1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities for loops with run-time 10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 11 // trip counts. 12 // 13 // The functions in this file are used to generate extra code when the 14 // run-time trip count modulo the unroll factor is not 0. When this is the 15 // case, we need to generate code to execute these 'left over' iterations. 16 // 17 // The current strategy generates an if-then-else sequence prior to the 18 // unrolled loop to execute the 'left over' iterations before or after the 19 // unrolled loop. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 42 #include "llvm/Transforms/Utils/UnrollLoop.h" 43 #include <algorithm> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "loop-unroll" 48 49 STATISTIC(NumRuntimeUnrolled, 50 "Number of loops unrolled with run-time trip counts"); 51 static cl::opt<bool> UnrollRuntimeMultiExit( 52 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 53 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 54 "epilog is generated")); 55 static cl::opt<bool> UnrollRuntimeOtherExitPredictable( 56 "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, 57 cl::desc("Assume the non latch exit block to be predictable")); 58 59 /// Connect the unrolling prolog code to the original loop. 60 /// The unrolling prolog code contains code to execute the 61 /// 'extra' iterations if the run-time trip count modulo the 62 /// unroll count is non-zero. 63 /// 64 /// This function performs the following: 65 /// - Create PHI nodes at prolog end block to combine values 66 /// that exit the prolog code and jump around the prolog. 67 /// - Add a PHI operand to a PHI node at the loop exit block 68 /// for values that exit the prolog and go around the loop. 69 /// - Branch around the original loop if the trip count is less 70 /// than the unroll factor. 71 /// 72 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 73 BasicBlock *PrologExit, 74 BasicBlock *OriginalLoopLatchExit, 75 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 76 ValueToValueMapTy &VMap, DominatorTree *DT, 77 LoopInfo *LI, bool PreserveLCSSA) { 78 // Loop structure should be the following: 79 // Preheader 80 // PrologHeader 81 // ... 82 // PrologLatch 83 // PrologExit 84 // NewPreheader 85 // Header 86 // ... 87 // Latch 88 // LatchExit 89 BasicBlock *Latch = L->getLoopLatch(); 90 assert(Latch && "Loop must have a latch"); 91 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 92 93 // Create a PHI node for each outgoing value from the original loop 94 // (which means it is an outgoing value from the prolog code too). 95 // The new PHI node is inserted in the prolog end basic block. 96 // The new PHI node value is added as an operand of a PHI node in either 97 // the loop header or the loop exit block. 98 for (BasicBlock *Succ : successors(Latch)) { 99 for (PHINode &PN : Succ->phis()) { 100 // Add a new PHI node to the prolog end block and add the 101 // appropriate incoming values. 102 // TODO: This code assumes that the PrologExit (or the LatchExit block for 103 // prolog loop) contains only one predecessor from the loop, i.e. the 104 // PrologLatch. When supporting multiple-exiting block loops, we can have 105 // two or more blocks that have the LatchExit as the target in the 106 // original loop. 107 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 108 PrologExit->getFirstNonPHI()); 109 // Adding a value to the new PHI node from the original loop preheader. 110 // This is the value that skips all the prolog code. 111 if (L->contains(&PN)) { 112 // Succ is loop header. 113 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), 114 PreHeader); 115 } else { 116 // Succ is LatchExit. 117 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); 118 } 119 120 Value *V = PN.getIncomingValueForBlock(Latch); 121 if (Instruction *I = dyn_cast<Instruction>(V)) { 122 if (L->contains(I)) { 123 V = VMap.lookup(I); 124 } 125 } 126 // Adding a value to the new PHI node from the last prolog block 127 // that was created. 128 NewPN->addIncoming(V, PrologLatch); 129 130 // Update the existing PHI node operand with the value from the 131 // new PHI node. How this is done depends on if the existing 132 // PHI node is in the original loop block, or the exit block. 133 if (L->contains(&PN)) 134 PN.setIncomingValueForBlock(NewPreHeader, NewPN); 135 else 136 PN.addIncoming(NewPN, PrologExit); 137 } 138 } 139 140 // Make sure that created prolog loop is in simplified form 141 SmallVector<BasicBlock *, 4> PrologExitPreds; 142 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 143 if (PrologLoop) { 144 for (BasicBlock *PredBB : predecessors(PrologExit)) 145 if (PrologLoop->contains(PredBB)) 146 PrologExitPreds.push_back(PredBB); 147 148 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 149 nullptr, PreserveLCSSA); 150 } 151 152 // Create a branch around the original loop, which is taken if there are no 153 // iterations remaining to be executed after running the prologue. 154 Instruction *InsertPt = PrologExit->getTerminator(); 155 IRBuilder<> B(InsertPt); 156 157 assert(Count != 0 && "nonsensical Count!"); 158 159 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 160 // This means %xtraiter is (BECount + 1) and all of the iterations of this 161 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 162 // then (BECount + 1) cannot unsigned-overflow. 163 Value *BrLoopExit = 164 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 165 // Split the exit to maintain loop canonicalization guarantees 166 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 167 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 168 nullptr, PreserveLCSSA); 169 // Add the branch to the exit block (around the unrolled loop) 170 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 171 InsertPt->eraseFromParent(); 172 if (DT) { 173 auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit, 174 PrologExit); 175 DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom); 176 } 177 } 178 179 /// Connect the unrolling epilog code to the original loop. 180 /// The unrolling epilog code contains code to execute the 181 /// 'extra' iterations if the run-time trip count modulo the 182 /// unroll count is non-zero. 183 /// 184 /// This function performs the following: 185 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 186 /// - Create PHI nodes at the unrolling loop exit to combine 187 /// values that exit the unrolling loop code and jump around it. 188 /// - Update PHI operands in the epilog loop by the new PHI nodes 189 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 190 /// 191 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 192 BasicBlock *Exit, BasicBlock *PreHeader, 193 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 194 ValueToValueMapTy &VMap, DominatorTree *DT, 195 LoopInfo *LI, bool PreserveLCSSA) { 196 BasicBlock *Latch = L->getLoopLatch(); 197 assert(Latch && "Loop must have a latch"); 198 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 199 200 // Loop structure should be the following: 201 // 202 // PreHeader 203 // NewPreHeader 204 // Header 205 // ... 206 // Latch 207 // NewExit (PN) 208 // EpilogPreHeader 209 // EpilogHeader 210 // ... 211 // EpilogLatch 212 // Exit (EpilogPN) 213 214 // Update PHI nodes at NewExit and Exit. 215 for (PHINode &PN : NewExit->phis()) { 216 // PN should be used in another PHI located in Exit block as 217 // Exit was split by SplitBlockPredecessors into Exit and NewExit 218 // Basicaly it should look like: 219 // NewExit: 220 // PN = PHI [I, Latch] 221 // ... 222 // Exit: 223 // EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil] 224 // 225 // Exits from non-latch blocks point to the original exit block and the 226 // epilogue edges have already been added. 227 // 228 // There is EpilogPreHeader incoming block instead of NewExit as 229 // NewExit was spilt 1 more time to get EpilogPreHeader. 230 assert(PN.hasOneUse() && "The phi should have 1 use"); 231 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); 232 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 233 234 // Add incoming PreHeader from branch around the Loop 235 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); 236 237 Value *V = PN.getIncomingValueForBlock(Latch); 238 Instruction *I = dyn_cast<Instruction>(V); 239 if (I && L->contains(I)) 240 // If value comes from an instruction in the loop add VMap value. 241 V = VMap.lookup(I); 242 // For the instruction out of the loop, constant or undefined value 243 // insert value itself. 244 EpilogPN->addIncoming(V, EpilogLatch); 245 246 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 247 "EpilogPN should have EpilogPreHeader incoming block"); 248 // Change EpilogPreHeader incoming block to NewExit. 249 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 250 NewExit); 251 // Now PHIs should look like: 252 // NewExit: 253 // PN = PHI [I, Latch], [undef, PreHeader] 254 // ... 255 // Exit: 256 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 257 } 258 259 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 260 // Update corresponding PHI nodes in epilog loop. 261 for (BasicBlock *Succ : successors(Latch)) { 262 // Skip this as we already updated phis in exit blocks. 263 if (!L->contains(Succ)) 264 continue; 265 for (PHINode &PN : Succ->phis()) { 266 // Add new PHI nodes to the loop exit block and update epilog 267 // PHIs with the new PHI values. 268 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 269 NewExit->getFirstNonPHI()); 270 // Adding a value to the new PHI node from the unrolling loop preheader. 271 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); 272 // Adding a value to the new PHI node from the unrolling loop latch. 273 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); 274 275 // Update the existing PHI node operand with the value from the new PHI 276 // node. Corresponding instruction in epilog loop should be PHI. 277 PHINode *VPN = cast<PHINode>(VMap[&PN]); 278 VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); 279 } 280 } 281 282 Instruction *InsertPt = NewExit->getTerminator(); 283 IRBuilder<> B(InsertPt); 284 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 285 assert(Exit && "Loop must have a single exit block only"); 286 // Split the epilogue exit to maintain loop canonicalization guarantees 287 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 288 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, 289 PreserveLCSSA); 290 // Add the branch to the exit block (around the unrolling loop) 291 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 292 InsertPt->eraseFromParent(); 293 if (DT) { 294 auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit); 295 DT->changeImmediateDominator(Exit, NewDom); 296 } 297 298 // Split the main loop exit to maintain canonicalization guarantees. 299 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 300 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, 301 PreserveLCSSA); 302 } 303 304 /// Create a clone of the blocks in a loop and connect them together. A new 305 /// loop will be created including all cloned blocks, and the iterator of the 306 /// new loop switched to count NewIter down to 0. 307 /// The cloned blocks should be inserted between InsertTop and InsertBot. 308 /// InsertTop should be new preheader, InsertBot new loop exit. 309 /// Returns the new cloned loop that is created. 310 static Loop * 311 CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder, 312 const bool UnrollRemainder, 313 BasicBlock *InsertTop, 314 BasicBlock *InsertBot, BasicBlock *Preheader, 315 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 316 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 317 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 318 BasicBlock *Header = L->getHeader(); 319 BasicBlock *Latch = L->getLoopLatch(); 320 Function *F = Header->getParent(); 321 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 322 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 323 Loop *ParentLoop = L->getParentLoop(); 324 NewLoopsMap NewLoops; 325 NewLoops[ParentLoop] = ParentLoop; 326 327 // For each block in the original loop, create a new copy, 328 // and update the value map with the newly created values. 329 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 330 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 331 NewBlocks.push_back(NewBB); 332 333 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 334 335 VMap[*BB] = NewBB; 336 if (Header == *BB) { 337 // For the first block, add a CFG connection to this newly 338 // created block. 339 InsertTop->getTerminator()->setSuccessor(0, NewBB); 340 } 341 342 if (DT) { 343 if (Header == *BB) { 344 // The header is dominated by the preheader. 345 DT->addNewBlock(NewBB, InsertTop); 346 } else { 347 // Copy information from original loop to unrolled loop. 348 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 349 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 350 } 351 } 352 353 if (Latch == *BB) { 354 // For the last block, create a loop back to cloned head. 355 VMap.erase((*BB)->getTerminator()); 356 // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. 357 // Subtle: NewIter can be 0 if we wrapped when computing the trip count, 358 // thus we must compare the post-increment (wrapping) value. 359 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 360 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 361 IRBuilder<> Builder(LatchBR); 362 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 363 suffix + ".iter", 364 FirstLoopBB->getFirstNonPHI()); 365 auto *Zero = ConstantInt::get(NewIdx->getType(), 0); 366 auto *One = ConstantInt::get(NewIdx->getType(), 1); 367 Value *IdxNext = Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); 368 Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp"); 369 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 370 NewIdx->addIncoming(Zero, InsertTop); 371 NewIdx->addIncoming(IdxNext, NewBB); 372 LatchBR->eraseFromParent(); 373 } 374 } 375 376 // Change the incoming values to the ones defined in the preheader or 377 // cloned loop. 378 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 379 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 380 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 381 NewPHI->setIncomingBlock(idx, InsertTop); 382 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 383 idx = NewPHI->getBasicBlockIndex(Latch); 384 Value *InVal = NewPHI->getIncomingValue(idx); 385 NewPHI->setIncomingBlock(idx, NewLatch); 386 if (Value *V = VMap.lookup(InVal)) 387 NewPHI->setIncomingValue(idx, V); 388 } 389 390 Loop *NewLoop = NewLoops[L]; 391 assert(NewLoop && "L should have been cloned"); 392 MDNode *LoopID = NewLoop->getLoopID(); 393 394 // Only add loop metadata if the loop is not going to be completely 395 // unrolled. 396 if (UnrollRemainder) 397 return NewLoop; 398 399 Optional<MDNode *> NewLoopID = makeFollowupLoopID( 400 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); 401 if (NewLoopID.hasValue()) { 402 NewLoop->setLoopID(NewLoopID.getValue()); 403 404 // Do not setLoopAlreadyUnrolled if loop attributes have been defined 405 // explicitly. 406 return NewLoop; 407 } 408 409 // Add unroll disable metadata to disable future unrolling for this loop. 410 NewLoop->setLoopAlreadyUnrolled(); 411 return NewLoop; 412 } 413 414 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 415 /// we return true only if UnrollRuntimeMultiExit is set to true. 416 static bool canProfitablyUnrollMultiExitLoop( 417 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 418 bool UseEpilogRemainder) { 419 420 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 421 if (UnrollRuntimeMultiExit.getNumOccurrences()) 422 return UnrollRuntimeMultiExit; 423 424 // The main pain point with multi-exit loop unrolling is that once unrolled, 425 // we will not be able to merge all blocks into a straight line code. 426 // There are branches within the unrolled loop that go to the OtherExits. 427 // The second point is the increase in code size, but this is true 428 // irrespective of multiple exits. 429 430 // Note: Both the heuristics below are coarse grained. We are essentially 431 // enabling unrolling of loops that have a single side exit other than the 432 // normal LatchExit (i.e. exiting into a deoptimize block). 433 // The heuristics considered are: 434 // 1. low number of branches in the unrolled version. 435 // 2. high predictability of these extra branches. 436 // We avoid unrolling loops that have more than two exiting blocks. This 437 // limits the total number of branches in the unrolled loop to be atmost 438 // the unroll factor (since one of the exiting blocks is the latch block). 439 SmallVector<BasicBlock*, 4> ExitingBlocks; 440 L->getExitingBlocks(ExitingBlocks); 441 if (ExitingBlocks.size() > 2) 442 return false; 443 444 // Allow unrolling of loops with no non latch exit blocks. 445 if (OtherExits.size() == 0) 446 return true; 447 448 // The second heuristic is that L has one exit other than the latchexit and 449 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 450 // taken, which also implies the branch leading to the deoptimize block is 451 // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we 452 // assume the other exit branch is predictable even if it has no deoptimize 453 // call. 454 return (OtherExits.size() == 1 && 455 (UnrollRuntimeOtherExitPredictable || 456 OtherExits[0]->getTerminatingDeoptimizeCall())); 457 // TODO: These can be fine-tuned further to consider code size or deopt states 458 // that are captured by the deoptimize exit block. 459 // Also, we can extend this to support more cases, if we actually 460 // know of kinds of multiexit loops that would benefit from unrolling. 461 } 462 463 // Assign the maximum possible trip count as the back edge weight for the 464 // remainder loop if the original loop comes with a branch weight. 465 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop, 466 Loop *RemainderLoop, 467 uint64_t UnrollFactor) { 468 uint64_t TrueWeight, FalseWeight; 469 BranchInst *LatchBR = 470 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 471 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) 472 return; 473 uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader() 474 ? FalseWeight 475 : TrueWeight; 476 assert(UnrollFactor > 1); 477 uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight; 478 BasicBlock *Header = RemainderLoop->getHeader(); 479 BasicBlock *Latch = RemainderLoop->getLoopLatch(); 480 auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator()); 481 unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1); 482 MDBuilder MDB(RemainderLatchBR->getContext()); 483 MDNode *WeightNode = 484 HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) 485 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); 486 RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 487 } 488 489 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain 490 /// accounting for the possibility of unsigned overflow in the 2s complement 491 /// domain. Preconditions: 492 /// 1) TripCount = BECount + 1 (allowing overflow) 493 /// 2) Log2(Count) <= BitWidth(BECount) 494 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount, 495 Value *TripCount, unsigned Count) { 496 // Note that TripCount is BECount + 1. 497 if (isPowerOf2_32(Count)) 498 // If the expression is zero, then either: 499 // 1. There are no iterations to be run in the prolog/epilog loop. 500 // OR 501 // 2. The addition computing TripCount overflowed. 502 // 503 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 504 // the number of iterations that remain to be run in the original loop is a 505 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a 506 // precondition of this method). 507 return B.CreateAnd(TripCount, Count - 1, "xtraiter"); 508 509 // As (BECount + 1) can potentially unsigned overflow we count 510 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 511 Constant *CountC = ConstantInt::get(BECount->getType(), Count); 512 Value *ModValTmp = B.CreateURem(BECount, CountC); 513 Value *ModValAdd = B.CreateAdd(ModValTmp, 514 ConstantInt::get(ModValTmp->getType(), 1)); 515 // At that point (BECount % Count) + 1 could be equal to Count. 516 // To handle this case we need to take mod by Count one more time. 517 return B.CreateURem(ModValAdd, CountC, "xtraiter"); 518 } 519 520 521 /// Insert code in the prolog/epilog code when unrolling a loop with a 522 /// run-time trip-count. 523 /// 524 /// This method assumes that the loop unroll factor is total number 525 /// of loop bodies in the loop after unrolling. (Some folks refer 526 /// to the unroll factor as the number of *extra* copies added). 527 /// We assume also that the loop unroll factor is a power-of-two. So, after 528 /// unrolling the loop, the number of loop bodies executed is 2, 529 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 530 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 531 /// the switch instruction is generated. 532 /// 533 /// ***Prolog case*** 534 /// extraiters = tripcount % loopfactor 535 /// if (extraiters == 0) jump Loop: 536 /// else jump Prol: 537 /// Prol: LoopBody; 538 /// extraiters -= 1 // Omitted if unroll factor is 2. 539 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 540 /// if (tripcount < loopfactor) jump End: 541 /// Loop: 542 /// ... 543 /// End: 544 /// 545 /// ***Epilog case*** 546 /// extraiters = tripcount % loopfactor 547 /// if (tripcount < loopfactor) jump LoopExit: 548 /// unroll_iters = tripcount - extraiters 549 /// Loop: LoopBody; (executes unroll_iter times); 550 /// unroll_iter -= 1 551 /// if (unroll_iter != 0) jump Loop: 552 /// LoopExit: 553 /// if (extraiters == 0) jump EpilExit: 554 /// Epil: LoopBody; (executes extraiters times) 555 /// extraiters -= 1 // Omitted if unroll factor is 2. 556 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 557 /// EpilExit: 558 559 bool llvm::UnrollRuntimeLoopRemainder( 560 Loop *L, unsigned Count, bool AllowExpensiveTripCount, 561 bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, 562 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 563 const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { 564 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 565 LLVM_DEBUG(L->dump()); 566 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" 567 : dbgs() << "Using prolog remainder.\n"); 568 569 // Make sure the loop is in canonical form. 570 if (!L->isLoopSimplifyForm()) { 571 LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); 572 return false; 573 } 574 575 // Guaranteed by LoopSimplifyForm. 576 BasicBlock *Latch = L->getLoopLatch(); 577 BasicBlock *Header = L->getHeader(); 578 579 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 580 581 if (!LatchBR || LatchBR->isUnconditional()) { 582 // The loop-rotate pass can be helpful to avoid this in many cases. 583 LLVM_DEBUG( 584 dbgs() 585 << "Loop latch not terminated by a conditional branch.\n"); 586 return false; 587 } 588 589 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 590 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 591 592 if (L->contains(LatchExit)) { 593 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 594 // targets of the Latch be an exit block out of the loop. 595 LLVM_DEBUG( 596 dbgs() 597 << "One of the loop latch successors must be the exit block.\n"); 598 return false; 599 } 600 601 // These are exit blocks other than the target of the latch exiting block. 602 SmallVector<BasicBlock *, 4> OtherExits; 603 L->getUniqueNonLatchExitBlocks(OtherExits); 604 // Support only single exit and exiting block unless multi-exit loop 605 // unrolling is enabled. 606 if (!L->getExitingBlock() || OtherExits.size()) { 607 // We rely on LCSSA form being preserved when the exit blocks are transformed. 608 // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.) 609 if (!PreserveLCSSA) 610 return false; 611 612 if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, 613 UseEpilogRemainder)) { 614 LLVM_DEBUG( 615 dbgs() 616 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 617 "enabled!\n"); 618 return false; 619 } 620 } 621 // Use Scalar Evolution to compute the trip count. This allows more loops to 622 // be unrolled than relying on induction var simplification. 623 if (!SE) 624 return false; 625 626 // Only unroll loops with a computable trip count. 627 // We calculate the backedge count by using getExitCount on the Latch block, 628 // which is proven to be the only exiting block in this loop. This is same as 629 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 630 // exiting blocks). 631 const SCEV *BECountSC = SE->getExitCount(L, Latch); 632 if (isa<SCEVCouldNotCompute>(BECountSC)) { 633 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 634 return false; 635 } 636 637 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 638 639 // Add 1 since the backedge count doesn't include the first loop iteration. 640 // (Note that overflow can occur, this is handled explicitly below) 641 const SCEV *TripCountSC = 642 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 643 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 644 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 645 return false; 646 } 647 648 BasicBlock *PreHeader = L->getLoopPreheader(); 649 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 650 const DataLayout &DL = Header->getModule()->getDataLayout(); 651 SCEVExpander Expander(*SE, DL, "loop-unroll"); 652 if (!AllowExpensiveTripCount && 653 Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, 654 TTI, PreHeaderBR)) { 655 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 656 return false; 657 } 658 659 // This constraint lets us deal with an overflowing trip count easily; see the 660 // comment on ModVal below. 661 if (Log2_32(Count) > BEWidth) { 662 LLVM_DEBUG( 663 dbgs() 664 << "Count failed constraint on overflow trip count calculation.\n"); 665 return false; 666 } 667 668 // Loop structure is the following: 669 // 670 // PreHeader 671 // Header 672 // ... 673 // Latch 674 // LatchExit 675 676 BasicBlock *NewPreHeader; 677 BasicBlock *NewExit = nullptr; 678 BasicBlock *PrologExit = nullptr; 679 BasicBlock *EpilogPreHeader = nullptr; 680 BasicBlock *PrologPreHeader = nullptr; 681 682 if (UseEpilogRemainder) { 683 // If epilog remainder 684 // Split PreHeader to insert a branch around loop for unrolling. 685 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 686 NewPreHeader->setName(PreHeader->getName() + ".new"); 687 // Split LatchExit to create phi nodes from branch above. 688 NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI, 689 nullptr, PreserveLCSSA); 690 // NewExit gets its DebugLoc from LatchExit, which is not part of the 691 // original Loop. 692 // Fix this by setting Loop's DebugLoc to NewExit. 693 auto *NewExitTerminator = NewExit->getTerminator(); 694 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); 695 // Split NewExit to insert epilog remainder loop. 696 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); 697 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 698 699 // If the latch exits from multiple level of nested loops, then 700 // by assumption there must be another loop exit which branches to the 701 // outer loop and we must adjust the loop for the newly inserted blocks 702 // to account for the fact that our epilogue is still in the same outer 703 // loop. Note that this leaves loopinfo temporarily out of sync with the 704 // CFG until the actual epilogue loop is inserted. 705 if (auto *ParentL = L->getParentLoop()) 706 if (LI->getLoopFor(LatchExit) != ParentL) { 707 LI->removeBlock(NewExit); 708 ParentL->addBasicBlockToLoop(NewExit, *LI); 709 LI->removeBlock(EpilogPreHeader); 710 ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI); 711 } 712 713 } else { 714 // If prolog remainder 715 // Split the original preheader twice to insert prolog remainder loop 716 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 717 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 718 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 719 DT, LI); 720 PrologExit->setName(Header->getName() + ".prol.loopexit"); 721 // Split PrologExit to get NewPreHeader. 722 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 723 NewPreHeader->setName(PreHeader->getName() + ".new"); 724 } 725 // Loop structure should be the following: 726 // Epilog Prolog 727 // 728 // PreHeader PreHeader 729 // *NewPreHeader *PrologPreHeader 730 // Header *PrologExit 731 // ... *NewPreHeader 732 // Latch Header 733 // *NewExit ... 734 // *EpilogPreHeader Latch 735 // LatchExit LatchExit 736 737 // Calculate conditions for branch around loop for unrolling 738 // in epilog case and around prolog remainder loop in prolog case. 739 // Compute the number of extra iterations required, which is: 740 // extra iterations = run-time trip count % loop unroll factor 741 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 742 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 743 PreHeaderBR); 744 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 745 PreHeaderBR); 746 IRBuilder<> B(PreHeaderBR); 747 Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count); 748 749 Value *BranchVal = 750 UseEpilogRemainder ? B.CreateICmpULT(BECount, 751 ConstantInt::get(BECount->getType(), 752 Count - 1)) : 753 B.CreateIsNotNull(ModVal, "lcmp.mod"); 754 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 755 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 756 // Branch to either remainder (extra iterations) loop or unrolling loop. 757 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 758 PreHeaderBR->eraseFromParent(); 759 if (DT) { 760 if (UseEpilogRemainder) 761 DT->changeImmediateDominator(NewExit, PreHeader); 762 else 763 DT->changeImmediateDominator(PrologExit, PreHeader); 764 } 765 Function *F = Header->getParent(); 766 // Get an ordered list of blocks in the loop to help with the ordering of the 767 // cloned blocks in the prolog/epilog code 768 LoopBlocksDFS LoopBlocks(L); 769 LoopBlocks.perform(LI); 770 771 // 772 // For each extra loop iteration, create a copy of the loop's basic blocks 773 // and generate a condition that branches to the copy depending on the 774 // number of 'left over' iterations. 775 // 776 std::vector<BasicBlock *> NewBlocks; 777 ValueToValueMapTy VMap; 778 779 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 780 // the loop, otherwise we create a cloned loop to execute the extra 781 // iterations. This function adds the appropriate CFG connections. 782 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 783 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 784 Loop *remainderLoop = CloneLoopBlocks( 785 L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot, 786 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 787 788 // Assign the maximum possible trip count as the back edge weight for the 789 // remainder loop if the original loop comes with a branch weight. 790 if (remainderLoop && !UnrollRemainder) 791 updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count); 792 793 // Insert the cloned blocks into the function. 794 F->getBasicBlockList().splice(InsertBot->getIterator(), 795 F->getBasicBlockList(), 796 NewBlocks[0]->getIterator(), 797 F->end()); 798 799 // Now the loop blocks are cloned and the other exiting blocks from the 800 // remainder are connected to the original Loop's exit blocks. The remaining 801 // work is to update the phi nodes in the original loop, and take in the 802 // values from the cloned region. 803 for (auto *BB : OtherExits) { 804 // Given we preserve LCSSA form, we know that the values used outside the 805 // loop will be used through these phi nodes at the exit blocks that are 806 // transformed below. 807 for (PHINode &PN : BB->phis()) { 808 unsigned oldNumOperands = PN.getNumIncomingValues(); 809 // Add the incoming values from the remainder code to the end of the phi 810 // node. 811 for (unsigned i = 0; i < oldNumOperands; i++){ 812 auto *PredBB =PN.getIncomingBlock(i); 813 if (PredBB == Latch) 814 // The latch exit is handled seperately, see connectX 815 continue; 816 if (!L->contains(PredBB)) 817 // Even if we had dedicated exits, the code above inserted an 818 // extra branch which can reach the latch exit. 819 continue; 820 821 auto *V = PN.getIncomingValue(i); 822 if (Instruction *I = dyn_cast<Instruction>(V)) 823 if (L->contains(I)) 824 V = VMap.lookup(I); 825 PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB])); 826 } 827 } 828 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 829 for (BasicBlock *SuccBB : successors(BB)) { 830 assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) && 831 "Breaks the definition of dedicated exits!"); 832 } 833 #endif 834 } 835 836 // Update the immediate dominator of the exit blocks and blocks that are 837 // reachable from the exit blocks. This is needed because we now have paths 838 // from both the original loop and the remainder code reaching the exit 839 // blocks. While the IDom of these exit blocks were from the original loop, 840 // now the IDom is the preheader (which decides whether the original loop or 841 // remainder code should run). 842 if (DT && !L->getExitingBlock()) { 843 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 844 // NB! We have to examine the dom children of all loop blocks, not just 845 // those which are the IDom of the exit blocks. This is because blocks 846 // reachable from the exit blocks can have their IDom as the nearest common 847 // dominator of the exit blocks. 848 for (auto *BB : L->blocks()) { 849 auto *DomNodeBB = DT->getNode(BB); 850 for (auto *DomChild : DomNodeBB->children()) { 851 auto *DomChildBB = DomChild->getBlock(); 852 if (!L->contains(LI->getLoopFor(DomChildBB))) 853 ChildrenToUpdate.push_back(DomChildBB); 854 } 855 } 856 for (auto *BB : ChildrenToUpdate) 857 DT->changeImmediateDominator(BB, PreHeader); 858 } 859 860 // Loop structure should be the following: 861 // Epilog Prolog 862 // 863 // PreHeader PreHeader 864 // NewPreHeader PrologPreHeader 865 // Header PrologHeader 866 // ... ... 867 // Latch PrologLatch 868 // NewExit PrologExit 869 // EpilogPreHeader NewPreHeader 870 // EpilogHeader Header 871 // ... ... 872 // EpilogLatch Latch 873 // LatchExit LatchExit 874 875 // Rewrite the cloned instruction operands to use the values created when the 876 // clone is created. 877 for (BasicBlock *BB : NewBlocks) { 878 for (Instruction &I : *BB) { 879 RemapInstruction(&I, VMap, 880 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 881 } 882 } 883 884 if (UseEpilogRemainder) { 885 // Connect the epilog code to the original loop and update the 886 // PHI functions. 887 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 888 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 889 PreserveLCSSA); 890 891 // Update counter in loop for unrolling. 892 // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. 893 // Subtle: TestVal can be 0 if we wrapped when computing the trip count, 894 // thus we must compare the post-increment (wrapping) value. 895 IRBuilder<> B2(NewPreHeader->getTerminator()); 896 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 897 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 898 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 899 Header->getFirstNonPHI()); 900 B2.SetInsertPoint(LatchBR); 901 auto *Zero = ConstantInt::get(NewIdx->getType(), 0); 902 auto *One = ConstantInt::get(NewIdx->getType(), 1); 903 Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); 904 auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 905 Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp"); 906 NewIdx->addIncoming(Zero, NewPreHeader); 907 NewIdx->addIncoming(IdxNext, Latch); 908 LatchBR->setCondition(IdxCmp); 909 } else { 910 // Connect the prolog code to the original loop and update the 911 // PHI functions. 912 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 913 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 914 } 915 916 // If this loop is nested, then the loop unroller changes the code in the any 917 // of its parent loops, so the Scalar Evolution pass needs to be run again. 918 SE->forgetTopmostLoop(L); 919 920 // Verify that the Dom Tree and Loop Info are correct. 921 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 922 if (DT) { 923 assert(DT->verify(DominatorTree::VerificationLevel::Full)); 924 LI->verify(*DT); 925 } 926 #endif 927 928 // For unroll factor 2 remainder loop will have 1 iteration. 929 if (Count == 2 && DT && LI && SE) { 930 // TODO: This code could probably be pulled out into a helper function 931 // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion. 932 BasicBlock *RemainderLatch = remainderLoop->getLoopLatch(); 933 assert(RemainderLatch); 934 SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(), 935 remainderLoop->getBlocks().end()); 936 breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr); 937 remainderLoop = nullptr; 938 939 // Simplify loop values after breaking the backedge 940 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 941 SmallVector<WeakTrackingVH, 16> DeadInsts; 942 for (BasicBlock *BB : RemainderBlocks) { 943 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 944 if (Value *V = SimplifyInstruction(&Inst, {DL, nullptr, DT, AC})) 945 if (LI->replacementPreservesLCSSAForm(&Inst, V)) 946 Inst.replaceAllUsesWith(V); 947 if (isInstructionTriviallyDead(&Inst)) 948 DeadInsts.emplace_back(&Inst); 949 } 950 // We can't do recursive deletion until we're done iterating, as we might 951 // have a phi which (potentially indirectly) uses instructions later in 952 // the block we're iterating through. 953 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 954 } 955 956 // Merge latch into exit block. 957 auto *ExitBB = RemainderLatch->getSingleSuccessor(); 958 assert(ExitBB && "required after breaking cond br backedge"); 959 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 960 MergeBlockIntoPredecessor(ExitBB, &DTU, LI); 961 } 962 963 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 964 // cannot rely on the LoopUnrollPass to do this because it only does 965 // canonicalization for parent/subloops and not the sibling loops. 966 if (OtherExits.size() > 0) { 967 // Generate dedicated exit blocks for the original loop, to preserve 968 // LoopSimplifyForm. 969 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); 970 // Generate dedicated exit blocks for the remainder loop if one exists, to 971 // preserve LoopSimplifyForm. 972 if (remainderLoop) 973 formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); 974 } 975 976 auto UnrollResult = LoopUnrollResult::Unmodified; 977 if (remainderLoop && UnrollRemainder) { 978 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); 979 UnrollResult = 980 UnrollLoop(remainderLoop, 981 {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false, 982 /*AllowExpensiveTripCount*/ false, 983 /*UnrollRemainder*/ false, ForgetAllSCEV}, 984 LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); 985 } 986 987 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) 988 *ResultLoop = remainderLoop; 989 NumRuntimeUnrolled++; 990 return true; 991 } 992