase later. Skip it in the loop invariant check below.
1256      bool found = false;
1257      for (const RewritePhi &Phi : RewritePhiSet) {
1258        if (!Phi.ValidRewrite)
1259          continue;
1260        unsigned i = Phi.Ith;
1261        if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1262          found = true;
1263          break;
1264        }
1265      }
1266  
1267      Instruction *I;
1268      if (!found && (I = dyn_cast<Instruction>(Incoming)))
1269        if (!L->hasLoopInvariantOperands(I))
1270          return false;
1271  
1272      ++BI;
1273    }
1274  
1275    for (auto *BB : L->blocks())
1276      if (llvm::any_of(*BB, [](Instruction &I) {
1277            return I.mayHaveSideEffects();
1278          }))
1279        return false;
1280  
1281    return true;
1282  }
1283  
1284  int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1285                                  ScalarEvolution *SE,
1286                                  const TargetTransformInfo *TTI,
1287                                  SCEVExpander &Rewriter, DominatorTree *DT,
1288                                  ReplaceExitVal ReplaceExitValue,
1289                                  SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1290    // Check a pre-condition.
1291    assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1292           "Indvars did not preserve LCSSA!");
1293  
1294    SmallVector<BasicBlock*, 8> ExitBlocks;
1295    L->getUniqueExitBlocks(ExitBlocks);
1296  
1297    SmallVector<RewritePhi, 8> RewritePhiSet;
1298    // Find all values that are computed inside the loop, but used outside of it.
1299    // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1300    // the exit blocks of the loop to find them.
1301    for (BasicBlock *ExitBB : ExitBlocks) {
1302      // If there are no PHI nodes in this exit block, then no values defined
1303      // inside the loop are used on this path, skip it.
1304      PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1305      if (!PN) continue;
1306  
1307      unsigned NumPreds = PN->getNumIncomingValues();
1308  
1309      // Iterate over all of the PHI nodes.
1310      BasicBlock::iterator BBI = ExitBB->begin();
1311      while ((PN = dyn_cast<PHINode>(BBI++))) {
1312        if (PN->use_empty())
1313          continue; // dead use, don't replace it
1314  
1315        if (!SE->isSCEVable(PN->getType()))
1316          continue;
1317  
1318        // It's necessary to tell ScalarEvolution about this explicitly so that
1319        // it can walk the def-use list and forget all SCEVs, as it may not be
1320        // watching the PHI itself. Once the new exit value is in place, there
1321        // may not be a def-use connection between the loop and every instruction
1322        // which got a SCEVAddRecExpr for that loop.
1323        SE->forgetValue(PN);
1324  
1325        // Iterate over all of the values in all the PHI nodes.
1326        for (unsigned i = 0; i != NumPreds; ++i) {
1327          // If the value being merged in is not integer or is not defined
1328          // in the loop, skip it.
1329          Value *InVal = PN->getIncomingValue(i);
1330          if (!isa<Instruction>(InVal))
1331            continue;
1332  
1333          // If this pred is for a subloop, not L itself, skip it.
1334          if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1335            continue; // The Block is in a subloop, skip it.
1336  
1337          // Check that InVal is defined in the loop.
1338          Instruction *Inst = cast<Instruction>(InVal);
1339          if (!L->contains(Inst))
1340            continue;
1341  
1342          // Okay, this instruction has a user outside of the current loop
1343          // and varies predictably *inside* the loop.  Evaluate the value it
1344          // contains when the loop exits, if possible.  We prefer to start with
1345          // expressions which are true for all exits (so as to maximize
1346          // expression reuse by the SCEVExpander), but resort to per-exit
1347          // evaluation if that fails.
1348          const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1349          if (isa<SCEVCouldNotCompute>(ExitValue) ||
1350              !SE->isLoopInvariant(ExitValue, L) ||
1351              !isSafeToExpand(ExitValue, *SE)) {
1352            // TODO: This should probably be sunk into SCEV in some way; maybe a
1353            // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1354            // most SCEV expressions and other recurrence types (e.g. shift
1355            // recurrences).  Is there existing code we can reuse?
1356            const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1357            if (isa<SCEVCouldNotCompute>(ExitCount))
1358              continue;
1359            if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1360              if (AddRec->getLoop() == L)
1361                ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1362            if (isa<SCEVCouldNotCompute>(ExitValue) ||
1363                !SE->isLoopInvariant(ExitValue, L) ||
1364                !isSafeToExpand(ExitValue, *SE))
1365              continue;
1366          }
1367  
1368          // Computing the value outside of the loop brings no benefit if it is
1369          // definitely used inside the loop in a way which can not be optimized
1370          // away. Avoid doing so unless we know we have a value which computes
1371          // the ExitValue already. TODO: This should be merged into SCEV
1372          // expander to leverage its knowledge of existing expressions.
1373          if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1374              !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1375            continue;
1376  
1377          // Check if expansions of this SCEV would count as being high cost.
1378          bool HighCost = Rewriter.isHighCostExpansion(
1379              ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1380  
1381          // Note that we must not perform expansions until after
1382          // we query *all* the costs, because if we perform temporary expansion
1383          // inbetween, one that we might not intend to keep, said expansion
1384          // *may* affect cost calculation of the the next SCEV's we'll query,
1385          // and next SCEV may errneously get smaller cost.
1386  
1387          // Collect all the candidate PHINodes to be rewritten.
1388          RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1389        }
1390      }
1391    }
1392  
1393    // Now that we've done preliminary filtering and billed all the SCEV's,
1394    // we can perform the last sanity check - the expansion must be valid.
1395    for (RewritePhi &Phi : RewritePhiSet) {
1396      Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1397                                             Phi.ExpansionPoint);
1398  
1399      LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1400                        << *(Phi.Expansion) << '\n'
1401                        << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1402  
1403      // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1404      Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1405      if (!Phi.ValidRewrite) {
1406        DeadInsts.push_back(Phi.Expansion);
1407        continue;
1408      }
1409  
1410  #ifndef NDEBUG
1411      // If we reuse an instruction from a loop which is neither L nor one of
1412      // its containing loops, we end up breaking LCSSA form for this loop by
1413      // creating a new use of its instruction.
1414      if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1415        if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1416          if (EVL != L)
1417            assert(EVL->contains(L) && "LCSSA breach detected!");
1418  #endif
1419    }
1420  
1421    // TODO: after isValidRewrite() is an assertion, evaluate whether
1422    // it is beneficial to change how we calculate high-cost:
1423    // if we have SCEV 'A' which we know we will expand, should we calculate
1424    // the cost of other SCEV's after expanding SCEV 'A',
1425    // thus potentially giving cost bonus to those other SCEV's?
1426  
1427    bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1428    int NumReplaced = 0;
1429  
1430    // Transformation.
1431    for (const RewritePhi &Phi : RewritePhiSet) {
1432      if (!Phi.ValidRewrite)
1433        continue;
1434  
1435      PHINode *PN = Phi.PN;
1436      Value *ExitVal = Phi.Expansion;
1437  
1438      // Only do the rewrite when the ExitValue can be expanded cheaply.
1439      // If LoopCanBeDel is true, rewrite exit value aggressively.
1440      if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1441        DeadInsts.push_back(ExitVal);
1442        continue;
1443      }
1444  
1445      NumReplaced++;
1446      Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1447      PN->setIncomingValue(Phi.Ith, ExitVal);
1448  
1449      // If this instruction is dead now, delete it. Don't do it now to avoid
1450      // invalidating iterators.
1451      if (isInstructionTriviallyDead(Inst, TLI))
1452        DeadInsts.push_back(Inst);
1453  
1454      // Replace PN with ExitVal if that is legal and does not break LCSSA.
1455      if (PN->getNumIncomingValues() == 1 &&
1456          LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1457        PN->replaceAllUsesWith(ExitVal);
1458        PN->eraseFromParent();
1459      }
1460    }
1461  
1462    // The insertion point instruction may have been deleted; clear it out
1463    // so that the rewriter doesn't trip over it later.
1464    Rewriter.clearInsertPoint();
1465    return NumReplaced;
1466  }
1467  
1468  /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1469  /// \p OrigLoop.
1470  void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1471                                          Loop *RemainderLoop, uint64_t UF) {
1472    assert(UF > 0 && "Zero unrolled factor is not supported");
1473    assert(UnrolledLoop != RemainderLoop &&
1474           "Unrolled and Remainder loops are expected to distinct");
1475  
1476    // Get number of iterations in the original scalar loop.
1477    unsigned OrigLoopInvocationWeight = 0;
1478    Optional<unsigned> OrigAverageTripCount =
1479        getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1480    if (!OrigAverageTripCount)
1481      return;
1482  
1483    // Calculate number of iterations in unrolled loop.
1484    unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1485    // Calculate number of iterations for remainder loop.
1486    unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1487  
1488    setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1489                              OrigLoopInvocationWeight);
1490    setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1491                              OrigLoopInvocationWeight);
1492  }
1493  
1494  /// Utility that implements appending of loops onto a worklist.
1495  /// Loops are added in preorder (analogous for reverse postorder for trees),
1496  /// and the worklist is processed LIFO.
1497  template <typename RangeT>
1498  void llvm::appendReversedLoopsToWorklist(
1499      RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1500    // We use an internal worklist to build up the preorder traversal without
1501    // recursion.
1502    SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1503  
1504    // We walk the initial sequence of loops in reverse because we generally want
1505    // to visit defs before uses and the worklist is LIFO.
1506    for (Loop *RootL : Loops) {
1507      assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1508      assert(PreOrderWorklist.empty() &&
1509             "Must start with an empty preorder walk worklist.");
1510      PreOrderWorklist.push_back(RootL);
1511      do {
1512        Loop *L = PreOrderWorklist.pop_back_val();
1513        PreOrderWorklist.append(L->begin(), L->end());
1514        PreOrderLoops.push_back(L);
1515      } while (!PreOrderWorklist.empty());
1516  
1517      Worklist.insert(std::move(PreOrderLoops));
1518      PreOrderLoops.clear();
1519    }
1520  }
1521  
1522  template <typename RangeT>
1523  void llvm::appendLoopsToWorklist(RangeT &&Loops,
1524                                   SmallPriorityWorklist<Loop *, 4> &Worklist) {
1525    appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1526  }
1527  
1528  template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1529      ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1530  
1531  template void
1532  llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1533                                      SmallPriorityWorklist<Loop *, 4> &Worklist);
1534  
1535  void llvm::appendLoopsToWorklist(LoopInfo &LI,
1536                                   SmallPriorityWorklist<Loop *, 4> &Worklist) {
1537    appendReversedLoopsToWorklist(LI, Worklist);
1538  }
1539  
1540  Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1541                        LoopInfo *LI, LPPassManager *LPM) {
1542    Loop &New = *LI->AllocateLoop();
1543    if (PL)
1544      PL->addChildLoop(&New);
1545    else
1546      LI->addTopLevelLoop(&New);
1547  
1548    if (LPM)
1549      LPM->addLoop(New);
1550  
1551    // Add all of the blocks in L to the new loop.
1552    for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1553         I != E; ++I)
1554      if (LI->getLoopFor(*I) == L)
1555        New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1556  
1557    // Add all of the subloops to the new loop.
1558    for (Loop *I : *L)
1559      cloneLoop(I, &New, VM, LI, LPM);
1560  
1561    return &New;
1562  }
1563  
1564  /// IR Values for the lower and upper bounds of a pointer evolution.  We
1565  /// need to use value-handles because SCEV expansion can invalidate previously
1566  /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1567  /// a previous one.
1568  struct PointerBounds {
1569    TrackingVH<Value> Start;
1570    TrackingVH<Value> End;
1571  };
1572  
1573  /// Expand code for the lower and upper bound of the pointer group \p CG
1574  /// in \p TheLoop.  \return the values for the bounds.
1575  static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1576                                    Loop *TheLoop, Instruction *Loc,
1577                                    SCEVExpander &Exp, ScalarEvolution *SE) {
1578    // TODO: Add helper to retrieve pointers to CG.
1579    Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
1580    const SCEV *Sc = SE->getSCEV(Ptr);
1581  
1582    unsigned AS = Ptr->getType()->getPointerAddressSpace();
1583    LLVMContext &Ctx = Loc->getContext();
1584  
1585    // Use this type for pointer arithmetic.
1586    Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1587  
1588    if (SE->isLoopInvariant(Sc, TheLoop)) {
1589      LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
1590                        << *Ptr << "\n");
1591      // Ptr could be in the loop body. If so, expand a new one at the correct
1592      // location.
1593      Instruction *Inst = dyn_cast<Instruction>(Ptr);
1594      Value *NewPtr = (Inst && TheLoop->contains(Inst))
1595                          ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1596                          : Ptr;
1597      // We must return a half-open range, which means incrementing Sc.
1598      const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1599      Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1600      return {NewPtr, NewPtrPlusOne};
1601    } else {
1602      Value *Start = nullptr, *End = nullptr;
1603      LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1604      Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1605      End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1606      LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
1607                        << "\n");
1608      return {Start, End};
1609    }
1610  }
1611  
1612  /// Turns a collection of checks into a collection of expanded upper and
1613  /// lower bounds for both pointers in the check.
1614  static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1615  expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1616               Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
1617    SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1618  
1619    // Here we're relying on the SCEV Expander's cache to only emit code for the
1620    // same bounds once.
1621    transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1622              [&](const RuntimePointerCheck &Check) {
1623                PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
1624                              Second =
1625                                  expandBounds(Check.second, L, Loc, Exp, SE);
1626                return std::make_pair(First, Second);
1627              });
1628  
1629    return ChecksWithBounds;
1630  }
1631  
1632  std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1633      Instruction *Loc, Loop *TheLoop,
1634      const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1635      ScalarEvolution *SE) {
1636    // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1637    // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1638    const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1639    SCEVExpander Exp(*SE, DL, "induction");
1640    auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
1641  
1642    LLVMContext &Ctx = Loc->getContext();
1643    Instruction *FirstInst = nullptr;
1644    IRBuilder<> ChkBuilder(Loc);
1645    // Our instructions might fold to a constant.
1646    Value *MemoryRuntimeCheck = nullptr;
1647  
1648    // FIXME: this helper is currently a duplicate of the one in
1649    // LoopVectorize.cpp.
1650    auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1651                           Instruction *Loc) -> Instruction * {
1652      if (FirstInst)
1653        return FirstInst;
1654      if (Instruction *I = dyn_cast<Instruction>(V))
1655        return I->getParent() == Loc->getParent() ? I : nullptr;
1656      return nullptr;
1657    };
1658  
1659    for (const auto &Check : ExpandedChecks) {
1660      const PointerBounds &A = Check.first, &B = Check.second;
1661      // Check if two pointers (A and B) conflict where conflict is computed as:
1662      // start(A) <= end(B) && start(B) <= end(A)
1663      unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1664      unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1665  
1666      assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1667             (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1668             "Trying to bounds check pointers with different address spaces");
1669  
1670      Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1671      Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1672  
1673      Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1674      Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1675      Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1676      Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1677  
1678      // [A|B].Start points to the first accessed byte under base [A|B].
1679      // [A|B].End points to the last accessed byte, plus one.
1680      // There is no conflict when the intervals are disjoint:
1681      // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1682      //
1683      // bound0 = (B.Start < A.End)
1684      // bound1 = (A.Start < B.End)
1685      //  IsConflict = bound0 & bound1
1686      Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1687      FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1688      Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1689      FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1690      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1691      FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1692      if (MemoryRuntimeCheck) {
1693        IsConflict =
1694            ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1695        FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1696      }
1697      MemoryRuntimeCheck = IsConflict;
1698    }
1699  
1700    if (!MemoryRuntimeCheck)
1701      return std::make_pair(nullptr, nullptr);
1702  
1703    // We have to do this trickery because the IRBuilder might fold the check to a
1704    // constant expression in which case there is no Instruction anchored in a
1705    // the block.
1706    Instruction *Check =
1707        BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1708    ChkBuilder.Insert(Check, "memcheck.conflict");
1709    FirstInst = GetFirstInst(FirstInst, Check, Loc);
1710    return std::make_pair(FirstInst, Check);
1711  }
1712