xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/MustExecute.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "loop-utils"
47 
48 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
49 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
50 
51 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
52                                    MemorySSAUpdater *MSSAU,
53                                    bool PreserveLCSSA) {
54   bool Changed = false;
55 
56   // We re-use a vector for the in-loop predecesosrs.
57   SmallVector<BasicBlock *, 4> InLoopPredecessors;
58 
59   auto RewriteExit = [&](BasicBlock *BB) {
60     assert(InLoopPredecessors.empty() &&
61            "Must start with an empty predecessors list!");
62     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
63 
64     // See if there are any non-loop predecessors of this exit block and
65     // keep track of the in-loop predecessors.
66     bool IsDedicatedExit = true;
67     for (auto *PredBB : predecessors(BB))
68       if (L->contains(PredBB)) {
69         if (isa<IndirectBrInst>(PredBB->getTerminator()))
70           // We cannot rewrite exiting edges from an indirectbr.
71           return false;
72         if (isa<CallBrInst>(PredBB->getTerminator()))
73           // We cannot rewrite exiting edges from a callbr.
74           return false;
75 
76         InLoopPredecessors.push_back(PredBB);
77       } else {
78         IsDedicatedExit = false;
79       }
80 
81     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
82 
83     // Nothing to do if this is already a dedicated exit.
84     if (IsDedicatedExit)
85       return false;
86 
87     auto *NewExitBB = SplitBlockPredecessors(
88         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
89 
90     if (!NewExitBB)
91       LLVM_DEBUG(
92           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
93                  << *L << "\n");
94     else
95       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
96                         << NewExitBB->getName() << "\n");
97     return true;
98   };
99 
100   // Walk the exit blocks directly rather than building up a data structure for
101   // them, but only visit each one once.
102   SmallPtrSet<BasicBlock *, 4> Visited;
103   for (auto *BB : L->blocks())
104     for (auto *SuccBB : successors(BB)) {
105       // We're looking for exit blocks so skip in-loop successors.
106       if (L->contains(SuccBB))
107         continue;
108 
109       // Visit each exit block exactly once.
110       if (!Visited.insert(SuccBB).second)
111         continue;
112 
113       Changed |= RewriteExit(SuccBB);
114     }
115 
116   return Changed;
117 }
118 
119 /// Returns the instructions that use values defined in the loop.
120 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
121   SmallVector<Instruction *, 8> UsedOutside;
122 
123   for (auto *Block : L->getBlocks())
124     // FIXME: I believe that this could use copy_if if the Inst reference could
125     // be adapted into a pointer.
126     for (auto &Inst : *Block) {
127       auto Users = Inst.users();
128       if (any_of(Users, [&](User *U) {
129             auto *Use = cast<Instruction>(U);
130             return !L->contains(Use->getParent());
131           }))
132         UsedOutside.push_back(&Inst);
133     }
134 
135   return UsedOutside;
136 }
137 
138 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
139   // By definition, all loop passes need the LoopInfo analysis and the
140   // Dominator tree it depends on. Because they all participate in the loop
141   // pass manager, they must also preserve these.
142   AU.addRequired<DominatorTreeWrapperPass>();
143   AU.addPreserved<DominatorTreeWrapperPass>();
144   AU.addRequired<LoopInfoWrapperPass>();
145   AU.addPreserved<LoopInfoWrapperPass>();
146 
147   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
148   // here because users shouldn't directly get them from this header.
149   extern char &LoopSimplifyID;
150   extern char &LCSSAID;
151   AU.addRequiredID(LoopSimplifyID);
152   AU.addPreservedID(LoopSimplifyID);
153   AU.addRequiredID(LCSSAID);
154   AU.addPreservedID(LCSSAID);
155   // This is used in the LPPassManager to perform LCSSA verification on passes
156   // which preserve lcssa form
157   AU.addRequired<LCSSAVerificationPass>();
158   AU.addPreserved<LCSSAVerificationPass>();
159 
160   // Loop passes are designed to run inside of a loop pass manager which means
161   // that any function analyses they require must be required by the first loop
162   // pass in the manager (so that it is computed before the loop pass manager
163   // runs) and preserved by all loop pasess in the manager. To make this
164   // reasonably robust, the set needed for most loop passes is maintained here.
165   // If your loop pass requires an analysis not listed here, you will need to
166   // carefully audit the loop pass manager nesting structure that results.
167   AU.addRequired<AAResultsWrapperPass>();
168   AU.addPreserved<AAResultsWrapperPass>();
169   AU.addPreserved<BasicAAWrapperPass>();
170   AU.addPreserved<GlobalsAAWrapperPass>();
171   AU.addPreserved<SCEVAAWrapperPass>();
172   AU.addRequired<ScalarEvolutionWrapperPass>();
173   AU.addPreserved<ScalarEvolutionWrapperPass>();
174   // FIXME: When all loop passes preserve MemorySSA, it can be required and
175   // preserved here instead of the individual handling in each pass.
176 }
177 
178 /// Manually defined generic "LoopPass" dependency initialization. This is used
179 /// to initialize the exact set of passes from above in \c
180 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
181 /// with:
182 ///
183 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
184 ///
185 /// As-if "LoopPass" were a pass.
186 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
187   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
188   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
189   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
190   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
191   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
192   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
193   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
194   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
195   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
196   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
197 }
198 
199 /// Create MDNode for input string.
200 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
201   LLVMContext &Context = TheLoop->getHeader()->getContext();
202   Metadata *MDs[] = {
203       MDString::get(Context, Name),
204       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
205   return MDNode::get(Context, MDs);
206 }
207 
208 /// Set input string into loop metadata by keeping other values intact.
209 /// If the string is already in loop metadata update value if it is
210 /// different.
211 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
212                                    unsigned V) {
213   SmallVector<Metadata *, 4> MDs(1);
214   // If the loop already has metadata, retain it.
215   MDNode *LoopID = TheLoop->getLoopID();
216   if (LoopID) {
217     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
218       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
219       // If it is of form key = value, try to parse it.
220       if (Node->getNumOperands() == 2) {
221         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
222         if (S && S->getString().equals(StringMD)) {
223           ConstantInt *IntMD =
224               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
225           if (IntMD && IntMD->getSExtValue() == V)
226             // It is already in place. Do nothing.
227             return;
228           // We need to update the value, so just skip it here and it will
229           // be added after copying other existed nodes.
230           continue;
231         }
232       }
233       MDs.push_back(Node);
234     }
235   }
236   // Add new metadata.
237   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
238   // Replace current metadata node with new one.
239   LLVMContext &Context = TheLoop->getHeader()->getContext();
240   MDNode *NewLoopID = MDNode::get(Context, MDs);
241   // Set operand 0 to refer to the loop id itself.
242   NewLoopID->replaceOperandWith(0, NewLoopID);
243   TheLoop->setLoopID(NewLoopID);
244 }
245 
246 /// Find string metadata for loop
247 ///
248 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
249 /// operand or null otherwise.  If the string metadata is not found return
250 /// Optional's not-a-value.
251 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
252                                                             StringRef Name) {
253   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
254   if (!MD)
255     return None;
256   switch (MD->getNumOperands()) {
257   case 1:
258     return nullptr;
259   case 2:
260     return &MD->getOperand(1);
261   default:
262     llvm_unreachable("loop metadata has 0 or 1 operand");
263   }
264 }
265 
266 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
267                                                    StringRef Name) {
268   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
269   if (!MD)
270     return None;
271   switch (MD->getNumOperands()) {
272   case 1:
273     // When the value is absent it is interpreted as 'attribute set'.
274     return true;
275   case 2:
276     if (ConstantInt *IntMD =
277             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
278       return IntMD->getZExtValue();
279     return true;
280   }
281   llvm_unreachable("unexpected number of options");
282 }
283 
284 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
285   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
286 }
287 
288 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
289                                                       StringRef Name) {
290   const MDOperand *AttrMD =
291       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
292   if (!AttrMD)
293     return None;
294 
295   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
296   if (!IntMD)
297     return None;
298 
299   return IntMD->getSExtValue();
300 }
301 
302 Optional<MDNode *> llvm::makeFollowupLoopID(
303     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
304     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
305   if (!OrigLoopID) {
306     if (AlwaysNew)
307       return nullptr;
308     return None;
309   }
310 
311   assert(OrigLoopID->getOperand(0) == OrigLoopID);
312 
313   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
314   bool InheritSomeAttrs =
315       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
316   SmallVector<Metadata *, 8> MDs;
317   MDs.push_back(nullptr);
318 
319   bool Changed = false;
320   if (InheritAllAttrs || InheritSomeAttrs) {
321     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
322       MDNode *Op = cast<MDNode>(Existing.get());
323 
324       auto InheritThisAttribute = [InheritSomeAttrs,
325                                    InheritOptionsExceptPrefix](MDNode *Op) {
326         if (!InheritSomeAttrs)
327           return false;
328 
329         // Skip malformatted attribute metadata nodes.
330         if (Op->getNumOperands() == 0)
331           return true;
332         Metadata *NameMD = Op->getOperand(0).get();
333         if (!isa<MDString>(NameMD))
334           return true;
335         StringRef AttrName = cast<MDString>(NameMD)->getString();
336 
337         // Do not inherit excluded attributes.
338         return !AttrName.startswith(InheritOptionsExceptPrefix);
339       };
340 
341       if (InheritThisAttribute(Op))
342         MDs.push_back(Op);
343       else
344         Changed = true;
345     }
346   } else {
347     // Modified if we dropped at least one attribute.
348     Changed = OrigLoopID->getNumOperands() > 1;
349   }
350 
351   bool HasAnyFollowup = false;
352   for (StringRef OptionName : FollowupOptions) {
353     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
354     if (!FollowupNode)
355       continue;
356 
357     HasAnyFollowup = true;
358     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
359       MDs.push_back(Option.get());
360       Changed = true;
361     }
362   }
363 
364   // Attributes of the followup loop not specified explicity, so signal to the
365   // transformation pass to add suitable attributes.
366   if (!AlwaysNew && !HasAnyFollowup)
367     return None;
368 
369   // If no attributes were added or remove, the previous loop Id can be reused.
370   if (!AlwaysNew && !Changed)
371     return OrigLoopID;
372 
373   // No attributes is equivalent to having no !llvm.loop metadata at all.
374   if (MDs.size() == 1)
375     return nullptr;
376 
377   // Build the new loop ID.
378   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
379   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
380   return FollowupLoopID;
381 }
382 
383 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
384   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
385 }
386 
387 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
388   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
389 }
390 
391 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
392   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
393     return TM_SuppressedByUser;
394 
395   Optional<int> Count =
396       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
397   if (Count.hasValue())
398     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
399 
400   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
401     return TM_ForcedByUser;
402 
403   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
404     return TM_ForcedByUser;
405 
406   if (hasDisableAllTransformsHint(L))
407     return TM_Disable;
408 
409   return TM_Unspecified;
410 }
411 
412 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
413   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
414     return TM_SuppressedByUser;
415 
416   Optional<int> Count =
417       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
418   if (Count.hasValue())
419     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
420 
421   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
422     return TM_ForcedByUser;
423 
424   if (hasDisableAllTransformsHint(L))
425     return TM_Disable;
426 
427   return TM_Unspecified;
428 }
429 
430 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
431   Optional<bool> Enable =
432       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
433 
434   if (Enable == false)
435     return TM_SuppressedByUser;
436 
437   Optional<int> VectorizeWidth =
438       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
439   Optional<int> InterleaveCount =
440       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
441 
442   // 'Forcing' vector width and interleave count to one effectively disables
443   // this tranformation.
444   if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
445     return TM_SuppressedByUser;
446 
447   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
448     return TM_Disable;
449 
450   if (Enable == true)
451     return TM_ForcedByUser;
452 
453   if (VectorizeWidth == 1 && InterleaveCount == 1)
454     return TM_Disable;
455 
456   if (VectorizeWidth > 1 || InterleaveCount > 1)
457     return TM_Enable;
458 
459   if (hasDisableAllTransformsHint(L))
460     return TM_Disable;
461 
462   return TM_Unspecified;
463 }
464 
465 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
466   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
467     return TM_ForcedByUser;
468 
469   if (hasDisableAllTransformsHint(L))
470     return TM_Disable;
471 
472   return TM_Unspecified;
473 }
474 
475 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
476   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
477     return TM_SuppressedByUser;
478 
479   if (hasDisableAllTransformsHint(L))
480     return TM_Disable;
481 
482   return TM_Unspecified;
483 }
484 
485 /// Does a BFS from a given node to all of its children inside a given loop.
486 /// The returned vector of nodes includes the starting point.
487 SmallVector<DomTreeNode *, 16>
488 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
489   SmallVector<DomTreeNode *, 16> Worklist;
490   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
491     // Only include subregions in the top level loop.
492     BasicBlock *BB = DTN->getBlock();
493     if (CurLoop->contains(BB))
494       Worklist.push_back(DTN);
495   };
496 
497   AddRegionToWorklist(N);
498 
499   for (size_t I = 0; I < Worklist.size(); I++)
500     for (DomTreeNode *Child : Worklist[I]->getChildren())
501       AddRegionToWorklist(Child);
502 
503   return Worklist;
504 }
505 
506 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
507                           ScalarEvolution *SE = nullptr,
508                           LoopInfo *LI = nullptr) {
509   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
510   auto *Preheader = L->getLoopPreheader();
511   assert(Preheader && "Preheader should exist!");
512 
513   // Now that we know the removal is safe, remove the loop by changing the
514   // branch from the preheader to go to the single exit block.
515   //
516   // Because we're deleting a large chunk of code at once, the sequence in which
517   // we remove things is very important to avoid invalidation issues.
518 
519   // Tell ScalarEvolution that the loop is deleted. Do this before
520   // deleting the loop so that ScalarEvolution can look at the loop
521   // to determine what it needs to clean up.
522   if (SE)
523     SE->forgetLoop(L);
524 
525   auto *ExitBlock = L->getUniqueExitBlock();
526   assert(ExitBlock && "Should have a unique exit block!");
527   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
528 
529   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
530   assert(OldBr && "Preheader must end with a branch");
531   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
532   // Connect the preheader to the exit block. Keep the old edge to the header
533   // around to perform the dominator tree update in two separate steps
534   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
535   // preheader -> header.
536   //
537   //
538   // 0.  Preheader          1.  Preheader           2.  Preheader
539   //        |                    |   |                   |
540   //        V                    |   V                   |
541   //      Header <--\            | Header <--\           | Header <--\
542   //       |  |     |            |  |  |     |           |  |  |     |
543   //       |  V     |            |  |  V     |           |  |  V     |
544   //       | Body --/            |  | Body --/           |  | Body --/
545   //       V                     V  V                    V  V
546   //      Exit                   Exit                    Exit
547   //
548   // By doing this is two separate steps we can perform the dominator tree
549   // update without using the batch update API.
550   //
551   // Even when the loop is never executed, we cannot remove the edge from the
552   // source block to the exit block. Consider the case where the unexecuted loop
553   // branches back to an outer loop. If we deleted the loop and removed the edge
554   // coming to this inner loop, this will break the outer loop structure (by
555   // deleting the backedge of the outer loop). If the outer loop is indeed a
556   // non-loop, it will be deleted in a future iteration of loop deletion pass.
557   IRBuilder<> Builder(OldBr);
558   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
559   // Remove the old branch. The conditional branch becomes a new terminator.
560   OldBr->eraseFromParent();
561 
562   // Rewrite phis in the exit block to get their inputs from the Preheader
563   // instead of the exiting block.
564   for (PHINode &P : ExitBlock->phis()) {
565     // Set the zero'th element of Phi to be from the preheader and remove all
566     // other incoming values. Given the loop has dedicated exits, all other
567     // incoming values must be from the exiting blocks.
568     int PredIndex = 0;
569     P.setIncomingBlock(PredIndex, Preheader);
570     // Removes all incoming values from all other exiting blocks (including
571     // duplicate values from an exiting block).
572     // Nuke all entries except the zero'th entry which is the preheader entry.
573     // NOTE! We need to remove Incoming Values in the reverse order as done
574     // below, to keep the indices valid for deletion (removeIncomingValues
575     // updates getNumIncomingValues and shifts all values down into the operand
576     // being deleted).
577     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
578       P.removeIncomingValue(e - i, false);
579 
580     assert((P.getNumIncomingValues() == 1 &&
581             P.getIncomingBlock(PredIndex) == Preheader) &&
582            "Should have exactly one value and that's from the preheader!");
583   }
584 
585   // Disconnect the loop body by branching directly to its exit.
586   Builder.SetInsertPoint(Preheader->getTerminator());
587   Builder.CreateBr(ExitBlock);
588   // Remove the old branch.
589   Preheader->getTerminator()->eraseFromParent();
590 
591   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
592   if (DT) {
593     // Update the dominator tree by informing it about the new edge from the
594     // preheader to the exit and the removed edge.
595     DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock},
596                       {DominatorTree::Delete, Preheader, L->getHeader()}});
597   }
598 
599   // Use a map to unique and a vector to guarantee deterministic ordering.
600   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
601   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
602 
603   // Given LCSSA form is satisfied, we should not have users of instructions
604   // within the dead loop outside of the loop. However, LCSSA doesn't take
605   // unreachable uses into account. We handle them here.
606   // We could do it after drop all references (in this case all users in the
607   // loop will be already eliminated and we have less work to do but according
608   // to API doc of User::dropAllReferences only valid operation after dropping
609   // references, is deletion. So let's substitute all usages of
610   // instruction from the loop with undef value of corresponding type first.
611   for (auto *Block : L->blocks())
612     for (Instruction &I : *Block) {
613       auto *Undef = UndefValue::get(I.getType());
614       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
615         Use &U = *UI;
616         ++UI;
617         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
618           if (L->contains(Usr->getParent()))
619             continue;
620         // If we have a DT then we can check that uses outside a loop only in
621         // unreachable block.
622         if (DT)
623           assert(!DT->isReachableFromEntry(U) &&
624                  "Unexpected user in reachable block");
625         U.set(Undef);
626       }
627       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
628       if (!DVI)
629         continue;
630       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
631       if (Key != DeadDebugSet.end())
632         continue;
633       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
634       DeadDebugInst.push_back(DVI);
635     }
636 
637   // After the loop has been deleted all the values defined and modified
638   // inside the loop are going to be unavailable.
639   // Since debug values in the loop have been deleted, inserting an undef
640   // dbg.value truncates the range of any dbg.value before the loop where the
641   // loop used to be. This is particularly important for constant values.
642   DIBuilder DIB(*ExitBlock->getModule());
643   Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
644   assert(InsertDbgValueBefore &&
645          "There should be a non-PHI instruction in exit block, else these "
646          "instructions will have no parent.");
647   for (auto *DVI : DeadDebugInst)
648     DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
649                                 DVI->getVariable(), DVI->getExpression(),
650                                 DVI->getDebugLoc(), InsertDbgValueBefore);
651 
652   // Remove the block from the reference counting scheme, so that we can
653   // delete it freely later.
654   for (auto *Block : L->blocks())
655     Block->dropAllReferences();
656 
657   if (LI) {
658     // Erase the instructions and the blocks without having to worry
659     // about ordering because we already dropped the references.
660     // NOTE: This iteration is safe because erasing the block does not remove
661     // its entry from the loop's block list.  We do that in the next section.
662     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
663          LpI != LpE; ++LpI)
664       (*LpI)->eraseFromParent();
665 
666     // Finally, the blocks from loopinfo.  This has to happen late because
667     // otherwise our loop iterators won't work.
668 
669     SmallPtrSet<BasicBlock *, 8> blocks;
670     blocks.insert(L->block_begin(), L->block_end());
671     for (BasicBlock *BB : blocks)
672       LI->removeBlock(BB);
673 
674     // The last step is to update LoopInfo now that we've eliminated this loop.
675     // Note: LoopInfo::erase remove the given loop and relink its subloops with
676     // its parent. While removeLoop/removeChildLoop remove the given loop but
677     // not relink its subloops, which is what we want.
678     if (Loop *ParentLoop = L->getParentLoop()) {
679       Loop::iterator I = find(ParentLoop->begin(), ParentLoop->end(), L);
680       assert(I != ParentLoop->end() && "Couldn't find loop");
681       ParentLoop->removeChildLoop(I);
682     } else {
683       Loop::iterator I = find(LI->begin(), LI->end(), L);
684       assert(I != LI->end() && "Couldn't find loop");
685       LI->removeLoop(I);
686     }
687     LI->destroy(L);
688   }
689 }
690 
691 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
692   // Support loops with an exiting latch and other existing exists only
693   // deoptimize.
694 
695   // Get the branch weights for the loop's backedge.
696   BasicBlock *Latch = L->getLoopLatch();
697   if (!Latch)
698     return None;
699   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
700   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
701     return None;
702 
703   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
704           LatchBR->getSuccessor(1) == L->getHeader()) &&
705          "At least one edge out of the latch must go to the header");
706 
707   SmallVector<BasicBlock *, 4> ExitBlocks;
708   L->getUniqueNonLatchExitBlocks(ExitBlocks);
709   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
710         return !EB->getTerminatingDeoptimizeCall();
711       }))
712     return None;
713 
714   // To estimate the number of times the loop body was executed, we want to
715   // know the number of times the backedge was taken, vs. the number of times
716   // we exited the loop.
717   uint64_t BackedgeTakenWeight, LatchExitWeight;
718   if (!LatchBR->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
719     return None;
720 
721   if (LatchBR->getSuccessor(0) != L->getHeader())
722     std::swap(BackedgeTakenWeight, LatchExitWeight);
723 
724   if (!BackedgeTakenWeight || !LatchExitWeight)
725     return 0;
726 
727   // Divide the count of the backedge by the count of the edge exiting the loop,
728   // rounding to nearest.
729   return llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
730 }
731 
732 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
733                                               ScalarEvolution &SE) {
734   Loop *OuterL = InnerLoop->getParentLoop();
735   if (!OuterL)
736     return true;
737 
738   // Get the backedge taken count for the inner loop
739   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
740   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
741   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
742       !InnerLoopBECountSC->getType()->isIntegerTy())
743     return false;
744 
745   // Get whether count is invariant to the outer loop
746   ScalarEvolution::LoopDisposition LD =
747       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
748   if (LD != ScalarEvolution::LoopInvariant)
749     return false;
750 
751   return true;
752 }
753 
754 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
755                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
756                             Value *Left, Value *Right) {
757   CmpInst::Predicate P = CmpInst::ICMP_NE;
758   switch (RK) {
759   default:
760     llvm_unreachable("Unknown min/max recurrence kind");
761   case RecurrenceDescriptor::MRK_UIntMin:
762     P = CmpInst::ICMP_ULT;
763     break;
764   case RecurrenceDescriptor::MRK_UIntMax:
765     P = CmpInst::ICMP_UGT;
766     break;
767   case RecurrenceDescriptor::MRK_SIntMin:
768     P = CmpInst::ICMP_SLT;
769     break;
770   case RecurrenceDescriptor::MRK_SIntMax:
771     P = CmpInst::ICMP_SGT;
772     break;
773   case RecurrenceDescriptor::MRK_FloatMin:
774     P = CmpInst::FCMP_OLT;
775     break;
776   case RecurrenceDescriptor::MRK_FloatMax:
777     P = CmpInst::FCMP_OGT;
778     break;
779   }
780 
781   // We only match FP sequences that are 'fast', so we can unconditionally
782   // set it on any generated instructions.
783   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
784   FastMathFlags FMF;
785   FMF.setFast();
786   Builder.setFastMathFlags(FMF);
787 
788   Value *Cmp;
789   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
790       RK == RecurrenceDescriptor::MRK_FloatMax)
791     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
792   else
793     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
794 
795   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
796   return Select;
797 }
798 
799 // Helper to generate an ordered reduction.
800 Value *
801 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
802                           unsigned Op,
803                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
804                           ArrayRef<Value *> RedOps) {
805   unsigned VF = Src->getType()->getVectorNumElements();
806 
807   // Extract and apply reduction ops in ascending order:
808   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
809   Value *Result = Acc;
810   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
811     Value *Ext =
812         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
813 
814     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
815       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
816                                    "bin.rdx");
817     } else {
818       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
819              "Invalid min/max");
820       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
821     }
822 
823     if (!RedOps.empty())
824       propagateIRFlags(Result, RedOps);
825   }
826 
827   return Result;
828 }
829 
830 // Helper to generate a log2 shuffle reduction.
831 Value *
832 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
833                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
834                           ArrayRef<Value *> RedOps) {
835   unsigned VF = Src->getType()->getVectorNumElements();
836   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
837   // and vector ops, reducing the set of values being computed by half each
838   // round.
839   assert(isPowerOf2_32(VF) &&
840          "Reduction emission only supported for pow2 vectors!");
841   Value *TmpVec = Src;
842   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
843   for (unsigned i = VF; i != 1; i >>= 1) {
844     // Move the upper half of the vector to the lower half.
845     for (unsigned j = 0; j != i / 2; ++j)
846       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
847 
848     // Fill the rest of the mask with undef.
849     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
850               UndefValue::get(Builder.getInt32Ty()));
851 
852     Value *Shuf = Builder.CreateShuffleVector(
853         TmpVec, UndefValue::get(TmpVec->getType()),
854         ConstantVector::get(ShuffleMask), "rdx.shuf");
855 
856     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
857       // The builder propagates its fast-math-flags setting.
858       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
859                                    "bin.rdx");
860     } else {
861       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
862              "Invalid min/max");
863       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
864     }
865     if (!RedOps.empty())
866       propagateIRFlags(TmpVec, RedOps);
867   }
868   // The result is in the first element of the vector.
869   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
870 }
871 
872 /// Create a simple vector reduction specified by an opcode and some
873 /// flags (if generating min/max reductions).
874 Value *llvm::createSimpleTargetReduction(
875     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
876     Value *Src, TargetTransformInfo::ReductionFlags Flags,
877     ArrayRef<Value *> RedOps) {
878   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
879 
880   std::function<Value *()> BuildFunc;
881   using RD = RecurrenceDescriptor;
882   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
883 
884   switch (Opcode) {
885   case Instruction::Add:
886     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
887     break;
888   case Instruction::Mul:
889     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
890     break;
891   case Instruction::And:
892     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
893     break;
894   case Instruction::Or:
895     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
896     break;
897   case Instruction::Xor:
898     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
899     break;
900   case Instruction::FAdd:
901     BuildFunc = [&]() {
902       auto Rdx = Builder.CreateFAddReduce(
903           Constant::getNullValue(Src->getType()->getVectorElementType()), Src);
904       return Rdx;
905     };
906     break;
907   case Instruction::FMul:
908     BuildFunc = [&]() {
909       Type *Ty = Src->getType()->getVectorElementType();
910       auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
911       return Rdx;
912     };
913     break;
914   case Instruction::ICmp:
915     if (Flags.IsMaxOp) {
916       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
917       BuildFunc = [&]() {
918         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
919       };
920     } else {
921       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
922       BuildFunc = [&]() {
923         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
924       };
925     }
926     break;
927   case Instruction::FCmp:
928     if (Flags.IsMaxOp) {
929       MinMaxKind = RD::MRK_FloatMax;
930       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
931     } else {
932       MinMaxKind = RD::MRK_FloatMin;
933       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
934     }
935     break;
936   default:
937     llvm_unreachable("Unhandled opcode");
938     break;
939   }
940   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
941     return BuildFunc();
942   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
943 }
944 
945 /// Create a vector reduction using a given recurrence descriptor.
946 Value *llvm::createTargetReduction(IRBuilder<> &B,
947                                    const TargetTransformInfo *TTI,
948                                    RecurrenceDescriptor &Desc, Value *Src,
949                                    bool NoNaN) {
950   // TODO: Support in-order reductions based on the recurrence descriptor.
951   using RD = RecurrenceDescriptor;
952   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
953   TargetTransformInfo::ReductionFlags Flags;
954   Flags.NoNaN = NoNaN;
955 
956   // All ops in the reduction inherit fast-math-flags from the recurrence
957   // descriptor.
958   IRBuilder<>::FastMathFlagGuard FMFGuard(B);
959   B.setFastMathFlags(Desc.getFastMathFlags());
960 
961   switch (RecKind) {
962   case RD::RK_FloatAdd:
963     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
964   case RD::RK_FloatMult:
965     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
966   case RD::RK_IntegerAdd:
967     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
968   case RD::RK_IntegerMult:
969     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
970   case RD::RK_IntegerAnd:
971     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
972   case RD::RK_IntegerOr:
973     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
974   case RD::RK_IntegerXor:
975     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
976   case RD::RK_IntegerMinMax: {
977     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
978     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
979     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
980     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
981   }
982   case RD::RK_FloatMinMax: {
983     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
984     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
985   }
986   default:
987     llvm_unreachable("Unhandled RecKind");
988   }
989 }
990 
991 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
992   auto *VecOp = dyn_cast<Instruction>(I);
993   if (!VecOp)
994     return;
995   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
996                                             : dyn_cast<Instruction>(OpValue);
997   if (!Intersection)
998     return;
999   const unsigned Opcode = Intersection->getOpcode();
1000   VecOp->copyIRFlags(Intersection);
1001   for (auto *V : VL) {
1002     auto *Instr = dyn_cast<Instruction>(V);
1003     if (!Instr)
1004       continue;
1005     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1006       VecOp->andIRFlags(V);
1007   }
1008 }
1009 
1010 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1011                                  ScalarEvolution &SE) {
1012   const SCEV *Zero = SE.getZero(S->getType());
1013   return SE.isAvailableAtLoopEntry(S, L) &&
1014          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1015 }
1016 
1017 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1018                                     ScalarEvolution &SE) {
1019   const SCEV *Zero = SE.getZero(S->getType());
1020   return SE.isAvailableAtLoopEntry(S, L) &&
1021          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1022 }
1023 
1024 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1025                              bool Signed) {
1026   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1027   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1028     APInt::getMinValue(BitWidth);
1029   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1030   return SE.isAvailableAtLoopEntry(S, L) &&
1031          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1032                                      SE.getConstant(Min));
1033 }
1034 
1035 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1036                              bool Signed) {
1037   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1038   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1039     APInt::getMaxValue(BitWidth);
1040   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1041   return SE.isAvailableAtLoopEntry(S, L) &&
1042          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1043                                      SE.getConstant(Max));
1044 }
1045