1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities for loops with run-time 10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 11 // trip counts. 12 // 13 // The functions in this file are used to generate extra code when the 14 // run-time trip count modulo the unroll factor is not 0. When this is the 15 // case, we need to generate code to execute these 'left over' iterations. 16 // 17 // The current strategy generates an if-then-else sequence prior to the 18 // unrolled loop to execute the 'left over' iterations before or after the 19 // unrolled loop. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/LoopUtils.h" 39 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include <algorithm> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-unroll" 46 47 STATISTIC(NumRuntimeUnrolled, 48 "Number of loops unrolled with run-time trip counts"); 49 static cl::opt<bool> UnrollRuntimeMultiExit( 50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 52 "epilog is generated")); 53 54 /// Connect the unrolling prolog code to the original loop. 55 /// The unrolling prolog code contains code to execute the 56 /// 'extra' iterations if the run-time trip count modulo the 57 /// unroll count is non-zero. 58 /// 59 /// This function performs the following: 60 /// - Create PHI nodes at prolog end block to combine values 61 /// that exit the prolog code and jump around the prolog. 62 /// - Add a PHI operand to a PHI node at the loop exit block 63 /// for values that exit the prolog and go around the loop. 64 /// - Branch around the original loop if the trip count is less 65 /// than the unroll factor. 66 /// 67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 68 BasicBlock *PrologExit, 69 BasicBlock *OriginalLoopLatchExit, 70 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 71 ValueToValueMapTy &VMap, DominatorTree *DT, 72 LoopInfo *LI, bool PreserveLCSSA) { 73 // Loop structure should be the following: 74 // Preheader 75 // PrologHeader 76 // ... 77 // PrologLatch 78 // PrologExit 79 // NewPreheader 80 // Header 81 // ... 82 // Latch 83 // LatchExit 84 BasicBlock *Latch = L->getLoopLatch(); 85 assert(Latch && "Loop must have a latch"); 86 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 87 88 // Create a PHI node for each outgoing value from the original loop 89 // (which means it is an outgoing value from the prolog code too). 90 // The new PHI node is inserted in the prolog end basic block. 91 // The new PHI node value is added as an operand of a PHI node in either 92 // the loop header or the loop exit block. 93 for (BasicBlock *Succ : successors(Latch)) { 94 for (PHINode &PN : Succ->phis()) { 95 // Add a new PHI node to the prolog end block and add the 96 // appropriate incoming values. 97 // TODO: This code assumes that the PrologExit (or the LatchExit block for 98 // prolog loop) contains only one predecessor from the loop, i.e. the 99 // PrologLatch. When supporting multiple-exiting block loops, we can have 100 // two or more blocks that have the LatchExit as the target in the 101 // original loop. 102 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 103 PrologExit->getFirstNonPHI()); 104 // Adding a value to the new PHI node from the original loop preheader. 105 // This is the value that skips all the prolog code. 106 if (L->contains(&PN)) { 107 // Succ is loop header. 108 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), 109 PreHeader); 110 } else { 111 // Succ is LatchExit. 112 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); 113 } 114 115 Value *V = PN.getIncomingValueForBlock(Latch); 116 if (Instruction *I = dyn_cast<Instruction>(V)) { 117 if (L->contains(I)) { 118 V = VMap.lookup(I); 119 } 120 } 121 // Adding a value to the new PHI node from the last prolog block 122 // that was created. 123 NewPN->addIncoming(V, PrologLatch); 124 125 // Update the existing PHI node operand with the value from the 126 // new PHI node. How this is done depends on if the existing 127 // PHI node is in the original loop block, or the exit block. 128 if (L->contains(&PN)) 129 PN.setIncomingValueForBlock(NewPreHeader, NewPN); 130 else 131 PN.addIncoming(NewPN, PrologExit); 132 } 133 } 134 135 // Make sure that created prolog loop is in simplified form 136 SmallVector<BasicBlock *, 4> PrologExitPreds; 137 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 138 if (PrologLoop) { 139 for (BasicBlock *PredBB : predecessors(PrologExit)) 140 if (PrologLoop->contains(PredBB)) 141 PrologExitPreds.push_back(PredBB); 142 143 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 144 nullptr, PreserveLCSSA); 145 } 146 147 // Create a branch around the original loop, which is taken if there are no 148 // iterations remaining to be executed after running the prologue. 149 Instruction *InsertPt = PrologExit->getTerminator(); 150 IRBuilder<> B(InsertPt); 151 152 assert(Count != 0 && "nonsensical Count!"); 153 154 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 155 // This means %xtraiter is (BECount + 1) and all of the iterations of this 156 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 157 // then (BECount + 1) cannot unsigned-overflow. 158 Value *BrLoopExit = 159 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 160 // Split the exit to maintain loop canonicalization guarantees 161 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 162 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 163 nullptr, PreserveLCSSA); 164 // Add the branch to the exit block (around the unrolled loop) 165 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 166 InsertPt->eraseFromParent(); 167 if (DT) 168 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); 169 } 170 171 /// Connect the unrolling epilog code to the original loop. 172 /// The unrolling epilog code contains code to execute the 173 /// 'extra' iterations if the run-time trip count modulo the 174 /// unroll count is non-zero. 175 /// 176 /// This function performs the following: 177 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 178 /// - Create PHI nodes at the unrolling loop exit to combine 179 /// values that exit the unrolling loop code and jump around it. 180 /// - Update PHI operands in the epilog loop by the new PHI nodes 181 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 182 /// 183 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 184 BasicBlock *Exit, BasicBlock *PreHeader, 185 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 186 ValueToValueMapTy &VMap, DominatorTree *DT, 187 LoopInfo *LI, bool PreserveLCSSA) { 188 BasicBlock *Latch = L->getLoopLatch(); 189 assert(Latch && "Loop must have a latch"); 190 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 191 192 // Loop structure should be the following: 193 // 194 // PreHeader 195 // NewPreHeader 196 // Header 197 // ... 198 // Latch 199 // NewExit (PN) 200 // EpilogPreHeader 201 // EpilogHeader 202 // ... 203 // EpilogLatch 204 // Exit (EpilogPN) 205 206 // Update PHI nodes at NewExit and Exit. 207 for (PHINode &PN : NewExit->phis()) { 208 // PN should be used in another PHI located in Exit block as 209 // Exit was split by SplitBlockPredecessors into Exit and NewExit 210 // Basicaly it should look like: 211 // NewExit: 212 // PN = PHI [I, Latch] 213 // ... 214 // Exit: 215 // EpilogPN = PHI [PN, EpilogPreHeader] 216 // 217 // There is EpilogPreHeader incoming block instead of NewExit as 218 // NewExit was spilt 1 more time to get EpilogPreHeader. 219 assert(PN.hasOneUse() && "The phi should have 1 use"); 220 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); 221 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 222 223 // Add incoming PreHeader from branch around the Loop 224 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); 225 226 Value *V = PN.getIncomingValueForBlock(Latch); 227 Instruction *I = dyn_cast<Instruction>(V); 228 if (I && L->contains(I)) 229 // If value comes from an instruction in the loop add VMap value. 230 V = VMap.lookup(I); 231 // For the instruction out of the loop, constant or undefined value 232 // insert value itself. 233 EpilogPN->addIncoming(V, EpilogLatch); 234 235 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 236 "EpilogPN should have EpilogPreHeader incoming block"); 237 // Change EpilogPreHeader incoming block to NewExit. 238 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 239 NewExit); 240 // Now PHIs should look like: 241 // NewExit: 242 // PN = PHI [I, Latch], [undef, PreHeader] 243 // ... 244 // Exit: 245 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 246 } 247 248 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 249 // Update corresponding PHI nodes in epilog loop. 250 for (BasicBlock *Succ : successors(Latch)) { 251 // Skip this as we already updated phis in exit blocks. 252 if (!L->contains(Succ)) 253 continue; 254 for (PHINode &PN : Succ->phis()) { 255 // Add new PHI nodes to the loop exit block and update epilog 256 // PHIs with the new PHI values. 257 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 258 NewExit->getFirstNonPHI()); 259 // Adding a value to the new PHI node from the unrolling loop preheader. 260 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); 261 // Adding a value to the new PHI node from the unrolling loop latch. 262 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); 263 264 // Update the existing PHI node operand with the value from the new PHI 265 // node. Corresponding instruction in epilog loop should be PHI. 266 PHINode *VPN = cast<PHINode>(VMap[&PN]); 267 VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); 268 } 269 } 270 271 Instruction *InsertPt = NewExit->getTerminator(); 272 IRBuilder<> B(InsertPt); 273 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 274 assert(Exit && "Loop must have a single exit block only"); 275 // Split the epilogue exit to maintain loop canonicalization guarantees 276 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 277 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, 278 PreserveLCSSA); 279 // Add the branch to the exit block (around the unrolling loop) 280 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 281 InsertPt->eraseFromParent(); 282 if (DT) 283 DT->changeImmediateDominator(Exit, NewExit); 284 285 // Split the main loop exit to maintain canonicalization guarantees. 286 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 287 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, 288 PreserveLCSSA); 289 } 290 291 /// Create a clone of the blocks in a loop and connect them together. 292 /// If CreateRemainderLoop is false, loop structure will not be cloned, 293 /// otherwise a new loop will be created including all cloned blocks, and the 294 /// iterator of it switches to count NewIter down to 0. 295 /// The cloned blocks should be inserted between InsertTop and InsertBot. 296 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 297 /// new loop exit. 298 /// Return the new cloned loop that is created when CreateRemainderLoop is true. 299 static Loop * 300 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, 301 const bool UseEpilogRemainder, const bool UnrollRemainder, 302 BasicBlock *InsertTop, 303 BasicBlock *InsertBot, BasicBlock *Preheader, 304 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 305 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 306 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 307 BasicBlock *Header = L->getHeader(); 308 BasicBlock *Latch = L->getLoopLatch(); 309 Function *F = Header->getParent(); 310 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 311 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 312 Loop *ParentLoop = L->getParentLoop(); 313 NewLoopsMap NewLoops; 314 NewLoops[ParentLoop] = ParentLoop; 315 if (!CreateRemainderLoop) 316 NewLoops[L] = ParentLoop; 317 318 // For each block in the original loop, create a new copy, 319 // and update the value map with the newly created values. 320 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 321 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 322 NewBlocks.push_back(NewBB); 323 324 // If we're unrolling the outermost loop, there's no remainder loop, 325 // and this block isn't in a nested loop, then the new block is not 326 // in any loop. Otherwise, add it to loopinfo. 327 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) 328 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 329 330 VMap[*BB] = NewBB; 331 if (Header == *BB) { 332 // For the first block, add a CFG connection to this newly 333 // created block. 334 InsertTop->getTerminator()->setSuccessor(0, NewBB); 335 } 336 337 if (DT) { 338 if (Header == *BB) { 339 // The header is dominated by the preheader. 340 DT->addNewBlock(NewBB, InsertTop); 341 } else { 342 // Copy information from original loop to unrolled loop. 343 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 344 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 345 } 346 } 347 348 if (Latch == *BB) { 349 // For the last block, if CreateRemainderLoop is false, create a direct 350 // jump to InsertBot. If not, create a loop back to cloned head. 351 VMap.erase((*BB)->getTerminator()); 352 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 353 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 354 IRBuilder<> Builder(LatchBR); 355 if (!CreateRemainderLoop) { 356 Builder.CreateBr(InsertBot); 357 } else { 358 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 359 suffix + ".iter", 360 FirstLoopBB->getFirstNonPHI()); 361 Value *IdxSub = 362 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 363 NewIdx->getName() + ".sub"); 364 Value *IdxCmp = 365 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 366 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 367 NewIdx->addIncoming(NewIter, InsertTop); 368 NewIdx->addIncoming(IdxSub, NewBB); 369 } 370 LatchBR->eraseFromParent(); 371 } 372 } 373 374 // Change the incoming values to the ones defined in the preheader or 375 // cloned loop. 376 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 377 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 378 if (!CreateRemainderLoop) { 379 if (UseEpilogRemainder) { 380 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 381 NewPHI->setIncomingBlock(idx, InsertTop); 382 NewPHI->removeIncomingValue(Latch, false); 383 } else { 384 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 385 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 386 } 387 } else { 388 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 389 NewPHI->setIncomingBlock(idx, InsertTop); 390 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 391 idx = NewPHI->getBasicBlockIndex(Latch); 392 Value *InVal = NewPHI->getIncomingValue(idx); 393 NewPHI->setIncomingBlock(idx, NewLatch); 394 if (Value *V = VMap.lookup(InVal)) 395 NewPHI->setIncomingValue(idx, V); 396 } 397 } 398 if (CreateRemainderLoop) { 399 Loop *NewLoop = NewLoops[L]; 400 assert(NewLoop && "L should have been cloned"); 401 MDNode *LoopID = NewLoop->getLoopID(); 402 403 // Only add loop metadata if the loop is not going to be completely 404 // unrolled. 405 if (UnrollRemainder) 406 return NewLoop; 407 408 Optional<MDNode *> NewLoopID = makeFollowupLoopID( 409 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); 410 if (NewLoopID.hasValue()) { 411 NewLoop->setLoopID(NewLoopID.getValue()); 412 413 // Do not setLoopAlreadyUnrolled if loop attributes have been defined 414 // explicitly. 415 return NewLoop; 416 } 417 418 // Add unroll disable metadata to disable future unrolling for this loop. 419 NewLoop->setLoopAlreadyUnrolled(); 420 return NewLoop; 421 } 422 else 423 return nullptr; 424 } 425 426 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits 427 /// is populated with all the loop exit blocks other than the LatchExit block. 428 static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit, 429 bool PreserveLCSSA, 430 bool UseEpilogRemainder) { 431 432 // We currently have some correctness constrains in unrolling a multi-exit 433 // loop. Check for these below. 434 435 // We rely on LCSSA form being preserved when the exit blocks are transformed. 436 if (!PreserveLCSSA) 437 return false; 438 439 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when 440 // UnrollRuntimeMultiExit is true. This will need updating the logic in 441 // connectEpilog/connectProlog. 442 if (!LatchExit->getSinglePredecessor()) { 443 LLVM_DEBUG( 444 dbgs() << "Bailout for multi-exit handling when latch exit has >1 " 445 "predecessor.\n"); 446 return false; 447 } 448 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated 449 // and L is an inner loop. This is because in presence of multiple exits, the 450 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the 451 // outer loop. This is automatically handled in the prolog case, so we do not 452 // have that bug in prolog generation. 453 if (UseEpilogRemainder && L->getParentLoop()) 454 return false; 455 456 // All constraints have been satisfied. 457 return true; 458 } 459 460 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 461 /// we return true only if UnrollRuntimeMultiExit is set to true. 462 static bool canProfitablyUnrollMultiExitLoop( 463 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 464 bool PreserveLCSSA, bool UseEpilogRemainder) { 465 466 #if !defined(NDEBUG) 467 assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA, 468 UseEpilogRemainder) && 469 "Should be safe to unroll before checking profitability!"); 470 #endif 471 472 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 473 if (UnrollRuntimeMultiExit.getNumOccurrences()) 474 return UnrollRuntimeMultiExit; 475 476 // The main pain point with multi-exit loop unrolling is that once unrolled, 477 // we will not be able to merge all blocks into a straight line code. 478 // There are branches within the unrolled loop that go to the OtherExits. 479 // The second point is the increase in code size, but this is true 480 // irrespective of multiple exits. 481 482 // Note: Both the heuristics below are coarse grained. We are essentially 483 // enabling unrolling of loops that have a single side exit other than the 484 // normal LatchExit (i.e. exiting into a deoptimize block). 485 // The heuristics considered are: 486 // 1. low number of branches in the unrolled version. 487 // 2. high predictability of these extra branches. 488 // We avoid unrolling loops that have more than two exiting blocks. This 489 // limits the total number of branches in the unrolled loop to be atmost 490 // the unroll factor (since one of the exiting blocks is the latch block). 491 SmallVector<BasicBlock*, 4> ExitingBlocks; 492 L->getExitingBlocks(ExitingBlocks); 493 if (ExitingBlocks.size() > 2) 494 return false; 495 496 // The second heuristic is that L has one exit other than the latchexit and 497 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 498 // taken, which also implies the branch leading to the deoptimize block is 499 // highly predictable. 500 return (OtherExits.size() == 1 && 501 OtherExits[0]->getTerminatingDeoptimizeCall()); 502 // TODO: These can be fine-tuned further to consider code size or deopt states 503 // that are captured by the deoptimize exit block. 504 // Also, we can extend this to support more cases, if we actually 505 // know of kinds of multiexit loops that would benefit from unrolling. 506 } 507 508 /// Insert code in the prolog/epilog code when unrolling a loop with a 509 /// run-time trip-count. 510 /// 511 /// This method assumes that the loop unroll factor is total number 512 /// of loop bodies in the loop after unrolling. (Some folks refer 513 /// to the unroll factor as the number of *extra* copies added). 514 /// We assume also that the loop unroll factor is a power-of-two. So, after 515 /// unrolling the loop, the number of loop bodies executed is 2, 516 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 517 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 518 /// the switch instruction is generated. 519 /// 520 /// ***Prolog case*** 521 /// extraiters = tripcount % loopfactor 522 /// if (extraiters == 0) jump Loop: 523 /// else jump Prol: 524 /// Prol: LoopBody; 525 /// extraiters -= 1 // Omitted if unroll factor is 2. 526 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 527 /// if (tripcount < loopfactor) jump End: 528 /// Loop: 529 /// ... 530 /// End: 531 /// 532 /// ***Epilog case*** 533 /// extraiters = tripcount % loopfactor 534 /// if (tripcount < loopfactor) jump LoopExit: 535 /// unroll_iters = tripcount - extraiters 536 /// Loop: LoopBody; (executes unroll_iter times); 537 /// unroll_iter -= 1 538 /// if (unroll_iter != 0) jump Loop: 539 /// LoopExit: 540 /// if (extraiters == 0) jump EpilExit: 541 /// Epil: LoopBody; (executes extraiters times) 542 /// extraiters -= 1 // Omitted if unroll factor is 2. 543 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 544 /// EpilExit: 545 546 bool llvm::UnrollRuntimeLoopRemainder( 547 Loop *L, unsigned Count, bool AllowExpensiveTripCount, 548 bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, 549 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 550 const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { 551 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 552 LLVM_DEBUG(L->dump()); 553 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" 554 : dbgs() << "Using prolog remainder.\n"); 555 556 // Make sure the loop is in canonical form. 557 if (!L->isLoopSimplifyForm()) { 558 LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); 559 return false; 560 } 561 562 // Guaranteed by LoopSimplifyForm. 563 BasicBlock *Latch = L->getLoopLatch(); 564 BasicBlock *Header = L->getHeader(); 565 566 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 567 568 if (!LatchBR || LatchBR->isUnconditional()) { 569 // The loop-rotate pass can be helpful to avoid this in many cases. 570 LLVM_DEBUG( 571 dbgs() 572 << "Loop latch not terminated by a conditional branch.\n"); 573 return false; 574 } 575 576 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 577 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 578 579 if (L->contains(LatchExit)) { 580 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 581 // targets of the Latch be an exit block out of the loop. 582 LLVM_DEBUG( 583 dbgs() 584 << "One of the loop latch successors must be the exit block.\n"); 585 return false; 586 } 587 588 // These are exit blocks other than the target of the latch exiting block. 589 SmallVector<BasicBlock *, 4> OtherExits; 590 L->getUniqueNonLatchExitBlocks(OtherExits); 591 bool isMultiExitUnrollingEnabled = 592 canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA, 593 UseEpilogRemainder) && 594 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, 595 UseEpilogRemainder); 596 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. 597 if (!isMultiExitUnrollingEnabled && 598 (!L->getExitingBlock() || OtherExits.size())) { 599 LLVM_DEBUG( 600 dbgs() 601 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 602 "enabled!\n"); 603 return false; 604 } 605 // Use Scalar Evolution to compute the trip count. This allows more loops to 606 // be unrolled than relying on induction var simplification. 607 if (!SE) 608 return false; 609 610 // Only unroll loops with a computable trip count, and the trip count needs 611 // to be an int value (allowing a pointer type is a TODO item). 612 // We calculate the backedge count by using getExitCount on the Latch block, 613 // which is proven to be the only exiting block in this loop. This is same as 614 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 615 // exiting blocks). 616 const SCEV *BECountSC = SE->getExitCount(L, Latch); 617 if (isa<SCEVCouldNotCompute>(BECountSC) || 618 !BECountSC->getType()->isIntegerTy()) { 619 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 620 return false; 621 } 622 623 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 624 625 // Add 1 since the backedge count doesn't include the first loop iteration. 626 const SCEV *TripCountSC = 627 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 628 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 629 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 630 return false; 631 } 632 633 BasicBlock *PreHeader = L->getLoopPreheader(); 634 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 635 const DataLayout &DL = Header->getModule()->getDataLayout(); 636 SCEVExpander Expander(*SE, DL, "loop-unroll"); 637 if (!AllowExpensiveTripCount && 638 Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, 639 TTI, PreHeaderBR)) { 640 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 641 return false; 642 } 643 644 // This constraint lets us deal with an overflowing trip count easily; see the 645 // comment on ModVal below. 646 if (Log2_32(Count) > BEWidth) { 647 LLVM_DEBUG( 648 dbgs() 649 << "Count failed constraint on overflow trip count calculation.\n"); 650 return false; 651 } 652 653 // Loop structure is the following: 654 // 655 // PreHeader 656 // Header 657 // ... 658 // Latch 659 // LatchExit 660 661 BasicBlock *NewPreHeader; 662 BasicBlock *NewExit = nullptr; 663 BasicBlock *PrologExit = nullptr; 664 BasicBlock *EpilogPreHeader = nullptr; 665 BasicBlock *PrologPreHeader = nullptr; 666 667 if (UseEpilogRemainder) { 668 // If epilog remainder 669 // Split PreHeader to insert a branch around loop for unrolling. 670 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 671 NewPreHeader->setName(PreHeader->getName() + ".new"); 672 // Split LatchExit to create phi nodes from branch above. 673 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); 674 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI, 675 nullptr, PreserveLCSSA); 676 // NewExit gets its DebugLoc from LatchExit, which is not part of the 677 // original Loop. 678 // Fix this by setting Loop's DebugLoc to NewExit. 679 auto *NewExitTerminator = NewExit->getTerminator(); 680 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); 681 // Split NewExit to insert epilog remainder loop. 682 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); 683 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 684 } else { 685 // If prolog remainder 686 // Split the original preheader twice to insert prolog remainder loop 687 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 688 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 689 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 690 DT, LI); 691 PrologExit->setName(Header->getName() + ".prol.loopexit"); 692 // Split PrologExit to get NewPreHeader. 693 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 694 NewPreHeader->setName(PreHeader->getName() + ".new"); 695 } 696 // Loop structure should be the following: 697 // Epilog Prolog 698 // 699 // PreHeader PreHeader 700 // *NewPreHeader *PrologPreHeader 701 // Header *PrologExit 702 // ... *NewPreHeader 703 // Latch Header 704 // *NewExit ... 705 // *EpilogPreHeader Latch 706 // LatchExit LatchExit 707 708 // Calculate conditions for branch around loop for unrolling 709 // in epilog case and around prolog remainder loop in prolog case. 710 // Compute the number of extra iterations required, which is: 711 // extra iterations = run-time trip count % loop unroll factor 712 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 713 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 714 PreHeaderBR); 715 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 716 PreHeaderBR); 717 IRBuilder<> B(PreHeaderBR); 718 Value *ModVal; 719 // Calculate ModVal = (BECount + 1) % Count. 720 // Note that TripCount is BECount + 1. 721 if (isPowerOf2_32(Count)) { 722 // When Count is power of 2 we don't BECount for epilog case, however we'll 723 // need it for a branch around unrolling loop for prolog case. 724 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 725 // 1. There are no iterations to be run in the prolog/epilog loop. 726 // OR 727 // 2. The addition computing TripCount overflowed. 728 // 729 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 730 // the number of iterations that remain to be run in the original loop is a 731 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 732 // explicitly check this above). 733 } else { 734 // As (BECount + 1) can potentially unsigned overflow we count 735 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 736 Value *ModValTmp = B.CreateURem(BECount, 737 ConstantInt::get(BECount->getType(), 738 Count)); 739 Value *ModValAdd = B.CreateAdd(ModValTmp, 740 ConstantInt::get(ModValTmp->getType(), 1)); 741 // At that point (BECount % Count) + 1 could be equal to Count. 742 // To handle this case we need to take mod by Count one more time. 743 ModVal = B.CreateURem(ModValAdd, 744 ConstantInt::get(BECount->getType(), Count), 745 "xtraiter"); 746 } 747 Value *BranchVal = 748 UseEpilogRemainder ? B.CreateICmpULT(BECount, 749 ConstantInt::get(BECount->getType(), 750 Count - 1)) : 751 B.CreateIsNotNull(ModVal, "lcmp.mod"); 752 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 753 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 754 // Branch to either remainder (extra iterations) loop or unrolling loop. 755 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 756 PreHeaderBR->eraseFromParent(); 757 if (DT) { 758 if (UseEpilogRemainder) 759 DT->changeImmediateDominator(NewExit, PreHeader); 760 else 761 DT->changeImmediateDominator(PrologExit, PreHeader); 762 } 763 Function *F = Header->getParent(); 764 // Get an ordered list of blocks in the loop to help with the ordering of the 765 // cloned blocks in the prolog/epilog code 766 LoopBlocksDFS LoopBlocks(L); 767 LoopBlocks.perform(LI); 768 769 // 770 // For each extra loop iteration, create a copy of the loop's basic blocks 771 // and generate a condition that branches to the copy depending on the 772 // number of 'left over' iterations. 773 // 774 std::vector<BasicBlock *> NewBlocks; 775 ValueToValueMapTy VMap; 776 777 // For unroll factor 2 remainder loop will have 1 iterations. 778 // Do not create 1 iteration loop. 779 bool CreateRemainderLoop = (Count != 2); 780 781 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 782 // the loop, otherwise we create a cloned loop to execute the extra 783 // iterations. This function adds the appropriate CFG connections. 784 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 785 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 786 Loop *remainderLoop = CloneLoopBlocks( 787 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder, 788 InsertTop, InsertBot, 789 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 790 791 // Insert the cloned blocks into the function. 792 F->getBasicBlockList().splice(InsertBot->getIterator(), 793 F->getBasicBlockList(), 794 NewBlocks[0]->getIterator(), 795 F->end()); 796 797 // Now the loop blocks are cloned and the other exiting blocks from the 798 // remainder are connected to the original Loop's exit blocks. The remaining 799 // work is to update the phi nodes in the original loop, and take in the 800 // values from the cloned region. 801 for (auto *BB : OtherExits) { 802 for (auto &II : *BB) { 803 804 // Given we preserve LCSSA form, we know that the values used outside the 805 // loop will be used through these phi nodes at the exit blocks that are 806 // transformed below. 807 if (!isa<PHINode>(II)) 808 break; 809 PHINode *Phi = cast<PHINode>(&II); 810 unsigned oldNumOperands = Phi->getNumIncomingValues(); 811 // Add the incoming values from the remainder code to the end of the phi 812 // node. 813 for (unsigned i =0; i < oldNumOperands; i++){ 814 Value *newVal = VMap.lookup(Phi->getIncomingValue(i)); 815 // newVal can be a constant or derived from values outside the loop, and 816 // hence need not have a VMap value. Also, since lookup already generated 817 // a default "null" VMap entry for this value, we need to populate that 818 // VMap entry correctly, with the mapped entry being itself. 819 if (!newVal) { 820 newVal = Phi->getIncomingValue(i); 821 VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i); 822 } 823 Phi->addIncoming(newVal, 824 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); 825 } 826 } 827 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 828 for (BasicBlock *SuccBB : successors(BB)) { 829 assert(!(any_of(OtherExits, 830 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) || 831 SuccBB == LatchExit) && 832 "Breaks the definition of dedicated exits!"); 833 } 834 #endif 835 } 836 837 // Update the immediate dominator of the exit blocks and blocks that are 838 // reachable from the exit blocks. This is needed because we now have paths 839 // from both the original loop and the remainder code reaching the exit 840 // blocks. While the IDom of these exit blocks were from the original loop, 841 // now the IDom is the preheader (which decides whether the original loop or 842 // remainder code should run). 843 if (DT && !L->getExitingBlock()) { 844 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 845 // NB! We have to examine the dom children of all loop blocks, not just 846 // those which are the IDom of the exit blocks. This is because blocks 847 // reachable from the exit blocks can have their IDom as the nearest common 848 // dominator of the exit blocks. 849 for (auto *BB : L->blocks()) { 850 auto *DomNodeBB = DT->getNode(BB); 851 for (auto *DomChild : DomNodeBB->children()) { 852 auto *DomChildBB = DomChild->getBlock(); 853 if (!L->contains(LI->getLoopFor(DomChildBB))) 854 ChildrenToUpdate.push_back(DomChildBB); 855 } 856 } 857 for (auto *BB : ChildrenToUpdate) 858 DT->changeImmediateDominator(BB, PreHeader); 859 } 860 861 // Loop structure should be the following: 862 // Epilog Prolog 863 // 864 // PreHeader PreHeader 865 // NewPreHeader PrologPreHeader 866 // Header PrologHeader 867 // ... ... 868 // Latch PrologLatch 869 // NewExit PrologExit 870 // EpilogPreHeader NewPreHeader 871 // EpilogHeader Header 872 // ... ... 873 // EpilogLatch Latch 874 // LatchExit LatchExit 875 876 // Rewrite the cloned instruction operands to use the values created when the 877 // clone is created. 878 for (BasicBlock *BB : NewBlocks) { 879 for (Instruction &I : *BB) { 880 RemapInstruction(&I, VMap, 881 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 882 } 883 } 884 885 if (UseEpilogRemainder) { 886 // Connect the epilog code to the original loop and update the 887 // PHI functions. 888 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 889 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 890 PreserveLCSSA); 891 892 // Update counter in loop for unrolling. 893 // I should be multiply of Count. 894 IRBuilder<> B2(NewPreHeader->getTerminator()); 895 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 896 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 897 B2.SetInsertPoint(LatchBR); 898 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 899 Header->getFirstNonPHI()); 900 Value *IdxSub = 901 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 902 NewIdx->getName() + ".nsub"); 903 Value *IdxCmp; 904 if (LatchBR->getSuccessor(0) == Header) 905 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 906 else 907 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 908 NewIdx->addIncoming(TestVal, NewPreHeader); 909 NewIdx->addIncoming(IdxSub, Latch); 910 LatchBR->setCondition(IdxCmp); 911 } else { 912 // Connect the prolog code to the original loop and update the 913 // PHI functions. 914 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 915 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 916 } 917 918 // If this loop is nested, then the loop unroller changes the code in the any 919 // of its parent loops, so the Scalar Evolution pass needs to be run again. 920 SE->forgetTopmostLoop(L); 921 922 // Verify that the Dom Tree is correct. 923 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 924 if (DT) 925 assert(DT->verify(DominatorTree::VerificationLevel::Full)); 926 #endif 927 928 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 929 // cannot rely on the LoopUnrollPass to do this because it only does 930 // canonicalization for parent/subloops and not the sibling loops. 931 if (OtherExits.size() > 0) { 932 // Generate dedicated exit blocks for the original loop, to preserve 933 // LoopSimplifyForm. 934 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); 935 // Generate dedicated exit blocks for the remainder loop if one exists, to 936 // preserve LoopSimplifyForm. 937 if (remainderLoop) 938 formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); 939 } 940 941 auto UnrollResult = LoopUnrollResult::Unmodified; 942 if (remainderLoop && UnrollRemainder) { 943 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); 944 UnrollResult = 945 UnrollLoop(remainderLoop, 946 {/*Count*/ Count - 1, /*TripCount*/ Count - 1, 947 /*Force*/ false, /*AllowRuntime*/ false, 948 /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true, 949 /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1, 950 /*PeelCount*/ 0, /*UnrollRemainder*/ false, ForgetAllSCEV}, 951 LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); 952 } 953 954 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) 955 *ResultLoop = remainderLoop; 956 NumRuntimeUnrolled++; 957 return true; 958 } 959