1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/PriorityWorklist.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopAccessAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/MustExecute.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/KnownBits.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 #define DEBUG_TYPE "loop-utils" 58 59 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 60 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 61 62 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 63 MemorySSAUpdater *MSSAU, 64 bool PreserveLCSSA) { 65 bool Changed = false; 66 67 // We re-use a vector for the in-loop predecesosrs. 68 SmallVector<BasicBlock *, 4> InLoopPredecessors; 69 70 auto RewriteExit = [&](BasicBlock *BB) { 71 assert(InLoopPredecessors.empty() && 72 "Must start with an empty predecessors list!"); 73 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 74 75 // See if there are any non-loop predecessors of this exit block and 76 // keep track of the in-loop predecessors. 77 bool IsDedicatedExit = true; 78 for (auto *PredBB : predecessors(BB)) 79 if (L->contains(PredBB)) { 80 if (isa<IndirectBrInst>(PredBB->getTerminator())) 81 // We cannot rewrite exiting edges from an indirectbr. 82 return false; 83 if (isa<CallBrInst>(PredBB->getTerminator())) 84 // We cannot rewrite exiting edges from a callbr. 85 return false; 86 87 InLoopPredecessors.push_back(PredBB); 88 } else { 89 IsDedicatedExit = false; 90 } 91 92 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 93 94 // Nothing to do if this is already a dedicated exit. 95 if (IsDedicatedExit) 96 return false; 97 98 auto *NewExitBB = SplitBlockPredecessors( 99 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 100 101 if (!NewExitBB) 102 LLVM_DEBUG( 103 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 104 << *L << "\n"); 105 else 106 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 107 << NewExitBB->getName() << "\n"); 108 return true; 109 }; 110 111 // Walk the exit blocks directly rather than building up a data structure for 112 // them, but only visit each one once. 113 SmallPtrSet<BasicBlock *, 4> Visited; 114 for (auto *BB : L->blocks()) 115 for (auto *SuccBB : successors(BB)) { 116 // We're looking for exit blocks so skip in-loop successors. 117 if (L->contains(SuccBB)) 118 continue; 119 120 // Visit each exit block exactly once. 121 if (!Visited.insert(SuccBB).second) 122 continue; 123 124 Changed |= RewriteExit(SuccBB); 125 } 126 127 return Changed; 128 } 129 130 /// Returns the instructions that use values defined in the loop. 131 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 132 SmallVector<Instruction *, 8> UsedOutside; 133 134 for (auto *Block : L->getBlocks()) 135 // FIXME: I believe that this could use copy_if if the Inst reference could 136 // be adapted into a pointer. 137 for (auto &Inst : *Block) { 138 auto Users = Inst.users(); 139 if (any_of(Users, [&](User *U) { 140 auto *Use = cast<Instruction>(U); 141 return !L->contains(Use->getParent()); 142 })) 143 UsedOutside.push_back(&Inst); 144 } 145 146 return UsedOutside; 147 } 148 149 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 150 // By definition, all loop passes need the LoopInfo analysis and the 151 // Dominator tree it depends on. Because they all participate in the loop 152 // pass manager, they must also preserve these. 153 AU.addRequired<DominatorTreeWrapperPass>(); 154 AU.addPreserved<DominatorTreeWrapperPass>(); 155 AU.addRequired<LoopInfoWrapperPass>(); 156 AU.addPreserved<LoopInfoWrapperPass>(); 157 158 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 159 // here because users shouldn't directly get them from this header. 160 extern char &LoopSimplifyID; 161 extern char &LCSSAID; 162 AU.addRequiredID(LoopSimplifyID); 163 AU.addPreservedID(LoopSimplifyID); 164 AU.addRequiredID(LCSSAID); 165 AU.addPreservedID(LCSSAID); 166 // This is used in the LPPassManager to perform LCSSA verification on passes 167 // which preserve lcssa form 168 AU.addRequired<LCSSAVerificationPass>(); 169 AU.addPreserved<LCSSAVerificationPass>(); 170 171 // Loop passes are designed to run inside of a loop pass manager which means 172 // that any function analyses they require must be required by the first loop 173 // pass in the manager (so that it is computed before the loop pass manager 174 // runs) and preserved by all loop pasess in the manager. To make this 175 // reasonably robust, the set needed for most loop passes is maintained here. 176 // If your loop pass requires an analysis not listed here, you will need to 177 // carefully audit the loop pass manager nesting structure that results. 178 AU.addRequired<AAResultsWrapperPass>(); 179 AU.addPreserved<AAResultsWrapperPass>(); 180 AU.addPreserved<BasicAAWrapperPass>(); 181 AU.addPreserved<GlobalsAAWrapperPass>(); 182 AU.addPreserved<SCEVAAWrapperPass>(); 183 AU.addRequired<ScalarEvolutionWrapperPass>(); 184 AU.addPreserved<ScalarEvolutionWrapperPass>(); 185 // FIXME: When all loop passes preserve MemorySSA, it can be required and 186 // preserved here instead of the individual handling in each pass. 187 } 188 189 /// Manually defined generic "LoopPass" dependency initialization. This is used 190 /// to initialize the exact set of passes from above in \c 191 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 192 /// with: 193 /// 194 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 195 /// 196 /// As-if "LoopPass" were a pass. 197 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 198 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 200 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 201 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 204 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 205 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 206 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 207 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 208 } 209 210 /// Create MDNode for input string. 211 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 212 LLVMContext &Context = TheLoop->getHeader()->getContext(); 213 Metadata *MDs[] = { 214 MDString::get(Context, Name), 215 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 216 return MDNode::get(Context, MDs); 217 } 218 219 /// Set input string into loop metadata by keeping other values intact. 220 /// If the string is already in loop metadata update value if it is 221 /// different. 222 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 223 unsigned V) { 224 SmallVector<Metadata *, 4> MDs(1); 225 // If the loop already has metadata, retain it. 226 MDNode *LoopID = TheLoop->getLoopID(); 227 if (LoopID) { 228 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 229 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 230 // If it is of form key = value, try to parse it. 231 if (Node->getNumOperands() == 2) { 232 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 233 if (S && S->getString().equals(StringMD)) { 234 ConstantInt *IntMD = 235 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 236 if (IntMD && IntMD->getSExtValue() == V) 237 // It is already in place. Do nothing. 238 return; 239 // We need to update the value, so just skip it here and it will 240 // be added after copying other existed nodes. 241 continue; 242 } 243 } 244 MDs.push_back(Node); 245 } 246 } 247 // Add new metadata. 248 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 249 // Replace current metadata node with new one. 250 LLVMContext &Context = TheLoop->getHeader()->getContext(); 251 MDNode *NewLoopID = MDNode::get(Context, MDs); 252 // Set operand 0 to refer to the loop id itself. 253 NewLoopID->replaceOperandWith(0, NewLoopID); 254 TheLoop->setLoopID(NewLoopID); 255 } 256 257 Optional<ElementCount> 258 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 259 Optional<int> Width = 260 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 261 262 if (Width.hasValue()) { 263 Optional<int> IsScalable = getOptionalIntLoopAttribute( 264 TheLoop, "llvm.loop.vectorize.scalable.enable"); 265 return ElementCount::get(*Width, IsScalable.getValueOr(false)); 266 } 267 268 return None; 269 } 270 271 Optional<MDNode *> llvm::makeFollowupLoopID( 272 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 273 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 274 if (!OrigLoopID) { 275 if (AlwaysNew) 276 return nullptr; 277 return None; 278 } 279 280 assert(OrigLoopID->getOperand(0) == OrigLoopID); 281 282 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 283 bool InheritSomeAttrs = 284 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 285 SmallVector<Metadata *, 8> MDs; 286 MDs.push_back(nullptr); 287 288 bool Changed = false; 289 if (InheritAllAttrs || InheritSomeAttrs) { 290 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 291 MDNode *Op = cast<MDNode>(Existing.get()); 292 293 auto InheritThisAttribute = [InheritSomeAttrs, 294 InheritOptionsExceptPrefix](MDNode *Op) { 295 if (!InheritSomeAttrs) 296 return false; 297 298 // Skip malformatted attribute metadata nodes. 299 if (Op->getNumOperands() == 0) 300 return true; 301 Metadata *NameMD = Op->getOperand(0).get(); 302 if (!isa<MDString>(NameMD)) 303 return true; 304 StringRef AttrName = cast<MDString>(NameMD)->getString(); 305 306 // Do not inherit excluded attributes. 307 return !AttrName.startswith(InheritOptionsExceptPrefix); 308 }; 309 310 if (InheritThisAttribute(Op)) 311 MDs.push_back(Op); 312 else 313 Changed = true; 314 } 315 } else { 316 // Modified if we dropped at least one attribute. 317 Changed = OrigLoopID->getNumOperands() > 1; 318 } 319 320 bool HasAnyFollowup = false; 321 for (StringRef OptionName : FollowupOptions) { 322 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 323 if (!FollowupNode) 324 continue; 325 326 HasAnyFollowup = true; 327 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 328 MDs.push_back(Option.get()); 329 Changed = true; 330 } 331 } 332 333 // Attributes of the followup loop not specified explicity, so signal to the 334 // transformation pass to add suitable attributes. 335 if (!AlwaysNew && !HasAnyFollowup) 336 return None; 337 338 // If no attributes were added or remove, the previous loop Id can be reused. 339 if (!AlwaysNew && !Changed) 340 return OrigLoopID; 341 342 // No attributes is equivalent to having no !llvm.loop metadata at all. 343 if (MDs.size() == 1) 344 return nullptr; 345 346 // Build the new loop ID. 347 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 348 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 349 return FollowupLoopID; 350 } 351 352 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 353 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 354 } 355 356 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 357 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 358 } 359 360 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 362 return TM_SuppressedByUser; 363 364 Optional<int> Count = 365 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 366 if (Count.hasValue()) 367 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 368 369 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 370 return TM_ForcedByUser; 371 372 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 373 return TM_ForcedByUser; 374 375 if (hasDisableAllTransformsHint(L)) 376 return TM_Disable; 377 378 return TM_Unspecified; 379 } 380 381 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 382 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 383 return TM_SuppressedByUser; 384 385 Optional<int> Count = 386 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 387 if (Count.hasValue()) 388 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 389 390 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 391 return TM_ForcedByUser; 392 393 if (hasDisableAllTransformsHint(L)) 394 return TM_Disable; 395 396 return TM_Unspecified; 397 } 398 399 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 400 Optional<bool> Enable = 401 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 402 403 if (Enable == false) 404 return TM_SuppressedByUser; 405 406 Optional<ElementCount> VectorizeWidth = 407 getOptionalElementCountLoopAttribute(L); 408 Optional<int> InterleaveCount = 409 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 410 411 // 'Forcing' vector width and interleave count to one effectively disables 412 // this tranformation. 413 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 414 InterleaveCount == 1) 415 return TM_SuppressedByUser; 416 417 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 418 return TM_Disable; 419 420 if (Enable == true) 421 return TM_ForcedByUser; 422 423 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 424 return TM_Disable; 425 426 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 427 return TM_Enable; 428 429 if (hasDisableAllTransformsHint(L)) 430 return TM_Disable; 431 432 return TM_Unspecified; 433 } 434 435 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 436 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 437 return TM_ForcedByUser; 438 439 if (hasDisableAllTransformsHint(L)) 440 return TM_Disable; 441 442 return TM_Unspecified; 443 } 444 445 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 446 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 447 return TM_SuppressedByUser; 448 449 if (hasDisableAllTransformsHint(L)) 450 return TM_Disable; 451 452 return TM_Unspecified; 453 } 454 455 /// Does a BFS from a given node to all of its children inside a given loop. 456 /// The returned vector of nodes includes the starting point. 457 SmallVector<DomTreeNode *, 16> 458 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 459 SmallVector<DomTreeNode *, 16> Worklist; 460 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 461 // Only include subregions in the top level loop. 462 BasicBlock *BB = DTN->getBlock(); 463 if (CurLoop->contains(BB)) 464 Worklist.push_back(DTN); 465 }; 466 467 AddRegionToWorklist(N); 468 469 for (size_t I = 0; I < Worklist.size(); I++) { 470 for (DomTreeNode *Child : Worklist[I]->children()) 471 AddRegionToWorklist(Child); 472 } 473 474 return Worklist; 475 } 476 477 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 478 LoopInfo *LI, MemorySSA *MSSA) { 479 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 480 auto *Preheader = L->getLoopPreheader(); 481 assert(Preheader && "Preheader should exist!"); 482 483 std::unique_ptr<MemorySSAUpdater> MSSAU; 484 if (MSSA) 485 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 486 487 // Now that we know the removal is safe, remove the loop by changing the 488 // branch from the preheader to go to the single exit block. 489 // 490 // Because we're deleting a large chunk of code at once, the sequence in which 491 // we remove things is very important to avoid invalidation issues. 492 493 // Tell ScalarEvolution that the loop is deleted. Do this before 494 // deleting the loop so that ScalarEvolution can look at the loop 495 // to determine what it needs to clean up. 496 if (SE) 497 SE->forgetLoop(L); 498 499 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 500 assert(OldBr && "Preheader must end with a branch"); 501 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 502 // Connect the preheader to the exit block. Keep the old edge to the header 503 // around to perform the dominator tree update in two separate steps 504 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 505 // preheader -> header. 506 // 507 // 508 // 0. Preheader 1. Preheader 2. Preheader 509 // | | | | 510 // V | V | 511 // Header <--\ | Header <--\ | Header <--\ 512 // | | | | | | | | | | | 513 // | V | | | V | | | V | 514 // | Body --/ | | Body --/ | | Body --/ 515 // V V V V V 516 // Exit Exit Exit 517 // 518 // By doing this is two separate steps we can perform the dominator tree 519 // update without using the batch update API. 520 // 521 // Even when the loop is never executed, we cannot remove the edge from the 522 // source block to the exit block. Consider the case where the unexecuted loop 523 // branches back to an outer loop. If we deleted the loop and removed the edge 524 // coming to this inner loop, this will break the outer loop structure (by 525 // deleting the backedge of the outer loop). If the outer loop is indeed a 526 // non-loop, it will be deleted in a future iteration of loop deletion pass. 527 IRBuilder<> Builder(OldBr); 528 529 auto *ExitBlock = L->getUniqueExitBlock(); 530 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 531 if (ExitBlock) { 532 assert(ExitBlock && "Should have a unique exit block!"); 533 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 534 535 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 536 // Remove the old branch. The conditional branch becomes a new terminator. 537 OldBr->eraseFromParent(); 538 539 // Rewrite phis in the exit block to get their inputs from the Preheader 540 // instead of the exiting block. 541 for (PHINode &P : ExitBlock->phis()) { 542 // Set the zero'th element of Phi to be from the preheader and remove all 543 // other incoming values. Given the loop has dedicated exits, all other 544 // incoming values must be from the exiting blocks. 545 int PredIndex = 0; 546 P.setIncomingBlock(PredIndex, Preheader); 547 // Removes all incoming values from all other exiting blocks (including 548 // duplicate values from an exiting block). 549 // Nuke all entries except the zero'th entry which is the preheader entry. 550 // NOTE! We need to remove Incoming Values in the reverse order as done 551 // below, to keep the indices valid for deletion (removeIncomingValues 552 // updates getNumIncomingValues and shifts all values down into the 553 // operand being deleted). 554 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 555 P.removeIncomingValue(e - i, false); 556 557 assert((P.getNumIncomingValues() == 1 && 558 P.getIncomingBlock(PredIndex) == Preheader) && 559 "Should have exactly one value and that's from the preheader!"); 560 } 561 562 if (DT) { 563 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 564 if (MSSA) { 565 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 566 *DT); 567 if (VerifyMemorySSA) 568 MSSA->verifyMemorySSA(); 569 } 570 } 571 572 // Disconnect the loop body by branching directly to its exit. 573 Builder.SetInsertPoint(Preheader->getTerminator()); 574 Builder.CreateBr(ExitBlock); 575 // Remove the old branch. 576 Preheader->getTerminator()->eraseFromParent(); 577 } else { 578 assert(L->hasNoExitBlocks() && 579 "Loop should have either zero or one exit blocks."); 580 581 Builder.SetInsertPoint(OldBr); 582 Builder.CreateUnreachable(); 583 Preheader->getTerminator()->eraseFromParent(); 584 } 585 586 if (DT) { 587 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 588 if (MSSA) { 589 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 590 *DT); 591 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 592 L->block_end()); 593 MSSAU->removeBlocks(DeadBlockSet); 594 if (VerifyMemorySSA) 595 MSSA->verifyMemorySSA(); 596 } 597 } 598 599 // Use a map to unique and a vector to guarantee deterministic ordering. 600 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 601 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 602 603 if (ExitBlock) { 604 // Given LCSSA form is satisfied, we should not have users of instructions 605 // within the dead loop outside of the loop. However, LCSSA doesn't take 606 // unreachable uses into account. We handle them here. 607 // We could do it after drop all references (in this case all users in the 608 // loop will be already eliminated and we have less work to do but according 609 // to API doc of User::dropAllReferences only valid operation after dropping 610 // references, is deletion. So let's substitute all usages of 611 // instruction from the loop with undef value of corresponding type first. 612 for (auto *Block : L->blocks()) 613 for (Instruction &I : *Block) { 614 auto *Undef = UndefValue::get(I.getType()); 615 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); 616 UI != E;) { 617 Use &U = *UI; 618 ++UI; 619 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 620 if (L->contains(Usr->getParent())) 621 continue; 622 // If we have a DT then we can check that uses outside a loop only in 623 // unreachable block. 624 if (DT) 625 assert(!DT->isReachableFromEntry(U) && 626 "Unexpected user in reachable block"); 627 U.set(Undef); 628 } 629 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 630 if (!DVI) 631 continue; 632 auto Key = 633 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 634 if (Key != DeadDebugSet.end()) 635 continue; 636 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 637 DeadDebugInst.push_back(DVI); 638 } 639 640 // After the loop has been deleted all the values defined and modified 641 // inside the loop are going to be unavailable. 642 // Since debug values in the loop have been deleted, inserting an undef 643 // dbg.value truncates the range of any dbg.value before the loop where the 644 // loop used to be. This is particularly important for constant values. 645 DIBuilder DIB(*ExitBlock->getModule()); 646 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 647 assert(InsertDbgValueBefore && 648 "There should be a non-PHI instruction in exit block, else these " 649 "instructions will have no parent."); 650 for (auto *DVI : DeadDebugInst) 651 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 652 DVI->getVariable(), DVI->getExpression(), 653 DVI->getDebugLoc(), InsertDbgValueBefore); 654 } 655 656 // Remove the block from the reference counting scheme, so that we can 657 // delete it freely later. 658 for (auto *Block : L->blocks()) 659 Block->dropAllReferences(); 660 661 if (MSSA && VerifyMemorySSA) 662 MSSA->verifyMemorySSA(); 663 664 if (LI) { 665 // Erase the instructions and the blocks without having to worry 666 // about ordering because we already dropped the references. 667 // NOTE: This iteration is safe because erasing the block does not remove 668 // its entry from the loop's block list. We do that in the next section. 669 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 670 LpI != LpE; ++LpI) 671 (*LpI)->eraseFromParent(); 672 673 // Finally, the blocks from loopinfo. This has to happen late because 674 // otherwise our loop iterators won't work. 675 676 SmallPtrSet<BasicBlock *, 8> blocks; 677 blocks.insert(L->block_begin(), L->block_end()); 678 for (BasicBlock *BB : blocks) 679 LI->removeBlock(BB); 680 681 // The last step is to update LoopInfo now that we've eliminated this loop. 682 // Note: LoopInfo::erase remove the given loop and relink its subloops with 683 // its parent. While removeLoop/removeChildLoop remove the given loop but 684 // not relink its subloops, which is what we want. 685 if (Loop *ParentLoop = L->getParentLoop()) { 686 Loop::iterator I = find(*ParentLoop, L); 687 assert(I != ParentLoop->end() && "Couldn't find loop"); 688 ParentLoop->removeChildLoop(I); 689 } else { 690 Loop::iterator I = find(*LI, L); 691 assert(I != LI->end() && "Couldn't find loop"); 692 LI->removeLoop(I); 693 } 694 LI->destroy(L); 695 } 696 } 697 698 static Loop *getOutermostLoop(Loop *L) { 699 while (Loop *Parent = L->getParentLoop()) 700 L = Parent; 701 return L; 702 } 703 704 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 705 LoopInfo &LI, MemorySSA *MSSA) { 706 auto *Latch = L->getLoopLatch(); 707 assert(Latch && "multiple latches not yet supported"); 708 auto *Header = L->getHeader(); 709 Loop *OutermostLoop = getOutermostLoop(L); 710 711 SE.forgetLoop(L); 712 713 // Note: By splitting the backedge, and then explicitly making it unreachable 714 // we gracefully handle corner cases such as non-bottom tested loops and the 715 // like. We also have the benefit of being able to reuse existing well tested 716 // code. It might be worth special casing the common bottom tested case at 717 // some point to avoid code churn. 718 719 std::unique_ptr<MemorySSAUpdater> MSSAU; 720 if (MSSA) 721 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 722 723 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 724 725 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 726 (void)changeToUnreachable(BackedgeBB->getTerminator(), 727 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 728 729 // Erase (and destroy) this loop instance. Handles relinking sub-loops 730 // and blocks within the loop as needed. 731 LI.erase(L); 732 733 // If the loop we broke had a parent, then changeToUnreachable might have 734 // caused a block to be removed from the parent loop (see loop_nest_lcssa 735 // test case in zero-btc.ll for an example), thus changing the parent's 736 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 737 // loop which might have a had a block removed. 738 if (OutermostLoop != L) 739 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 740 } 741 742 743 /// Checks if \p L has single exit through latch block except possibly 744 /// "deoptimizing" exits. Returns branch instruction terminating the loop 745 /// latch if above check is successful, nullptr otherwise. 746 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 747 BasicBlock *Latch = L->getLoopLatch(); 748 if (!Latch) 749 return nullptr; 750 751 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 752 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 753 return nullptr; 754 755 assert((LatchBR->getSuccessor(0) == L->getHeader() || 756 LatchBR->getSuccessor(1) == L->getHeader()) && 757 "At least one edge out of the latch must go to the header"); 758 759 SmallVector<BasicBlock *, 4> ExitBlocks; 760 L->getUniqueNonLatchExitBlocks(ExitBlocks); 761 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 762 return !EB->getTerminatingDeoptimizeCall(); 763 })) 764 return nullptr; 765 766 return LatchBR; 767 } 768 769 Optional<unsigned> 770 llvm::getLoopEstimatedTripCount(Loop *L, 771 unsigned *EstimatedLoopInvocationWeight) { 772 // Support loops with an exiting latch and other existing exists only 773 // deoptimize. 774 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 775 if (!LatchBranch) 776 return None; 777 778 // To estimate the number of times the loop body was executed, we want to 779 // know the number of times the backedge was taken, vs. the number of times 780 // we exited the loop. 781 uint64_t BackedgeTakenWeight, LatchExitWeight; 782 if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) 783 return None; 784 785 if (LatchBranch->getSuccessor(0) != L->getHeader()) 786 std::swap(BackedgeTakenWeight, LatchExitWeight); 787 788 if (!LatchExitWeight) 789 return None; 790 791 if (EstimatedLoopInvocationWeight) 792 *EstimatedLoopInvocationWeight = LatchExitWeight; 793 794 // Estimated backedge taken count is a ratio of the backedge taken weight by 795 // the weight of the edge exiting the loop, rounded to nearest. 796 uint64_t BackedgeTakenCount = 797 llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); 798 // Estimated trip count is one plus estimated backedge taken count. 799 return BackedgeTakenCount + 1; 800 } 801 802 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 803 unsigned EstimatedloopInvocationWeight) { 804 // Support loops with an exiting latch and other existing exists only 805 // deoptimize. 806 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 807 if (!LatchBranch) 808 return false; 809 810 // Calculate taken and exit weights. 811 unsigned LatchExitWeight = 0; 812 unsigned BackedgeTakenWeight = 0; 813 814 if (EstimatedTripCount > 0) { 815 LatchExitWeight = EstimatedloopInvocationWeight; 816 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 817 } 818 819 // Make a swap if back edge is taken when condition is "false". 820 if (LatchBranch->getSuccessor(0) != L->getHeader()) 821 std::swap(BackedgeTakenWeight, LatchExitWeight); 822 823 MDBuilder MDB(LatchBranch->getContext()); 824 825 // Set/Update profile metadata. 826 LatchBranch->setMetadata( 827 LLVMContext::MD_prof, 828 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 829 830 return true; 831 } 832 833 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 834 ScalarEvolution &SE) { 835 Loop *OuterL = InnerLoop->getParentLoop(); 836 if (!OuterL) 837 return true; 838 839 // Get the backedge taken count for the inner loop 840 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 841 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 842 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 843 !InnerLoopBECountSC->getType()->isIntegerTy()) 844 return false; 845 846 // Get whether count is invariant to the outer loop 847 ScalarEvolution::LoopDisposition LD = 848 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 849 if (LD != ScalarEvolution::LoopInvariant) 850 return false; 851 852 return true; 853 } 854 855 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 856 Value *Right) { 857 CmpInst::Predicate Pred; 858 switch (RK) { 859 default: 860 llvm_unreachable("Unknown min/max recurrence kind"); 861 case RecurKind::UMin: 862 Pred = CmpInst::ICMP_ULT; 863 break; 864 case RecurKind::UMax: 865 Pred = CmpInst::ICMP_UGT; 866 break; 867 case RecurKind::SMin: 868 Pred = CmpInst::ICMP_SLT; 869 break; 870 case RecurKind::SMax: 871 Pred = CmpInst::ICMP_SGT; 872 break; 873 case RecurKind::FMin: 874 Pred = CmpInst::FCMP_OLT; 875 break; 876 case RecurKind::FMax: 877 Pred = CmpInst::FCMP_OGT; 878 break; 879 } 880 881 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 882 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 883 return Select; 884 } 885 886 // Helper to generate an ordered reduction. 887 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 888 unsigned Op, RecurKind RdxKind, 889 ArrayRef<Value *> RedOps) { 890 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 891 892 // Extract and apply reduction ops in ascending order: 893 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 894 Value *Result = Acc; 895 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 896 Value *Ext = 897 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 898 899 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 900 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 901 "bin.rdx"); 902 } else { 903 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 904 "Invalid min/max"); 905 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 906 } 907 908 if (!RedOps.empty()) 909 propagateIRFlags(Result, RedOps); 910 } 911 912 return Result; 913 } 914 915 // Helper to generate a log2 shuffle reduction. 916 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 917 unsigned Op, RecurKind RdxKind, 918 ArrayRef<Value *> RedOps) { 919 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 920 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 921 // and vector ops, reducing the set of values being computed by half each 922 // round. 923 assert(isPowerOf2_32(VF) && 924 "Reduction emission only supported for pow2 vectors!"); 925 Value *TmpVec = Src; 926 SmallVector<int, 32> ShuffleMask(VF); 927 for (unsigned i = VF; i != 1; i >>= 1) { 928 // Move the upper half of the vector to the lower half. 929 for (unsigned j = 0; j != i / 2; ++j) 930 ShuffleMask[j] = i / 2 + j; 931 932 // Fill the rest of the mask with undef. 933 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 934 935 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 936 937 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 938 // The builder propagates its fast-math-flags setting. 939 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 940 "bin.rdx"); 941 } else { 942 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 943 "Invalid min/max"); 944 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 945 } 946 if (!RedOps.empty()) 947 propagateIRFlags(TmpVec, RedOps); 948 949 // We may compute the reassociated scalar ops in a way that does not 950 // preserve nsw/nuw etc. Conservatively, drop those flags. 951 if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec)) 952 ReductionInst->dropPoisonGeneratingFlags(); 953 } 954 // The result is in the first element of the vector. 955 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 956 } 957 958 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, 959 const TargetTransformInfo *TTI, 960 Value *Src, RecurKind RdxKind, 961 ArrayRef<Value *> RedOps) { 962 TargetTransformInfo::ReductionFlags RdxFlags; 963 RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax || 964 RdxKind == RecurKind::FMax; 965 RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin; 966 967 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 968 switch (RdxKind) { 969 case RecurKind::Add: 970 return Builder.CreateAddReduce(Src); 971 case RecurKind::Mul: 972 return Builder.CreateMulReduce(Src); 973 case RecurKind::And: 974 return Builder.CreateAndReduce(Src); 975 case RecurKind::Or: 976 return Builder.CreateOrReduce(Src); 977 case RecurKind::Xor: 978 return Builder.CreateXorReduce(Src); 979 case RecurKind::FAdd: 980 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 981 Src); 982 case RecurKind::FMul: 983 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 984 case RecurKind::SMax: 985 return Builder.CreateIntMaxReduce(Src, true); 986 case RecurKind::SMin: 987 return Builder.CreateIntMinReduce(Src, true); 988 case RecurKind::UMax: 989 return Builder.CreateIntMaxReduce(Src, false); 990 case RecurKind::UMin: 991 return Builder.CreateIntMinReduce(Src, false); 992 case RecurKind::FMax: 993 return Builder.CreateFPMaxReduce(Src); 994 case RecurKind::FMin: 995 return Builder.CreateFPMinReduce(Src); 996 default: 997 llvm_unreachable("Unhandled opcode"); 998 } 999 } 1000 1001 Value *llvm::createTargetReduction(IRBuilderBase &B, 1002 const TargetTransformInfo *TTI, 1003 const RecurrenceDescriptor &Desc, 1004 Value *Src) { 1005 // TODO: Support in-order reductions based on the recurrence descriptor. 1006 // All ops in the reduction inherit fast-math-flags from the recurrence 1007 // descriptor. 1008 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1009 B.setFastMathFlags(Desc.getFastMathFlags()); 1010 return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind()); 1011 } 1012 1013 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1014 const RecurrenceDescriptor &Desc, 1015 Value *Src, Value *Start) { 1016 assert(Desc.getRecurrenceKind() == RecurKind::FAdd && 1017 "Unexpected reduction kind"); 1018 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1019 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1020 1021 return B.CreateFAddReduce(Start, Src); 1022 } 1023 1024 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1025 auto *VecOp = dyn_cast<Instruction>(I); 1026 if (!VecOp) 1027 return; 1028 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1029 : dyn_cast<Instruction>(OpValue); 1030 if (!Intersection) 1031 return; 1032 const unsigned Opcode = Intersection->getOpcode(); 1033 VecOp->copyIRFlags(Intersection); 1034 for (auto *V : VL) { 1035 auto *Instr = dyn_cast<Instruction>(V); 1036 if (!Instr) 1037 continue; 1038 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1039 VecOp->andIRFlags(V); 1040 } 1041 } 1042 1043 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1044 ScalarEvolution &SE) { 1045 const SCEV *Zero = SE.getZero(S->getType()); 1046 return SE.isAvailableAtLoopEntry(S, L) && 1047 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1048 } 1049 1050 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1051 ScalarEvolution &SE) { 1052 const SCEV *Zero = SE.getZero(S->getType()); 1053 return SE.isAvailableAtLoopEntry(S, L) && 1054 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1055 } 1056 1057 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1058 bool Signed) { 1059 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1060 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1061 APInt::getMinValue(BitWidth); 1062 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1063 return SE.isAvailableAtLoopEntry(S, L) && 1064 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1065 SE.getConstant(Min)); 1066 } 1067 1068 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1069 bool Signed) { 1070 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1071 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1072 APInt::getMaxValue(BitWidth); 1073 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1074 return SE.isAvailableAtLoopEntry(S, L) && 1075 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1076 SE.getConstant(Max)); 1077 } 1078 1079 //===----------------------------------------------------------------------===// 1080 // rewriteLoopExitValues - Optimize IV users outside the loop. 1081 // As a side effect, reduces the amount of IV processing within the loop. 1082 //===----------------------------------------------------------------------===// 1083 1084 // Return true if the SCEV expansion generated by the rewriter can replace the 1085 // original value. SCEV guarantees that it produces the same value, but the way 1086 // it is produced may be illegal IR. Ideally, this function will only be 1087 // called for verification. 1088 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) { 1089 // If an SCEV expression subsumed multiple pointers, its expansion could 1090 // reassociate the GEP changing the base pointer. This is illegal because the 1091 // final address produced by a GEP chain must be inbounds relative to its 1092 // underlying object. Otherwise basic alias analysis, among other things, 1093 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 1094 // producing an expression involving multiple pointers. Until then, we must 1095 // bail out here. 1096 // 1097 // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject 1098 // because it understands lcssa phis while SCEV does not. 1099 Value *FromPtr = FromVal; 1100 Value *ToPtr = ToVal; 1101 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) 1102 FromPtr = GEP->getPointerOperand(); 1103 1104 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) 1105 ToPtr = GEP->getPointerOperand(); 1106 1107 if (FromPtr != FromVal || ToPtr != ToVal) { 1108 // Quickly check the common case 1109 if (FromPtr == ToPtr) 1110 return true; 1111 1112 // SCEV may have rewritten an expression that produces the GEP's pointer 1113 // operand. That's ok as long as the pointer operand has the same base 1114 // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the 1115 // base of a recurrence. This handles the case in which SCEV expansion 1116 // converts a pointer type recurrence into a nonrecurrent pointer base 1117 // indexed by an integer recurrence. 1118 1119 // If the GEP base pointer is a vector of pointers, abort. 1120 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 1121 return false; 1122 1123 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 1124 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 1125 if (FromBase == ToBase) 1126 return true; 1127 1128 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out " 1129 << *FromBase << " != " << *ToBase << "\n"); 1130 1131 return false; 1132 } 1133 return true; 1134 } 1135 1136 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1137 SmallPtrSet<const Instruction *, 8> Visited; 1138 SmallVector<const Instruction *, 8> WorkList; 1139 Visited.insert(I); 1140 WorkList.push_back(I); 1141 while (!WorkList.empty()) { 1142 const Instruction *Curr = WorkList.pop_back_val(); 1143 // This use is outside the loop, nothing to do. 1144 if (!L->contains(Curr)) 1145 continue; 1146 // Do we assume it is a "hard" use which will not be eliminated easily? 1147 if (Curr->mayHaveSideEffects()) 1148 return true; 1149 // Otherwise, add all its users to worklist. 1150 for (auto U : Curr->users()) { 1151 auto *UI = cast<Instruction>(U); 1152 if (Visited.insert(UI).second) 1153 WorkList.push_back(UI); 1154 } 1155 } 1156 return false; 1157 } 1158 1159 // Collect information about PHI nodes which can be transformed in 1160 // rewriteLoopExitValues. 1161 struct RewritePhi { 1162 PHINode *PN; // For which PHI node is this replacement? 1163 unsigned Ith; // For which incoming value? 1164 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1165 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1166 bool HighCost; // Is this expansion a high-cost? 1167 1168 Value *Expansion = nullptr; 1169 bool ValidRewrite = false; 1170 1171 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1172 bool H) 1173 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1174 HighCost(H) {} 1175 }; 1176 1177 // Check whether it is possible to delete the loop after rewriting exit 1178 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1179 // aggressively. 1180 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1181 BasicBlock *Preheader = L->getLoopPreheader(); 1182 // If there is no preheader, the loop will not be deleted. 1183 if (!Preheader) 1184 return false; 1185 1186 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1187 // We obviate multiple ExitingBlocks case for simplicity. 1188 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1189 // after exit value rewriting, we can enhance the logic here. 1190 SmallVector<BasicBlock *, 4> ExitingBlocks; 1191 L->getExitingBlocks(ExitingBlocks); 1192 SmallVector<BasicBlock *, 8> ExitBlocks; 1193 L->getUniqueExitBlocks(ExitBlocks); 1194 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1195 return false; 1196 1197 BasicBlock *ExitBlock = ExitBlocks[0]; 1198 BasicBlock::iterator BI = ExitBlock->begin(); 1199 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1200 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1201 1202 // If the Incoming value of P is found in RewritePhiSet, we know it 1203 // could be rewritten to use a loop invariant value in transformation 1204 // phase later. Skip it in the loop invariant check below. 1205 bool found = false; 1206 for (const RewritePhi &Phi : RewritePhiSet) { 1207 if (!Phi.ValidRewrite) 1208 continue; 1209 unsigned i = Phi.Ith; 1210 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1211 found = true; 1212 break; 1213 } 1214 } 1215 1216 Instruction *I; 1217 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1218 if (!L->hasLoopInvariantOperands(I)) 1219 return false; 1220 1221 ++BI; 1222 } 1223 1224 for (auto *BB : L->blocks()) 1225 if (llvm::any_of(*BB, [](Instruction &I) { 1226 return I.mayHaveSideEffects(); 1227 })) 1228 return false; 1229 1230 return true; 1231 } 1232 1233 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1234 ScalarEvolution *SE, 1235 const TargetTransformInfo *TTI, 1236 SCEVExpander &Rewriter, DominatorTree *DT, 1237 ReplaceExitVal ReplaceExitValue, 1238 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1239 // Check a pre-condition. 1240 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1241 "Indvars did not preserve LCSSA!"); 1242 1243 SmallVector<BasicBlock*, 8> ExitBlocks; 1244 L->getUniqueExitBlocks(ExitBlocks); 1245 1246 SmallVector<RewritePhi, 8> RewritePhiSet; 1247 // Find all values that are computed inside the loop, but used outside of it. 1248 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1249 // the exit blocks of the loop to find them. 1250 for (BasicBlock *ExitBB : ExitBlocks) { 1251 // If there are no PHI nodes in this exit block, then no values defined 1252 // inside the loop are used on this path, skip it. 1253 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1254 if (!PN) continue; 1255 1256 unsigned NumPreds = PN->getNumIncomingValues(); 1257 1258 // Iterate over all of the PHI nodes. 1259 BasicBlock::iterator BBI = ExitBB->begin(); 1260 while ((PN = dyn_cast<PHINode>(BBI++))) { 1261 if (PN->use_empty()) 1262 continue; // dead use, don't replace it 1263 1264 if (!SE->isSCEVable(PN->getType())) 1265 continue; 1266 1267 // It's necessary to tell ScalarEvolution about this explicitly so that 1268 // it can walk the def-use list and forget all SCEVs, as it may not be 1269 // watching the PHI itself. Once the new exit value is in place, there 1270 // may not be a def-use connection between the loop and every instruction 1271 // which got a SCEVAddRecExpr for that loop. 1272 SE->forgetValue(PN); 1273 1274 // Iterate over all of the values in all the PHI nodes. 1275 for (unsigned i = 0; i != NumPreds; ++i) { 1276 // If the value being merged in is not integer or is not defined 1277 // in the loop, skip it. 1278 Value *InVal = PN->getIncomingValue(i); 1279 if (!isa<Instruction>(InVal)) 1280 continue; 1281 1282 // If this pred is for a subloop, not L itself, skip it. 1283 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1284 continue; // The Block is in a subloop, skip it. 1285 1286 // Check that InVal is defined in the loop. 1287 Instruction *Inst = cast<Instruction>(InVal); 1288 if (!L->contains(Inst)) 1289 continue; 1290 1291 // Okay, this instruction has a user outside of the current loop 1292 // and varies predictably *inside* the loop. Evaluate the value it 1293 // contains when the loop exits, if possible. We prefer to start with 1294 // expressions which are true for all exits (so as to maximize 1295 // expression reuse by the SCEVExpander), but resort to per-exit 1296 // evaluation if that fails. 1297 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1298 if (isa<SCEVCouldNotCompute>(ExitValue) || 1299 !SE->isLoopInvariant(ExitValue, L) || 1300 !isSafeToExpand(ExitValue, *SE)) { 1301 // TODO: This should probably be sunk into SCEV in some way; maybe a 1302 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1303 // most SCEV expressions and other recurrence types (e.g. shift 1304 // recurrences). Is there existing code we can reuse? 1305 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1306 if (isa<SCEVCouldNotCompute>(ExitCount)) 1307 continue; 1308 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1309 if (AddRec->getLoop() == L) 1310 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1311 if (isa<SCEVCouldNotCompute>(ExitValue) || 1312 !SE->isLoopInvariant(ExitValue, L) || 1313 !isSafeToExpand(ExitValue, *SE)) 1314 continue; 1315 } 1316 1317 // Computing the value outside of the loop brings no benefit if it is 1318 // definitely used inside the loop in a way which can not be optimized 1319 // away. Avoid doing so unless we know we have a value which computes 1320 // the ExitValue already. TODO: This should be merged into SCEV 1321 // expander to leverage its knowledge of existing expressions. 1322 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1323 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1324 continue; 1325 1326 // Check if expansions of this SCEV would count as being high cost. 1327 bool HighCost = Rewriter.isHighCostExpansion( 1328 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1329 1330 // Note that we must not perform expansions until after 1331 // we query *all* the costs, because if we perform temporary expansion 1332 // inbetween, one that we might not intend to keep, said expansion 1333 // *may* affect cost calculation of the the next SCEV's we'll query, 1334 // and next SCEV may errneously get smaller cost. 1335 1336 // Collect all the candidate PHINodes to be rewritten. 1337 RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost); 1338 } 1339 } 1340 } 1341 1342 // Now that we've done preliminary filtering and billed all the SCEV's, 1343 // we can perform the last sanity check - the expansion must be valid. 1344 for (RewritePhi &Phi : RewritePhiSet) { 1345 Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(), 1346 Phi.ExpansionPoint); 1347 1348 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " 1349 << *(Phi.Expansion) << '\n' 1350 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1351 1352 // FIXME: isValidRewrite() is a hack. it should be an assert, eventually. 1353 Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion); 1354 if (!Phi.ValidRewrite) { 1355 DeadInsts.push_back(Phi.Expansion); 1356 continue; 1357 } 1358 1359 #ifndef NDEBUG 1360 // If we reuse an instruction from a loop which is neither L nor one of 1361 // its containing loops, we end up breaking LCSSA form for this loop by 1362 // creating a new use of its instruction. 1363 if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion)) 1364 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1365 if (EVL != L) 1366 assert(EVL->contains(L) && "LCSSA breach detected!"); 1367 #endif 1368 } 1369 1370 // TODO: after isValidRewrite() is an assertion, evaluate whether 1371 // it is beneficial to change how we calculate high-cost: 1372 // if we have SCEV 'A' which we know we will expand, should we calculate 1373 // the cost of other SCEV's after expanding SCEV 'A', 1374 // thus potentially giving cost bonus to those other SCEV's? 1375 1376 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1377 int NumReplaced = 0; 1378 1379 // Transformation. 1380 for (const RewritePhi &Phi : RewritePhiSet) { 1381 if (!Phi.ValidRewrite) 1382 continue; 1383 1384 PHINode *PN = Phi.PN; 1385 Value *ExitVal = Phi.Expansion; 1386 1387 // Only do the rewrite when the ExitValue can be expanded cheaply. 1388 // If LoopCanBeDel is true, rewrite exit value aggressively. 1389 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 1390 DeadInsts.push_back(ExitVal); 1391 continue; 1392 } 1393 1394 NumReplaced++; 1395 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1396 PN->setIncomingValue(Phi.Ith, ExitVal); 1397 1398 // If this instruction is dead now, delete it. Don't do it now to avoid 1399 // invalidating iterators. 1400 if (isInstructionTriviallyDead(Inst, TLI)) 1401 DeadInsts.push_back(Inst); 1402 1403 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1404 if (PN->getNumIncomingValues() == 1 && 1405 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1406 PN->replaceAllUsesWith(ExitVal); 1407 PN->eraseFromParent(); 1408 } 1409 } 1410 1411 // The insertion point instruction may have been deleted; clear it out 1412 // so that the rewriter doesn't trip over it later. 1413 Rewriter.clearInsertPoint(); 1414 return NumReplaced; 1415 } 1416 1417 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1418 /// \p OrigLoop. 1419 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1420 Loop *RemainderLoop, uint64_t UF) { 1421 assert(UF > 0 && "Zero unrolled factor is not supported"); 1422 assert(UnrolledLoop != RemainderLoop && 1423 "Unrolled and Remainder loops are expected to distinct"); 1424 1425 // Get number of iterations in the original scalar loop. 1426 unsigned OrigLoopInvocationWeight = 0; 1427 Optional<unsigned> OrigAverageTripCount = 1428 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1429 if (!OrigAverageTripCount) 1430 return; 1431 1432 // Calculate number of iterations in unrolled loop. 1433 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1434 // Calculate number of iterations for remainder loop. 1435 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1436 1437 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1438 OrigLoopInvocationWeight); 1439 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1440 OrigLoopInvocationWeight); 1441 } 1442 1443 /// Utility that implements appending of loops onto a worklist. 1444 /// Loops are added in preorder (analogous for reverse postorder for trees), 1445 /// and the worklist is processed LIFO. 1446 template <typename RangeT> 1447 void llvm::appendReversedLoopsToWorklist( 1448 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1449 // We use an internal worklist to build up the preorder traversal without 1450 // recursion. 1451 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1452 1453 // We walk the initial sequence of loops in reverse because we generally want 1454 // to visit defs before uses and the worklist is LIFO. 1455 for (Loop *RootL : Loops) { 1456 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1457 assert(PreOrderWorklist.empty() && 1458 "Must start with an empty preorder walk worklist."); 1459 PreOrderWorklist.push_back(RootL); 1460 do { 1461 Loop *L = PreOrderWorklist.pop_back_val(); 1462 PreOrderWorklist.append(L->begin(), L->end()); 1463 PreOrderLoops.push_back(L); 1464 } while (!PreOrderWorklist.empty()); 1465 1466 Worklist.insert(std::move(PreOrderLoops)); 1467 PreOrderLoops.clear(); 1468 } 1469 } 1470 1471 template <typename RangeT> 1472 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1473 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1474 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1475 } 1476 1477 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1478 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1479 1480 template void 1481 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1482 SmallPriorityWorklist<Loop *, 4> &Worklist); 1483 1484 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1485 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1486 appendReversedLoopsToWorklist(LI, Worklist); 1487 } 1488 1489 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1490 LoopInfo *LI, LPPassManager *LPM) { 1491 Loop &New = *LI->AllocateLoop(); 1492 if (PL) 1493 PL->addChildLoop(&New); 1494 else 1495 LI->addTopLevelLoop(&New); 1496 1497 if (LPM) 1498 LPM->addLoop(New); 1499 1500 // Add all of the blocks in L to the new loop. 1501 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 1502 I != E; ++I) 1503 if (LI->getLoopFor(*I) == L) 1504 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 1505 1506 // Add all of the subloops to the new loop. 1507 for (Loop *I : *L) 1508 cloneLoop(I, &New, VM, LI, LPM); 1509 1510 return &New; 1511 } 1512 1513 /// IR Values for the lower and upper bounds of a pointer evolution. We 1514 /// need to use value-handles because SCEV expansion can invalidate previously 1515 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1516 /// a previous one. 1517 struct PointerBounds { 1518 TrackingVH<Value> Start; 1519 TrackingVH<Value> End; 1520 }; 1521 1522 /// Expand code for the lower and upper bound of the pointer group \p CG 1523 /// in \p TheLoop. \return the values for the bounds. 1524 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1525 Loop *TheLoop, Instruction *Loc, 1526 SCEVExpander &Exp) { 1527 LLVMContext &Ctx = Loc->getContext(); 1528 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace); 1529 1530 Value *Start = nullptr, *End = nullptr; 1531 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1532 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1533 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1534 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1535 return {Start, End}; 1536 } 1537 1538 /// Turns a collection of checks into a collection of expanded upper and 1539 /// lower bounds for both pointers in the check. 1540 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1541 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1542 Instruction *Loc, SCEVExpander &Exp) { 1543 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1544 1545 // Here we're relying on the SCEV Expander's cache to only emit code for the 1546 // same bounds once. 1547 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1548 [&](const RuntimePointerCheck &Check) { 1549 PointerBounds First = expandBounds(Check.first, L, Loc, Exp), 1550 Second = expandBounds(Check.second, L, Loc, Exp); 1551 return std::make_pair(First, Second); 1552 }); 1553 1554 return ChecksWithBounds; 1555 } 1556 1557 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks( 1558 Instruction *Loc, Loop *TheLoop, 1559 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1560 SCEVExpander &Exp) { 1561 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1562 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1563 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp); 1564 1565 LLVMContext &Ctx = Loc->getContext(); 1566 Instruction *FirstInst = nullptr; 1567 IRBuilder<> ChkBuilder(Loc); 1568 // Our instructions might fold to a constant. 1569 Value *MemoryRuntimeCheck = nullptr; 1570 1571 // FIXME: this helper is currently a duplicate of the one in 1572 // LoopVectorize.cpp. 1573 auto GetFirstInst = [](Instruction *FirstInst, Value *V, 1574 Instruction *Loc) -> Instruction * { 1575 if (FirstInst) 1576 return FirstInst; 1577 if (Instruction *I = dyn_cast<Instruction>(V)) 1578 return I->getParent() == Loc->getParent() ? I : nullptr; 1579 return nullptr; 1580 }; 1581 1582 for (const auto &Check : ExpandedChecks) { 1583 const PointerBounds &A = Check.first, &B = Check.second; 1584 // Check if two pointers (A and B) conflict where conflict is computed as: 1585 // start(A) <= end(B) && start(B) <= end(A) 1586 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1587 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1588 1589 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1590 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1591 "Trying to bounds check pointers with different address spaces"); 1592 1593 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1594 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1595 1596 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1597 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1598 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1599 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1600 1601 // [A|B].Start points to the first accessed byte under base [A|B]. 1602 // [A|B].End points to the last accessed byte, plus one. 1603 // There is no conflict when the intervals are disjoint: 1604 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1605 // 1606 // bound0 = (B.Start < A.End) 1607 // bound1 = (A.Start < B.End) 1608 // IsConflict = bound0 & bound1 1609 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1610 FirstInst = GetFirstInst(FirstInst, Cmp0, Loc); 1611 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1612 FirstInst = GetFirstInst(FirstInst, Cmp1, Loc); 1613 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1614 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 1615 if (MemoryRuntimeCheck) { 1616 IsConflict = 1617 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1618 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 1619 } 1620 MemoryRuntimeCheck = IsConflict; 1621 } 1622 1623 if (!MemoryRuntimeCheck) 1624 return std::make_pair(nullptr, nullptr); 1625 1626 // We have to do this trickery because the IRBuilder might fold the check to a 1627 // constant expression in which case there is no Instruction anchored in a 1628 // the block. 1629 Instruction *Check = 1630 BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx)); 1631 ChkBuilder.Insert(Check, "memcheck.conflict"); 1632 FirstInst = GetFirstInst(FirstInst, Check, Loc); 1633 return std::make_pair(FirstInst, Check); 1634 } 1635 1636 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L, 1637 unsigned MSSAThreshold, 1638 MemorySSA &MSSA, 1639 AAResults &AA) { 1640 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1641 if (!TI || !TI->isConditional()) 1642 return {}; 1643 1644 auto *CondI = dyn_cast<CmpInst>(TI->getCondition()); 1645 // The case with the condition outside the loop should already be handled 1646 // earlier. 1647 if (!CondI || !L.contains(CondI)) 1648 return {}; 1649 1650 SmallVector<Instruction *> InstToDuplicate; 1651 InstToDuplicate.push_back(CondI); 1652 1653 SmallVector<Value *, 4> WorkList; 1654 WorkList.append(CondI->op_begin(), CondI->op_end()); 1655 1656 SmallVector<MemoryAccess *, 4> AccessesToCheck; 1657 SmallVector<MemoryLocation, 4> AccessedLocs; 1658 while (!WorkList.empty()) { 1659 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 1660 if (!I || !L.contains(I)) 1661 continue; 1662 1663 // TODO: support additional instructions. 1664 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 1665 return {}; 1666 1667 // Do not duplicate volatile and atomic loads. 1668 if (auto *LI = dyn_cast<LoadInst>(I)) 1669 if (LI->isVolatile() || LI->isAtomic()) 1670 return {}; 1671 1672 InstToDuplicate.push_back(I); 1673 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 1674 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 1675 // Queue the defining access to check for alias checks. 1676 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 1677 AccessedLocs.push_back(MemoryLocation::get(I)); 1678 } else { 1679 // MemoryDefs may clobber the location or may be atomic memory 1680 // operations. Bail out. 1681 return {}; 1682 } 1683 } 1684 WorkList.append(I->op_begin(), I->op_end()); 1685 } 1686 1687 if (InstToDuplicate.empty()) 1688 return {}; 1689 1690 SmallVector<BasicBlock *, 4> ExitingBlocks; 1691 L.getExitingBlocks(ExitingBlocks); 1692 auto HasNoClobbersOnPath = 1693 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 1694 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 1695 SmallVector<MemoryAccess *, 4> AccessesToCheck) 1696 -> Optional<IVConditionInfo> { 1697 IVConditionInfo Info; 1698 // First, collect all blocks in the loop that are on a patch from Succ 1699 // to the header. 1700 SmallVector<BasicBlock *, 4> WorkList; 1701 WorkList.push_back(Succ); 1702 WorkList.push_back(Header); 1703 SmallPtrSet<BasicBlock *, 4> Seen; 1704 Seen.insert(Header); 1705 Info.PathIsNoop &= 1706 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1707 1708 while (!WorkList.empty()) { 1709 BasicBlock *Current = WorkList.pop_back_val(); 1710 if (!L.contains(Current)) 1711 continue; 1712 const auto &SeenIns = Seen.insert(Current); 1713 if (!SeenIns.second) 1714 continue; 1715 1716 Info.PathIsNoop &= all_of( 1717 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1718 WorkList.append(succ_begin(Current), succ_end(Current)); 1719 } 1720 1721 // Require at least 2 blocks on a path through the loop. This skips 1722 // paths that directly exit the loop. 1723 if (Seen.size() < 2) 1724 return {}; 1725 1726 // Next, check if there are any MemoryDefs that are on the path through 1727 // the loop (in the Seen set) and they may-alias any of the locations in 1728 // AccessedLocs. If that is the case, they may modify the condition and 1729 // partial unswitching is not possible. 1730 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 1731 while (!AccessesToCheck.empty()) { 1732 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 1733 auto SeenI = SeenAccesses.insert(Current); 1734 if (!SeenI.second || !Seen.contains(Current->getBlock())) 1735 continue; 1736 1737 // Bail out if exceeded the threshold. 1738 if (SeenAccesses.size() >= MSSAThreshold) 1739 return {}; 1740 1741 // MemoryUse are read-only accesses. 1742 if (isa<MemoryUse>(Current)) 1743 continue; 1744 1745 // For a MemoryDef, check if is aliases any of the location feeding 1746 // the original condition. 1747 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 1748 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 1749 return isModSet( 1750 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 1751 })) 1752 return {}; 1753 } 1754 1755 for (Use &U : Current->uses()) 1756 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 1757 } 1758 1759 // We could also allow loops with known trip counts without mustprogress, 1760 // but ScalarEvolution may not be available. 1761 Info.PathIsNoop &= isMustProgress(&L); 1762 1763 // If the path is considered a no-op so far, check if it reaches a 1764 // single exit block without any phis. This ensures no values from the 1765 // loop are used outside of the loop. 1766 if (Info.PathIsNoop) { 1767 for (auto *Exiting : ExitingBlocks) { 1768 if (!Seen.contains(Exiting)) 1769 continue; 1770 for (auto *Succ : successors(Exiting)) { 1771 if (L.contains(Succ)) 1772 continue; 1773 1774 Info.PathIsNoop &= llvm::empty(Succ->phis()) && 1775 (!Info.ExitForPath || Info.ExitForPath == Succ); 1776 if (!Info.PathIsNoop) 1777 break; 1778 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 1779 "cannot have multiple exit blocks"); 1780 Info.ExitForPath = Succ; 1781 } 1782 } 1783 } 1784 if (!Info.ExitForPath) 1785 Info.PathIsNoop = false; 1786 1787 Info.InstToDuplicate = InstToDuplicate; 1788 return Info; 1789 }; 1790 1791 // If we branch to the same successor, partial unswitching will not be 1792 // beneficial. 1793 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 1794 return {}; 1795 1796 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 1797 AccessesToCheck)) { 1798 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 1799 return Info; 1800 } 1801 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 1802 AccessesToCheck)) { 1803 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 1804 return Info; 1805 } 1806 1807 return {}; 1808 } 1809