xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 67be1e195acfaec99ce4fffeb17111ce085755f7)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for loops with run-time
10 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
11 // trip counts.
12 //
13 // The functions in this file are used to generate extra code when the
14 // run-time trip count modulo the unroll factor is not 0.  When this is the
15 // case, we need to generate code to execute these 'left over' iterations.
16 //
17 // The current strategy generates an if-then-else sequence prior to the
18 // unrolled loop to execute the 'left over' iterations before or after the
19 // unrolled loop.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/DomTreeUpdater.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ProfDataUtils.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
42 #include "llvm/Transforms/Utils/UnrollLoop.h"
43 #include <algorithm>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "loop-unroll"
48 
49 STATISTIC(NumRuntimeUnrolled,
50           "Number of loops unrolled with run-time trip counts");
51 static cl::opt<bool> UnrollRuntimeMultiExit(
52     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
53     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
54              "epilog is generated"));
55 static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
56     "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
57     cl::desc("Assume the non latch exit block to be predictable"));
58 
59 // Probability that the loop trip count is so small that after the prolog
60 // we do not enter the unrolled loop at all.
61 // It is unlikely that the loop trip count is smaller than the unroll factor;
62 // other than that, the choice of constant is not tuned yet.
63 static const uint32_t UnrolledLoopHeaderWeights[] = {1, 127};
64 // Probability that the loop trip count is so small that we skip the unrolled
65 // loop completely and immediately enter the epilogue loop.
66 // It is unlikely that the loop trip count is smaller than the unroll factor;
67 // other than that, the choice of constant is not tuned yet.
68 static const uint32_t EpilogHeaderWeights[] = {1, 127};
69 
70 /// Connect the unrolling prolog code to the original loop.
71 /// The unrolling prolog code contains code to execute the
72 /// 'extra' iterations if the run-time trip count modulo the
73 /// unroll count is non-zero.
74 ///
75 /// This function performs the following:
76 /// - Create PHI nodes at prolog end block to combine values
77 ///   that exit the prolog code and jump around the prolog.
78 /// - Add a PHI operand to a PHI node at the loop exit block
79 ///   for values that exit the prolog and go around the loop.
80 /// - Branch around the original loop if the trip count is less
81 ///   than the unroll factor.
82 ///
83 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
84                           BasicBlock *PrologExit,
85                           BasicBlock *OriginalLoopLatchExit,
86                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
87                           ValueToValueMapTy &VMap, DominatorTree *DT,
88                           LoopInfo *LI, bool PreserveLCSSA,
89                           ScalarEvolution &SE) {
90   // Loop structure should be the following:
91   // Preheader
92   //  PrologHeader
93   //  ...
94   //  PrologLatch
95   //  PrologExit
96   //   NewPreheader
97   //    Header
98   //    ...
99   //    Latch
100   //      LatchExit
101   BasicBlock *Latch = L->getLoopLatch();
102   assert(Latch && "Loop must have a latch");
103   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
104 
105   // Create a PHI node for each outgoing value from the original loop
106   // (which means it is an outgoing value from the prolog code too).
107   // The new PHI node is inserted in the prolog end basic block.
108   // The new PHI node value is added as an operand of a PHI node in either
109   // the loop header or the loop exit block.
110   for (BasicBlock *Succ : successors(Latch)) {
111     for (PHINode &PN : Succ->phis()) {
112       // Add a new PHI node to the prolog end block and add the
113       // appropriate incoming values.
114       // TODO: This code assumes that the PrologExit (or the LatchExit block for
115       // prolog loop) contains only one predecessor from the loop, i.e. the
116       // PrologLatch. When supporting multiple-exiting block loops, we can have
117       // two or more blocks that have the LatchExit as the target in the
118       // original loop.
119       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr");
120       NewPN->insertBefore(PrologExit->getFirstNonPHIIt());
121       // Adding a value to the new PHI node from the original loop preheader.
122       // This is the value that skips all the prolog code.
123       if (L->contains(&PN)) {
124         // Succ is loop header.
125         NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
126                            PreHeader);
127       } else {
128         // Succ is LatchExit.
129         NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
130       }
131 
132       Value *V = PN.getIncomingValueForBlock(Latch);
133       if (Instruction *I = dyn_cast<Instruction>(V)) {
134         if (L->contains(I)) {
135           V = VMap.lookup(I);
136         }
137       }
138       // Adding a value to the new PHI node from the last prolog block
139       // that was created.
140       NewPN->addIncoming(V, PrologLatch);
141 
142       // Update the existing PHI node operand with the value from the
143       // new PHI node.  How this is done depends on if the existing
144       // PHI node is in the original loop block, or the exit block.
145       if (L->contains(&PN))
146         PN.setIncomingValueForBlock(NewPreHeader, NewPN);
147       else
148         PN.addIncoming(NewPN, PrologExit);
149       SE.forgetValue(&PN);
150     }
151   }
152 
153   // Make sure that created prolog loop is in simplified form
154   SmallVector<BasicBlock *, 4> PrologExitPreds;
155   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
156   if (PrologLoop) {
157     for (BasicBlock *PredBB : predecessors(PrologExit))
158       if (PrologLoop->contains(PredBB))
159         PrologExitPreds.push_back(PredBB);
160 
161     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
162                            nullptr, PreserveLCSSA);
163   }
164 
165   // Create a branch around the original loop, which is taken if there are no
166   // iterations remaining to be executed after running the prologue.
167   Instruction *InsertPt = PrologExit->getTerminator();
168   IRBuilder<> B(InsertPt);
169 
170   assert(Count != 0 && "nonsensical Count!");
171 
172   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
173   // This means %xtraiter is (BECount + 1) and all of the iterations of this
174   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
175   // then (BECount + 1) cannot unsigned-overflow.
176   Value *BrLoopExit =
177       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
178   // Split the exit to maintain loop canonicalization guarantees
179   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
180   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
181                          nullptr, PreserveLCSSA);
182   // Add the branch to the exit block (around the unrolled loop)
183   MDNode *BranchWeights = nullptr;
184   if (hasBranchWeightMD(*Latch->getTerminator())) {
185     // Assume loop is nearly always entered.
186     MDBuilder MDB(B.getContext());
187     BranchWeights = MDB.createBranchWeights(UnrolledLoopHeaderWeights);
188   }
189   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader,
190                  BranchWeights);
191   InsertPt->eraseFromParent();
192   if (DT) {
193     auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit,
194                                                   PrologExit);
195     DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom);
196   }
197 }
198 
199 /// Connect the unrolling epilog code to the original loop.
200 /// The unrolling epilog code contains code to execute the
201 /// 'extra' iterations if the run-time trip count modulo the
202 /// unroll count is non-zero.
203 ///
204 /// This function performs the following:
205 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
206 /// - Create PHI nodes at the unrolling loop exit to combine
207 ///   values that exit the unrolling loop code and jump around it.
208 /// - Update PHI operands in the epilog loop by the new PHI nodes
209 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
210 ///
211 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
212                           BasicBlock *Exit, BasicBlock *PreHeader,
213                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
214                           ValueToValueMapTy &VMap, DominatorTree *DT,
215                           LoopInfo *LI, bool PreserveLCSSA, ScalarEvolution &SE,
216                           unsigned Count) {
217   BasicBlock *Latch = L->getLoopLatch();
218   assert(Latch && "Loop must have a latch");
219   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
220 
221   // Loop structure should be the following:
222   //
223   // PreHeader
224   // NewPreHeader
225   //   Header
226   //   ...
227   //   Latch
228   // NewExit (PN)
229   // EpilogPreHeader
230   //   EpilogHeader
231   //   ...
232   //   EpilogLatch
233   // Exit (EpilogPN)
234 
235   // Update PHI nodes at NewExit and Exit.
236   for (PHINode &PN : NewExit->phis()) {
237     // PN should be used in another PHI located in Exit block as
238     // Exit was split by SplitBlockPredecessors into Exit and NewExit
239     // Basically it should look like:
240     // NewExit:
241     //   PN = PHI [I, Latch]
242     // ...
243     // Exit:
244     //   EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
245     //
246     // Exits from non-latch blocks point to the original exit block and the
247     // epilogue edges have already been added.
248     //
249     // There is EpilogPreHeader incoming block instead of NewExit as
250     // NewExit was spilt 1 more time to get EpilogPreHeader.
251     assert(PN.hasOneUse() && "The phi should have 1 use");
252     PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
253     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
254 
255     // Add incoming PreHeader from branch around the Loop
256     PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
257     SE.forgetValue(&PN);
258 
259     Value *V = PN.getIncomingValueForBlock(Latch);
260     Instruction *I = dyn_cast<Instruction>(V);
261     if (I && L->contains(I))
262       // If value comes from an instruction in the loop add VMap value.
263       V = VMap.lookup(I);
264     // For the instruction out of the loop, constant or undefined value
265     // insert value itself.
266     EpilogPN->addIncoming(V, EpilogLatch);
267 
268     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
269           "EpilogPN should have EpilogPreHeader incoming block");
270     // Change EpilogPreHeader incoming block to NewExit.
271     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
272                                NewExit);
273     // Now PHIs should look like:
274     // NewExit:
275     //   PN = PHI [I, Latch], [undef, PreHeader]
276     // ...
277     // Exit:
278     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
279   }
280 
281   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
282   // Update corresponding PHI nodes in epilog loop.
283   for (BasicBlock *Succ : successors(Latch)) {
284     // Skip this as we already updated phis in exit blocks.
285     if (!L->contains(Succ))
286       continue;
287     for (PHINode &PN : Succ->phis()) {
288       // Add new PHI nodes to the loop exit block and update epilog
289       // PHIs with the new PHI values.
290       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr");
291       NewPN->insertBefore(NewExit->getFirstNonPHIIt());
292       // Adding a value to the new PHI node from the unrolling loop preheader.
293       NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
294       // Adding a value to the new PHI node from the unrolling loop latch.
295       NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
296 
297       // Update the existing PHI node operand with the value from the new PHI
298       // node.  Corresponding instruction in epilog loop should be PHI.
299       PHINode *VPN = cast<PHINode>(VMap[&PN]);
300       VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
301     }
302   }
303 
304   Instruction *InsertPt = NewExit->getTerminator();
305   IRBuilder<> B(InsertPt);
306   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
307   assert(Exit && "Loop must have a single exit block only");
308   // Split the epilogue exit to maintain loop canonicalization guarantees
309   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
310   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
311                          PreserveLCSSA);
312   // Add the branch to the exit block (around the unrolling loop)
313   MDNode *BranchWeights = nullptr;
314   if (hasBranchWeightMD(*Latch->getTerminator())) {
315     // Assume equal distribution in interval [0, Count).
316     MDBuilder MDB(B.getContext());
317     BranchWeights = MDB.createBranchWeights(1, Count - 1);
318   }
319   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit, BranchWeights);
320   InsertPt->eraseFromParent();
321   if (DT) {
322     auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
323     DT->changeImmediateDominator(Exit, NewDom);
324   }
325 
326   // Split the main loop exit to maintain canonicalization guarantees.
327   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
328   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
329                          PreserveLCSSA);
330 }
331 
332 /// Create a clone of the blocks in a loop and connect them together. A new
333 /// loop will be created including all cloned blocks, and the iterator of the
334 /// new loop switched to count NewIter down to 0.
335 /// The cloned blocks should be inserted between InsertTop and InsertBot.
336 /// InsertTop should be new preheader, InsertBot new loop exit.
337 /// Returns the new cloned loop that is created.
338 static Loop *
339 CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder,
340                 const bool UnrollRemainder,
341                 BasicBlock *InsertTop,
342                 BasicBlock *InsertBot, BasicBlock *Preheader,
343                              std::vector<BasicBlock *> &NewBlocks,
344                              LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
345                              DominatorTree *DT, LoopInfo *LI, unsigned Count) {
346   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
347   BasicBlock *Header = L->getHeader();
348   BasicBlock *Latch = L->getLoopLatch();
349   Function *F = Header->getParent();
350   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
351   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
352   Loop *ParentLoop = L->getParentLoop();
353   NewLoopsMap NewLoops;
354   NewLoops[ParentLoop] = ParentLoop;
355 
356   // For each block in the original loop, create a new copy,
357   // and update the value map with the newly created values.
358   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
359     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
360     NewBlocks.push_back(NewBB);
361 
362     addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
363 
364     VMap[*BB] = NewBB;
365     if (Header == *BB) {
366       // For the first block, add a CFG connection to this newly
367       // created block.
368       InsertTop->getTerminator()->setSuccessor(0, NewBB);
369     }
370 
371     if (DT) {
372       if (Header == *BB) {
373         // The header is dominated by the preheader.
374         DT->addNewBlock(NewBB, InsertTop);
375       } else {
376         // Copy information from original loop to unrolled loop.
377         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
378         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
379       }
380     }
381 
382     if (Latch == *BB) {
383       // For the last block, create a loop back to cloned head.
384       VMap.erase((*BB)->getTerminator());
385       // Use an incrementing IV.  Pre-incr/post-incr is backedge/trip count.
386       // Subtle: NewIter can be 0 if we wrapped when computing the trip count,
387       // thus we must compare the post-increment (wrapping) value.
388       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
389       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
390       IRBuilder<> Builder(LatchBR);
391       PHINode *NewIdx =
392           PHINode::Create(NewIter->getType(), 2, suffix + ".iter");
393       NewIdx->insertBefore(FirstLoopBB->getFirstNonPHIIt());
394       auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
395       auto *One = ConstantInt::get(NewIdx->getType(), 1);
396       Value *IdxNext =
397           Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
398       Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp");
399       MDNode *BranchWeights = nullptr;
400       if (hasBranchWeightMD(*LatchBR)) {
401         uint32_t ExitWeight;
402         uint32_t BackEdgeWeight;
403         if (Count >= 3) {
404           // Note: We do not enter this loop for zero-remainders. The check
405           // is at the end of the loop. We assume equal distribution between
406           // possible remainders in [1, Count).
407           ExitWeight = 1;
408           BackEdgeWeight = (Count - 2) / 2;
409         } else {
410           // Unnecessary backedge, should never be taken. The conditional
411           // jump should be optimized away later.
412           ExitWeight = 1;
413           BackEdgeWeight = 0;
414         }
415         MDBuilder MDB(Builder.getContext());
416         BranchWeights = MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
417       }
418       Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot, BranchWeights);
419       NewIdx->addIncoming(Zero, InsertTop);
420       NewIdx->addIncoming(IdxNext, NewBB);
421       LatchBR->eraseFromParent();
422     }
423   }
424 
425   // Change the incoming values to the ones defined in the preheader or
426   // cloned loop.
427   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
428     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
429     unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
430     NewPHI->setIncomingBlock(idx, InsertTop);
431     BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
432     idx = NewPHI->getBasicBlockIndex(Latch);
433     Value *InVal = NewPHI->getIncomingValue(idx);
434     NewPHI->setIncomingBlock(idx, NewLatch);
435     if (Value *V = VMap.lookup(InVal))
436       NewPHI->setIncomingValue(idx, V);
437   }
438 
439   Loop *NewLoop = NewLoops[L];
440   assert(NewLoop && "L should have been cloned");
441   MDNode *LoopID = NewLoop->getLoopID();
442 
443   // Only add loop metadata if the loop is not going to be completely
444   // unrolled.
445   if (UnrollRemainder)
446     return NewLoop;
447 
448   std::optional<MDNode *> NewLoopID = makeFollowupLoopID(
449       LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
450   if (NewLoopID) {
451     NewLoop->setLoopID(*NewLoopID);
452 
453     // Do not setLoopAlreadyUnrolled if loop attributes have been defined
454     // explicitly.
455     return NewLoop;
456   }
457 
458   // Add unroll disable metadata to disable future unrolling for this loop.
459   NewLoop->setLoopAlreadyUnrolled();
460   return NewLoop;
461 }
462 
463 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
464 /// we return true only if UnrollRuntimeMultiExit is set to true.
465 static bool canProfitablyUnrollMultiExitLoop(
466     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
467     bool UseEpilogRemainder) {
468 
469   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
470   if (UnrollRuntimeMultiExit.getNumOccurrences())
471     return UnrollRuntimeMultiExit;
472 
473   // The main pain point with multi-exit loop unrolling is that once unrolled,
474   // we will not be able to merge all blocks into a straight line code.
475   // There are branches within the unrolled loop that go to the OtherExits.
476   // The second point is the increase in code size, but this is true
477   // irrespective of multiple exits.
478 
479   // Note: Both the heuristics below are coarse grained. We are essentially
480   // enabling unrolling of loops that have a single side exit other than the
481   // normal LatchExit (i.e. exiting into a deoptimize block).
482   // The heuristics considered are:
483   // 1. low number of branches in the unrolled version.
484   // 2. high predictability of these extra branches.
485   // We avoid unrolling loops that have more than two exiting blocks. This
486   // limits the total number of branches in the unrolled loop to be atmost
487   // the unroll factor (since one of the exiting blocks is the latch block).
488   SmallVector<BasicBlock*, 4> ExitingBlocks;
489   L->getExitingBlocks(ExitingBlocks);
490   if (ExitingBlocks.size() > 2)
491     return false;
492 
493   // Allow unrolling of loops with no non latch exit blocks.
494   if (OtherExits.size() == 0)
495     return true;
496 
497   // The second heuristic is that L has one exit other than the latchexit and
498   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
499   // taken, which also implies the branch leading to the deoptimize block is
500   // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
501   // assume the other exit branch is predictable even if it has no deoptimize
502   // call.
503   return (OtherExits.size() == 1 &&
504           (UnrollRuntimeOtherExitPredictable ||
505            OtherExits[0]->getPostdominatingDeoptimizeCall()));
506   // TODO: These can be fine-tuned further to consider code size or deopt states
507   // that are captured by the deoptimize exit block.
508   // Also, we can extend this to support more cases, if we actually
509   // know of kinds of multiexit loops that would benefit from unrolling.
510 }
511 
512 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
513 /// accounting for the possibility of unsigned overflow in the 2s complement
514 /// domain. Preconditions:
515 /// 1) TripCount = BECount + 1 (allowing overflow)
516 /// 2) Log2(Count) <= BitWidth(BECount)
517 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
518                                   Value *TripCount, unsigned Count) {
519   // Note that TripCount is BECount + 1.
520   if (isPowerOf2_32(Count))
521     // If the expression is zero, then either:
522     //  1. There are no iterations to be run in the prolog/epilog loop.
523     // OR
524     //  2. The addition computing TripCount overflowed.
525     //
526     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
527     // the number of iterations that remain to be run in the original loop is a
528     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
529     // precondition of this method).
530     return B.CreateAnd(TripCount, Count - 1, "xtraiter");
531 
532   // As (BECount + 1) can potentially unsigned overflow we count
533   // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
534   Constant *CountC = ConstantInt::get(BECount->getType(), Count);
535   Value *ModValTmp = B.CreateURem(BECount, CountC);
536   Value *ModValAdd = B.CreateAdd(ModValTmp,
537                                  ConstantInt::get(ModValTmp->getType(), 1));
538   // At that point (BECount % Count) + 1 could be equal to Count.
539   // To handle this case we need to take mod by Count one more time.
540   return B.CreateURem(ModValAdd, CountC, "xtraiter");
541 }
542 
543 
544 /// Insert code in the prolog/epilog code when unrolling a loop with a
545 /// run-time trip-count.
546 ///
547 /// This method assumes that the loop unroll factor is total number
548 /// of loop bodies in the loop after unrolling. (Some folks refer
549 /// to the unroll factor as the number of *extra* copies added).
550 /// We assume also that the loop unroll factor is a power-of-two. So, after
551 /// unrolling the loop, the number of loop bodies executed is 2,
552 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
553 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
554 /// the switch instruction is generated.
555 ///
556 /// ***Prolog case***
557 ///        extraiters = tripcount % loopfactor
558 ///        if (extraiters == 0) jump Loop:
559 ///        else jump Prol:
560 /// Prol:  LoopBody;
561 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
562 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
563 ///        if (tripcount < loopfactor) jump End:
564 /// Loop:
565 /// ...
566 /// End:
567 ///
568 /// ***Epilog case***
569 ///        extraiters = tripcount % loopfactor
570 ///        if (tripcount < loopfactor) jump LoopExit:
571 ///        unroll_iters = tripcount - extraiters
572 /// Loop:  LoopBody; (executes unroll_iter times);
573 ///        unroll_iter -= 1
574 ///        if (unroll_iter != 0) jump Loop:
575 /// LoopExit:
576 ///        if (extraiters == 0) jump EpilExit:
577 /// Epil:  LoopBody; (executes extraiters times)
578 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
579 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
580 /// EpilExit:
581 
582 bool llvm::UnrollRuntimeLoopRemainder(
583     Loop *L, unsigned Count, bool AllowExpensiveTripCount,
584     bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
585     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
586     const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
587   LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
588   LLVM_DEBUG(L->dump());
589   LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
590                                 : dbgs() << "Using prolog remainder.\n");
591 
592   // Make sure the loop is in canonical form.
593   if (!L->isLoopSimplifyForm()) {
594     LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
595     return false;
596   }
597 
598   // Guaranteed by LoopSimplifyForm.
599   BasicBlock *Latch = L->getLoopLatch();
600   BasicBlock *Header = L->getHeader();
601 
602   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
603 
604   if (!LatchBR || LatchBR->isUnconditional()) {
605     // The loop-rotate pass can be helpful to avoid this in many cases.
606     LLVM_DEBUG(
607         dbgs()
608         << "Loop latch not terminated by a conditional branch.\n");
609     return false;
610   }
611 
612   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
613   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
614 
615   if (L->contains(LatchExit)) {
616     // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
617     // targets of the Latch be an exit block out of the loop.
618     LLVM_DEBUG(
619         dbgs()
620         << "One of the loop latch successors must be the exit block.\n");
621     return false;
622   }
623 
624   // These are exit blocks other than the target of the latch exiting block.
625   SmallVector<BasicBlock *, 4> OtherExits;
626   L->getUniqueNonLatchExitBlocks(OtherExits);
627   // Support only single exit and exiting block unless multi-exit loop
628   // unrolling is enabled.
629   if (!L->getExitingBlock() || OtherExits.size()) {
630     // We rely on LCSSA form being preserved when the exit blocks are transformed.
631     // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
632     if (!PreserveLCSSA)
633       return false;
634 
635     if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit,
636                                           UseEpilogRemainder)) {
637       LLVM_DEBUG(
638           dbgs()
639           << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
640              "enabled!\n");
641       return false;
642     }
643   }
644   // Use Scalar Evolution to compute the trip count. This allows more loops to
645   // be unrolled than relying on induction var simplification.
646   if (!SE)
647     return false;
648 
649   // Only unroll loops with a computable trip count.
650   // We calculate the backedge count by using getExitCount on the Latch block,
651   // which is proven to be the only exiting block in this loop. This is same as
652   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
653   // exiting blocks).
654   const SCEV *BECountSC = SE->getExitCount(L, Latch);
655   if (isa<SCEVCouldNotCompute>(BECountSC)) {
656     LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
657     return false;
658   }
659 
660   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
661 
662   // Add 1 since the backedge count doesn't include the first loop iteration.
663   // (Note that overflow can occur, this is handled explicitly below)
664   const SCEV *TripCountSC =
665       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
666   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
667     LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
668     return false;
669   }
670 
671   BasicBlock *PreHeader = L->getLoopPreheader();
672   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
673   const DataLayout &DL = Header->getModule()->getDataLayout();
674   SCEVExpander Expander(*SE, DL, "loop-unroll");
675   if (!AllowExpensiveTripCount &&
676       Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
677                                    TTI, PreHeaderBR)) {
678     LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
679     return false;
680   }
681 
682   // This constraint lets us deal with an overflowing trip count easily; see the
683   // comment on ModVal below.
684   if (Log2_32(Count) > BEWidth) {
685     LLVM_DEBUG(
686         dbgs()
687         << "Count failed constraint on overflow trip count calculation.\n");
688     return false;
689   }
690 
691   // Loop structure is the following:
692   //
693   // PreHeader
694   //   Header
695   //   ...
696   //   Latch
697   // LatchExit
698 
699   BasicBlock *NewPreHeader;
700   BasicBlock *NewExit = nullptr;
701   BasicBlock *PrologExit = nullptr;
702   BasicBlock *EpilogPreHeader = nullptr;
703   BasicBlock *PrologPreHeader = nullptr;
704 
705   if (UseEpilogRemainder) {
706     // If epilog remainder
707     // Split PreHeader to insert a branch around loop for unrolling.
708     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
709     NewPreHeader->setName(PreHeader->getName() + ".new");
710     // Split LatchExit to create phi nodes from branch above.
711     NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
712                                      nullptr, PreserveLCSSA);
713     // NewExit gets its DebugLoc from LatchExit, which is not part of the
714     // original Loop.
715     // Fix this by setting Loop's DebugLoc to NewExit.
716     auto *NewExitTerminator = NewExit->getTerminator();
717     NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
718     // Split NewExit to insert epilog remainder loop.
719     EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
720     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
721 
722     // If the latch exits from multiple level of nested loops, then
723     // by assumption there must be another loop exit which branches to the
724     // outer loop and we must adjust the loop for the newly inserted blocks
725     // to account for the fact that our epilogue is still in the same outer
726     // loop. Note that this leaves loopinfo temporarily out of sync with the
727     // CFG until the actual epilogue loop is inserted.
728     if (auto *ParentL = L->getParentLoop())
729       if (LI->getLoopFor(LatchExit) != ParentL) {
730         LI->removeBlock(NewExit);
731         ParentL->addBasicBlockToLoop(NewExit, *LI);
732         LI->removeBlock(EpilogPreHeader);
733         ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI);
734       }
735 
736   } else {
737     // If prolog remainder
738     // Split the original preheader twice to insert prolog remainder loop
739     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
740     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
741     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
742                             DT, LI);
743     PrologExit->setName(Header->getName() + ".prol.loopexit");
744     // Split PrologExit to get NewPreHeader.
745     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
746     NewPreHeader->setName(PreHeader->getName() + ".new");
747   }
748   // Loop structure should be the following:
749   //  Epilog             Prolog
750   //
751   // PreHeader         PreHeader
752   // *NewPreHeader     *PrologPreHeader
753   //   Header          *PrologExit
754   //   ...             *NewPreHeader
755   //   Latch             Header
756   // *NewExit            ...
757   // *EpilogPreHeader    Latch
758   // LatchExit              LatchExit
759 
760   // Calculate conditions for branch around loop for unrolling
761   // in epilog case and around prolog remainder loop in prolog case.
762   // Compute the number of extra iterations required, which is:
763   //  extra iterations = run-time trip count % loop unroll factor
764   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
765   IRBuilder<> B(PreHeaderBR);
766   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
767                                             PreHeaderBR);
768   Value *BECount;
769   // If there are other exits before the latch, that may cause the latch exit
770   // branch to never be executed, and the latch exit count may be poison.
771   // In this case, freeze the TripCount and base BECount on the frozen
772   // TripCount. We will introduce two branches using these values, and it's
773   // important that they see a consistent value (which would not be guaranteed
774   // if were frozen independently.)
775   if ((!OtherExits.empty() || !SE->loopHasNoAbnormalExits(L)) &&
776       !isGuaranteedNotToBeUndefOrPoison(TripCount, AC, PreHeaderBR, DT)) {
777     TripCount = B.CreateFreeze(TripCount);
778     BECount =
779         B.CreateAdd(TripCount, ConstantInt::get(TripCount->getType(), -1));
780   } else {
781     // If we don't need to freeze, use SCEVExpander for BECount as well, to
782     // allow slightly better value reuse.
783     BECount =
784         Expander.expandCodeFor(BECountSC, BECountSC->getType(), PreHeaderBR);
785   }
786 
787   Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
788 
789   Value *BranchVal =
790       UseEpilogRemainder ? B.CreateICmpULT(BECount,
791                                            ConstantInt::get(BECount->getType(),
792                                                             Count - 1)) :
793                            B.CreateIsNotNull(ModVal, "lcmp.mod");
794   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
795   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
796   // Branch to either remainder (extra iterations) loop or unrolling loop.
797   MDNode *BranchWeights = nullptr;
798   if (hasBranchWeightMD(*Latch->getTerminator())) {
799     // Assume loop is nearly always entered.
800     MDBuilder MDB(B.getContext());
801     BranchWeights = MDB.createBranchWeights(EpilogHeaderWeights);
802   }
803   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop, BranchWeights);
804   PreHeaderBR->eraseFromParent();
805   if (DT) {
806     if (UseEpilogRemainder)
807       DT->changeImmediateDominator(NewExit, PreHeader);
808     else
809       DT->changeImmediateDominator(PrologExit, PreHeader);
810   }
811   Function *F = Header->getParent();
812   // Get an ordered list of blocks in the loop to help with the ordering of the
813   // cloned blocks in the prolog/epilog code
814   LoopBlocksDFS LoopBlocks(L);
815   LoopBlocks.perform(LI);
816 
817   //
818   // For each extra loop iteration, create a copy of the loop's basic blocks
819   // and generate a condition that branches to the copy depending on the
820   // number of 'left over' iterations.
821   //
822   std::vector<BasicBlock *> NewBlocks;
823   ValueToValueMapTy VMap;
824 
825   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
826   // the loop, otherwise we create a cloned loop to execute the extra
827   // iterations. This function adds the appropriate CFG connections.
828   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
829   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
830   Loop *remainderLoop = CloneLoopBlocks(
831       L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot,
832       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI, Count);
833 
834   // Insert the cloned blocks into the function.
835   F->splice(InsertBot->getIterator(), F, NewBlocks[0]->getIterator(), F->end());
836 
837   // Now the loop blocks are cloned and the other exiting blocks from the
838   // remainder are connected to the original Loop's exit blocks. The remaining
839   // work is to update the phi nodes in the original loop, and take in the
840   // values from the cloned region.
841   for (auto *BB : OtherExits) {
842     // Given we preserve LCSSA form, we know that the values used outside the
843     // loop will be used through these phi nodes at the exit blocks that are
844     // transformed below.
845     for (PHINode &PN : BB->phis()) {
846      unsigned oldNumOperands = PN.getNumIncomingValues();
847      // Add the incoming values from the remainder code to the end of the phi
848      // node.
849      for (unsigned i = 0; i < oldNumOperands; i++){
850        auto *PredBB =PN.getIncomingBlock(i);
851        if (PredBB == Latch)
852          // The latch exit is handled seperately, see connectX
853          continue;
854        if (!L->contains(PredBB))
855          // Even if we had dedicated exits, the code above inserted an
856          // extra branch which can reach the latch exit.
857          continue;
858 
859        auto *V = PN.getIncomingValue(i);
860        if (Instruction *I = dyn_cast<Instruction>(V))
861          if (L->contains(I))
862            V = VMap.lookup(I);
863        PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
864      }
865    }
866 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
867     for (BasicBlock *SuccBB : successors(BB)) {
868       assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) &&
869              "Breaks the definition of dedicated exits!");
870     }
871 #endif
872   }
873 
874   // Update the immediate dominator of the exit blocks and blocks that are
875   // reachable from the exit blocks. This is needed because we now have paths
876   // from both the original loop and the remainder code reaching the exit
877   // blocks. While the IDom of these exit blocks were from the original loop,
878   // now the IDom is the preheader (which decides whether the original loop or
879   // remainder code should run).
880   if (DT && !L->getExitingBlock()) {
881     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
882     // NB! We have to examine the dom children of all loop blocks, not just
883     // those which are the IDom of the exit blocks. This is because blocks
884     // reachable from the exit blocks can have their IDom as the nearest common
885     // dominator of the exit blocks.
886     for (auto *BB : L->blocks()) {
887       auto *DomNodeBB = DT->getNode(BB);
888       for (auto *DomChild : DomNodeBB->children()) {
889         auto *DomChildBB = DomChild->getBlock();
890         if (!L->contains(LI->getLoopFor(DomChildBB)))
891           ChildrenToUpdate.push_back(DomChildBB);
892       }
893     }
894     for (auto *BB : ChildrenToUpdate)
895       DT->changeImmediateDominator(BB, PreHeader);
896   }
897 
898   // Loop structure should be the following:
899   //  Epilog             Prolog
900   //
901   // PreHeader         PreHeader
902   // NewPreHeader      PrologPreHeader
903   //   Header            PrologHeader
904   //   ...               ...
905   //   Latch             PrologLatch
906   // NewExit           PrologExit
907   // EpilogPreHeader   NewPreHeader
908   //   EpilogHeader      Header
909   //   ...               ...
910   //   EpilogLatch       Latch
911   // LatchExit              LatchExit
912 
913   // Rewrite the cloned instruction operands to use the values created when the
914   // clone is created.
915   for (BasicBlock *BB : NewBlocks) {
916     Module *M = BB->getModule();
917     for (Instruction &I : *BB) {
918       RemapInstruction(&I, VMap,
919                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
920       RemapDPValueRange(M, I.getDbgValueRange(), VMap,
921                         RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
922     }
923   }
924 
925   if (UseEpilogRemainder) {
926     // Connect the epilog code to the original loop and update the
927     // PHI functions.
928     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, EpilogPreHeader,
929                   NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE, Count);
930 
931     // Update counter in loop for unrolling.
932     // Use an incrementing IV.  Pre-incr/post-incr is backedge/trip count.
933     // Subtle: TestVal can be 0 if we wrapped when computing the trip count,
934     // thus we must compare the post-increment (wrapping) value.
935     IRBuilder<> B2(NewPreHeader->getTerminator());
936     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
937     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
938     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter");
939     NewIdx->insertBefore(Header->getFirstNonPHIIt());
940     B2.SetInsertPoint(LatchBR);
941     auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
942     auto *One = ConstantInt::get(NewIdx->getType(), 1);
943     Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
944     auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
945     Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp");
946     NewIdx->addIncoming(Zero, NewPreHeader);
947     NewIdx->addIncoming(IdxNext, Latch);
948     LatchBR->setCondition(IdxCmp);
949   } else {
950     // Connect the prolog code to the original loop and update the
951     // PHI functions.
952     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
953                   NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE);
954   }
955 
956   // If this loop is nested, then the loop unroller changes the code in the any
957   // of its parent loops, so the Scalar Evolution pass needs to be run again.
958   SE->forgetTopmostLoop(L);
959 
960   // Verify that the Dom Tree and Loop Info are correct.
961 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
962   if (DT) {
963     assert(DT->verify(DominatorTree::VerificationLevel::Full));
964     LI->verify(*DT);
965   }
966 #endif
967 
968   // For unroll factor 2 remainder loop will have 1 iteration.
969   if (Count == 2 && DT && LI && SE) {
970     // TODO: This code could probably be pulled out into a helper function
971     // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion.
972     BasicBlock *RemainderLatch = remainderLoop->getLoopLatch();
973     assert(RemainderLatch);
974     SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(),
975                                              remainderLoop->getBlocks().end());
976     breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr);
977     remainderLoop = nullptr;
978 
979     // Simplify loop values after breaking the backedge
980     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
981     SmallVector<WeakTrackingVH, 16> DeadInsts;
982     for (BasicBlock *BB : RemainderBlocks) {
983       for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
984         if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
985           if (LI->replacementPreservesLCSSAForm(&Inst, V))
986             Inst.replaceAllUsesWith(V);
987         if (isInstructionTriviallyDead(&Inst))
988           DeadInsts.emplace_back(&Inst);
989       }
990       // We can't do recursive deletion until we're done iterating, as we might
991       // have a phi which (potentially indirectly) uses instructions later in
992       // the block we're iterating through.
993       RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
994     }
995 
996     // Merge latch into exit block.
997     auto *ExitBB = RemainderLatch->getSingleSuccessor();
998     assert(ExitBB && "required after breaking cond br backedge");
999     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1000     MergeBlockIntoPredecessor(ExitBB, &DTU, LI);
1001   }
1002 
1003   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
1004   // cannot rely on the LoopUnrollPass to do this because it only does
1005   // canonicalization for parent/subloops and not the sibling loops.
1006   if (OtherExits.size() > 0) {
1007     // Generate dedicated exit blocks for the original loop, to preserve
1008     // LoopSimplifyForm.
1009     formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
1010     // Generate dedicated exit blocks for the remainder loop if one exists, to
1011     // preserve LoopSimplifyForm.
1012     if (remainderLoop)
1013       formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
1014   }
1015 
1016   auto UnrollResult = LoopUnrollResult::Unmodified;
1017   if (remainderLoop && UnrollRemainder) {
1018     LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
1019     UnrollResult =
1020         UnrollLoop(remainderLoop,
1021                    {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false,
1022                     /*AllowExpensiveTripCount*/ false,
1023                     /*UnrollRemainder*/ false, ForgetAllSCEV},
1024                    LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
1025   }
1026 
1027   if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1028     *ResultLoop = remainderLoop;
1029   NumRuntimeUnrolled++;
1030   return true;
1031 }
1032