xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for loops with run-time
10 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
11 // trip counts.
12 //
13 // The functions in this file are used to generate extra code when the
14 // run-time trip count modulo the unroll factor is not 0.  When this is the
15 // case, we need to generate code to execute these 'left over' iterations.
16 //
17 // The current strategy generates an if-then-else sequence prior to the
18 // unrolled loop to execute the 'left over' iterations before or after the
19 // unrolled loop.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/DomTreeUpdater.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
41 #include "llvm/Transforms/Utils/UnrollLoop.h"
42 #include <algorithm>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "loop-unroll"
47 
48 STATISTIC(NumRuntimeUnrolled,
49           "Number of loops unrolled with run-time trip counts");
50 static cl::opt<bool> UnrollRuntimeMultiExit(
51     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
52     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
53              "epilog is generated"));
54 static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
55     "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
56     cl::desc("Assume the non latch exit block to be predictable"));
57 
58 /// Connect the unrolling prolog code to the original loop.
59 /// The unrolling prolog code contains code to execute the
60 /// 'extra' iterations if the run-time trip count modulo the
61 /// unroll count is non-zero.
62 ///
63 /// This function performs the following:
64 /// - Create PHI nodes at prolog end block to combine values
65 ///   that exit the prolog code and jump around the prolog.
66 /// - Add a PHI operand to a PHI node at the loop exit block
67 ///   for values that exit the prolog and go around the loop.
68 /// - Branch around the original loop if the trip count is less
69 ///   than the unroll factor.
70 ///
71 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
72                           BasicBlock *PrologExit,
73                           BasicBlock *OriginalLoopLatchExit,
74                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
75                           ValueToValueMapTy &VMap, DominatorTree *DT,
76                           LoopInfo *LI, bool PreserveLCSSA,
77                           ScalarEvolution &SE) {
78   // Loop structure should be the following:
79   // Preheader
80   //  PrologHeader
81   //  ...
82   //  PrologLatch
83   //  PrologExit
84   //   NewPreheader
85   //    Header
86   //    ...
87   //    Latch
88   //      LatchExit
89   BasicBlock *Latch = L->getLoopLatch();
90   assert(Latch && "Loop must have a latch");
91   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
92 
93   // Create a PHI node for each outgoing value from the original loop
94   // (which means it is an outgoing value from the prolog code too).
95   // The new PHI node is inserted in the prolog end basic block.
96   // The new PHI node value is added as an operand of a PHI node in either
97   // the loop header or the loop exit block.
98   for (BasicBlock *Succ : successors(Latch)) {
99     for (PHINode &PN : Succ->phis()) {
100       // Add a new PHI node to the prolog end block and add the
101       // appropriate incoming values.
102       // TODO: This code assumes that the PrologExit (or the LatchExit block for
103       // prolog loop) contains only one predecessor from the loop, i.e. the
104       // PrologLatch. When supporting multiple-exiting block loops, we can have
105       // two or more blocks that have the LatchExit as the target in the
106       // original loop.
107       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
108                                        PrologExit->getFirstNonPHI());
109       // Adding a value to the new PHI node from the original loop preheader.
110       // This is the value that skips all the prolog code.
111       if (L->contains(&PN)) {
112         // Succ is loop header.
113         NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
114                            PreHeader);
115       } else {
116         // Succ is LatchExit.
117         NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
118       }
119 
120       Value *V = PN.getIncomingValueForBlock(Latch);
121       if (Instruction *I = dyn_cast<Instruction>(V)) {
122         if (L->contains(I)) {
123           V = VMap.lookup(I);
124         }
125       }
126       // Adding a value to the new PHI node from the last prolog block
127       // that was created.
128       NewPN->addIncoming(V, PrologLatch);
129 
130       // Update the existing PHI node operand with the value from the
131       // new PHI node.  How this is done depends on if the existing
132       // PHI node is in the original loop block, or the exit block.
133       if (L->contains(&PN))
134         PN.setIncomingValueForBlock(NewPreHeader, NewPN);
135       else
136         PN.addIncoming(NewPN, PrologExit);
137       SE.forgetValue(&PN);
138     }
139   }
140 
141   // Make sure that created prolog loop is in simplified form
142   SmallVector<BasicBlock *, 4> PrologExitPreds;
143   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
144   if (PrologLoop) {
145     for (BasicBlock *PredBB : predecessors(PrologExit))
146       if (PrologLoop->contains(PredBB))
147         PrologExitPreds.push_back(PredBB);
148 
149     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
150                            nullptr, PreserveLCSSA);
151   }
152 
153   // Create a branch around the original loop, which is taken if there are no
154   // iterations remaining to be executed after running the prologue.
155   Instruction *InsertPt = PrologExit->getTerminator();
156   IRBuilder<> B(InsertPt);
157 
158   assert(Count != 0 && "nonsensical Count!");
159 
160   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
161   // This means %xtraiter is (BECount + 1) and all of the iterations of this
162   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
163   // then (BECount + 1) cannot unsigned-overflow.
164   Value *BrLoopExit =
165       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
166   // Split the exit to maintain loop canonicalization guarantees
167   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
168   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
169                          nullptr, PreserveLCSSA);
170   // Add the branch to the exit block (around the unrolled loop)
171   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
172   InsertPt->eraseFromParent();
173   if (DT) {
174     auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit,
175                                                   PrologExit);
176     DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom);
177   }
178 }
179 
180 /// Connect the unrolling epilog code to the original loop.
181 /// The unrolling epilog code contains code to execute the
182 /// 'extra' iterations if the run-time trip count modulo the
183 /// unroll count is non-zero.
184 ///
185 /// This function performs the following:
186 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
187 /// - Create PHI nodes at the unrolling loop exit to combine
188 ///   values that exit the unrolling loop code and jump around it.
189 /// - Update PHI operands in the epilog loop by the new PHI nodes
190 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
191 ///
192 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
193                           BasicBlock *Exit, BasicBlock *PreHeader,
194                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
195                           ValueToValueMapTy &VMap, DominatorTree *DT,
196                           LoopInfo *LI, bool PreserveLCSSA,
197                           ScalarEvolution &SE) {
198   BasicBlock *Latch = L->getLoopLatch();
199   assert(Latch && "Loop must have a latch");
200   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
201 
202   // Loop structure should be the following:
203   //
204   // PreHeader
205   // NewPreHeader
206   //   Header
207   //   ...
208   //   Latch
209   // NewExit (PN)
210   // EpilogPreHeader
211   //   EpilogHeader
212   //   ...
213   //   EpilogLatch
214   // Exit (EpilogPN)
215 
216   // Update PHI nodes at NewExit and Exit.
217   for (PHINode &PN : NewExit->phis()) {
218     // PN should be used in another PHI located in Exit block as
219     // Exit was split by SplitBlockPredecessors into Exit and NewExit
220     // Basicaly it should look like:
221     // NewExit:
222     //   PN = PHI [I, Latch]
223     // ...
224     // Exit:
225     //   EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
226     //
227     // Exits from non-latch blocks point to the original exit block and the
228     // epilogue edges have already been added.
229     //
230     // There is EpilogPreHeader incoming block instead of NewExit as
231     // NewExit was spilt 1 more time to get EpilogPreHeader.
232     assert(PN.hasOneUse() && "The phi should have 1 use");
233     PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
234     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
235 
236     // Add incoming PreHeader from branch around the Loop
237     PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
238     SE.forgetValue(&PN);
239 
240     Value *V = PN.getIncomingValueForBlock(Latch);
241     Instruction *I = dyn_cast<Instruction>(V);
242     if (I && L->contains(I))
243       // If value comes from an instruction in the loop add VMap value.
244       V = VMap.lookup(I);
245     // For the instruction out of the loop, constant or undefined value
246     // insert value itself.
247     EpilogPN->addIncoming(V, EpilogLatch);
248 
249     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
250           "EpilogPN should have EpilogPreHeader incoming block");
251     // Change EpilogPreHeader incoming block to NewExit.
252     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
253                                NewExit);
254     // Now PHIs should look like:
255     // NewExit:
256     //   PN = PHI [I, Latch], [undef, PreHeader]
257     // ...
258     // Exit:
259     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
260   }
261 
262   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
263   // Update corresponding PHI nodes in epilog loop.
264   for (BasicBlock *Succ : successors(Latch)) {
265     // Skip this as we already updated phis in exit blocks.
266     if (!L->contains(Succ))
267       continue;
268     for (PHINode &PN : Succ->phis()) {
269       // Add new PHI nodes to the loop exit block and update epilog
270       // PHIs with the new PHI values.
271       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
272                                        NewExit->getFirstNonPHI());
273       // Adding a value to the new PHI node from the unrolling loop preheader.
274       NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
275       // Adding a value to the new PHI node from the unrolling loop latch.
276       NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
277 
278       // Update the existing PHI node operand with the value from the new PHI
279       // node.  Corresponding instruction in epilog loop should be PHI.
280       PHINode *VPN = cast<PHINode>(VMap[&PN]);
281       VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
282     }
283   }
284 
285   Instruction *InsertPt = NewExit->getTerminator();
286   IRBuilder<> B(InsertPt);
287   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
288   assert(Exit && "Loop must have a single exit block only");
289   // Split the epilogue exit to maintain loop canonicalization guarantees
290   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
291   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
292                          PreserveLCSSA);
293   // Add the branch to the exit block (around the unrolling loop)
294   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
295   InsertPt->eraseFromParent();
296   if (DT) {
297     auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
298     DT->changeImmediateDominator(Exit, NewDom);
299   }
300 
301   // Split the main loop exit to maintain canonicalization guarantees.
302   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
303   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
304                          PreserveLCSSA);
305 }
306 
307 /// Create a clone of the blocks in a loop and connect them together. A new
308 /// loop will be created including all cloned blocks, and the iterator of the
309 /// new loop switched to count NewIter down to 0.
310 /// The cloned blocks should be inserted between InsertTop and InsertBot.
311 /// InsertTop should be new preheader, InsertBot new loop exit.
312 /// Returns the new cloned loop that is created.
313 static Loop *
314 CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder,
315                 const bool UnrollRemainder,
316                 BasicBlock *InsertTop,
317                 BasicBlock *InsertBot, BasicBlock *Preheader,
318                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
319                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
320   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
321   BasicBlock *Header = L->getHeader();
322   BasicBlock *Latch = L->getLoopLatch();
323   Function *F = Header->getParent();
324   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
325   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
326   Loop *ParentLoop = L->getParentLoop();
327   NewLoopsMap NewLoops;
328   NewLoops[ParentLoop] = ParentLoop;
329 
330   // For each block in the original loop, create a new copy,
331   // and update the value map with the newly created values.
332   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
333     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
334     NewBlocks.push_back(NewBB);
335 
336     addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
337 
338     VMap[*BB] = NewBB;
339     if (Header == *BB) {
340       // For the first block, add a CFG connection to this newly
341       // created block.
342       InsertTop->getTerminator()->setSuccessor(0, NewBB);
343     }
344 
345     if (DT) {
346       if (Header == *BB) {
347         // The header is dominated by the preheader.
348         DT->addNewBlock(NewBB, InsertTop);
349       } else {
350         // Copy information from original loop to unrolled loop.
351         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
352         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
353       }
354     }
355 
356     if (Latch == *BB) {
357       // For the last block, create a loop back to cloned head.
358       VMap.erase((*BB)->getTerminator());
359       // Use an incrementing IV.  Pre-incr/post-incr is backedge/trip count.
360       // Subtle: NewIter can be 0 if we wrapped when computing the trip count,
361       // thus we must compare the post-increment (wrapping) value.
362       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
363       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
364       IRBuilder<> Builder(LatchBR);
365       PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
366                                         suffix + ".iter",
367                                         FirstLoopBB->getFirstNonPHI());
368       auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
369       auto *One = ConstantInt::get(NewIdx->getType(), 1);
370       Value *IdxNext = Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
371       Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp");
372       Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
373       NewIdx->addIncoming(Zero, InsertTop);
374       NewIdx->addIncoming(IdxNext, NewBB);
375       LatchBR->eraseFromParent();
376     }
377   }
378 
379   // Change the incoming values to the ones defined in the preheader or
380   // cloned loop.
381   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
382     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
383     unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
384     NewPHI->setIncomingBlock(idx, InsertTop);
385     BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
386     idx = NewPHI->getBasicBlockIndex(Latch);
387     Value *InVal = NewPHI->getIncomingValue(idx);
388     NewPHI->setIncomingBlock(idx, NewLatch);
389     if (Value *V = VMap.lookup(InVal))
390       NewPHI->setIncomingValue(idx, V);
391   }
392 
393   Loop *NewLoop = NewLoops[L];
394   assert(NewLoop && "L should have been cloned");
395   MDNode *LoopID = NewLoop->getLoopID();
396 
397   // Only add loop metadata if the loop is not going to be completely
398   // unrolled.
399   if (UnrollRemainder)
400     return NewLoop;
401 
402   Optional<MDNode *> NewLoopID = makeFollowupLoopID(
403       LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
404   if (NewLoopID) {
405     NewLoop->setLoopID(NewLoopID.value());
406 
407     // Do not setLoopAlreadyUnrolled if loop attributes have been defined
408     // explicitly.
409     return NewLoop;
410   }
411 
412   // Add unroll disable metadata to disable future unrolling for this loop.
413   NewLoop->setLoopAlreadyUnrolled();
414   return NewLoop;
415 }
416 
417 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
418 /// we return true only if UnrollRuntimeMultiExit is set to true.
419 static bool canProfitablyUnrollMultiExitLoop(
420     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
421     bool UseEpilogRemainder) {
422 
423   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
424   if (UnrollRuntimeMultiExit.getNumOccurrences())
425     return UnrollRuntimeMultiExit;
426 
427   // The main pain point with multi-exit loop unrolling is that once unrolled,
428   // we will not be able to merge all blocks into a straight line code.
429   // There are branches within the unrolled loop that go to the OtherExits.
430   // The second point is the increase in code size, but this is true
431   // irrespective of multiple exits.
432 
433   // Note: Both the heuristics below are coarse grained. We are essentially
434   // enabling unrolling of loops that have a single side exit other than the
435   // normal LatchExit (i.e. exiting into a deoptimize block).
436   // The heuristics considered are:
437   // 1. low number of branches in the unrolled version.
438   // 2. high predictability of these extra branches.
439   // We avoid unrolling loops that have more than two exiting blocks. This
440   // limits the total number of branches in the unrolled loop to be atmost
441   // the unroll factor (since one of the exiting blocks is the latch block).
442   SmallVector<BasicBlock*, 4> ExitingBlocks;
443   L->getExitingBlocks(ExitingBlocks);
444   if (ExitingBlocks.size() > 2)
445     return false;
446 
447   // Allow unrolling of loops with no non latch exit blocks.
448   if (OtherExits.size() == 0)
449     return true;
450 
451   // The second heuristic is that L has one exit other than the latchexit and
452   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
453   // taken, which also implies the branch leading to the deoptimize block is
454   // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
455   // assume the other exit branch is predictable even if it has no deoptimize
456   // call.
457   return (OtherExits.size() == 1 &&
458           (UnrollRuntimeOtherExitPredictable ||
459            OtherExits[0]->getTerminatingDeoptimizeCall()));
460   // TODO: These can be fine-tuned further to consider code size or deopt states
461   // that are captured by the deoptimize exit block.
462   // Also, we can extend this to support more cases, if we actually
463   // know of kinds of multiexit loops that would benefit from unrolling.
464 }
465 
466 // Assign the maximum possible trip count as the back edge weight for the
467 // remainder loop if the original loop comes with a branch weight.
468 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop,
469                                                      Loop *RemainderLoop,
470                                                      uint64_t UnrollFactor) {
471   uint64_t TrueWeight, FalseWeight;
472   BranchInst *LatchBR =
473       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
474   if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
475     return;
476   uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader()
477                             ? FalseWeight
478                             : TrueWeight;
479   assert(UnrollFactor > 1);
480   uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight;
481   BasicBlock *Header = RemainderLoop->getHeader();
482   BasicBlock *Latch = RemainderLoop->getLoopLatch();
483   auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator());
484   unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1);
485   MDBuilder MDB(RemainderLatchBR->getContext());
486   MDNode *WeightNode =
487     HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
488                 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
489   RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
490 }
491 
492 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
493 /// accounting for the possibility of unsigned overflow in the 2s complement
494 /// domain. Preconditions:
495 /// 1) TripCount = BECount + 1 (allowing overflow)
496 /// 2) Log2(Count) <= BitWidth(BECount)
497 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
498                                   Value *TripCount, unsigned Count) {
499   // Note that TripCount is BECount + 1.
500   if (isPowerOf2_32(Count))
501     // If the expression is zero, then either:
502     //  1. There are no iterations to be run in the prolog/epilog loop.
503     // OR
504     //  2. The addition computing TripCount overflowed.
505     //
506     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
507     // the number of iterations that remain to be run in the original loop is a
508     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
509     // precondition of this method).
510     return B.CreateAnd(TripCount, Count - 1, "xtraiter");
511 
512   // As (BECount + 1) can potentially unsigned overflow we count
513   // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
514   Constant *CountC = ConstantInt::get(BECount->getType(), Count);
515   Value *ModValTmp = B.CreateURem(BECount, CountC);
516   Value *ModValAdd = B.CreateAdd(ModValTmp,
517                                  ConstantInt::get(ModValTmp->getType(), 1));
518   // At that point (BECount % Count) + 1 could be equal to Count.
519   // To handle this case we need to take mod by Count one more time.
520   return B.CreateURem(ModValAdd, CountC, "xtraiter");
521 }
522 
523 
524 /// Insert code in the prolog/epilog code when unrolling a loop with a
525 /// run-time trip-count.
526 ///
527 /// This method assumes that the loop unroll factor is total number
528 /// of loop bodies in the loop after unrolling. (Some folks refer
529 /// to the unroll factor as the number of *extra* copies added).
530 /// We assume also that the loop unroll factor is a power-of-two. So, after
531 /// unrolling the loop, the number of loop bodies executed is 2,
532 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
533 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
534 /// the switch instruction is generated.
535 ///
536 /// ***Prolog case***
537 ///        extraiters = tripcount % loopfactor
538 ///        if (extraiters == 0) jump Loop:
539 ///        else jump Prol:
540 /// Prol:  LoopBody;
541 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
542 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
543 ///        if (tripcount < loopfactor) jump End:
544 /// Loop:
545 /// ...
546 /// End:
547 ///
548 /// ***Epilog case***
549 ///        extraiters = tripcount % loopfactor
550 ///        if (tripcount < loopfactor) jump LoopExit:
551 ///        unroll_iters = tripcount - extraiters
552 /// Loop:  LoopBody; (executes unroll_iter times);
553 ///        unroll_iter -= 1
554 ///        if (unroll_iter != 0) jump Loop:
555 /// LoopExit:
556 ///        if (extraiters == 0) jump EpilExit:
557 /// Epil:  LoopBody; (executes extraiters times)
558 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
559 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
560 /// EpilExit:
561 
562 bool llvm::UnrollRuntimeLoopRemainder(
563     Loop *L, unsigned Count, bool AllowExpensiveTripCount,
564     bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
565     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
566     const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
567   LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
568   LLVM_DEBUG(L->dump());
569   LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
570                                 : dbgs() << "Using prolog remainder.\n");
571 
572   // Make sure the loop is in canonical form.
573   if (!L->isLoopSimplifyForm()) {
574     LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
575     return false;
576   }
577 
578   // Guaranteed by LoopSimplifyForm.
579   BasicBlock *Latch = L->getLoopLatch();
580   BasicBlock *Header = L->getHeader();
581 
582   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
583 
584   if (!LatchBR || LatchBR->isUnconditional()) {
585     // The loop-rotate pass can be helpful to avoid this in many cases.
586     LLVM_DEBUG(
587         dbgs()
588         << "Loop latch not terminated by a conditional branch.\n");
589     return false;
590   }
591 
592   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
593   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
594 
595   if (L->contains(LatchExit)) {
596     // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
597     // targets of the Latch be an exit block out of the loop.
598     LLVM_DEBUG(
599         dbgs()
600         << "One of the loop latch successors must be the exit block.\n");
601     return false;
602   }
603 
604   // These are exit blocks other than the target of the latch exiting block.
605   SmallVector<BasicBlock *, 4> OtherExits;
606   L->getUniqueNonLatchExitBlocks(OtherExits);
607   // Support only single exit and exiting block unless multi-exit loop
608   // unrolling is enabled.
609   if (!L->getExitingBlock() || OtherExits.size()) {
610     // We rely on LCSSA form being preserved when the exit blocks are transformed.
611     // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
612     if (!PreserveLCSSA)
613       return false;
614 
615     if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit,
616                                           UseEpilogRemainder)) {
617       LLVM_DEBUG(
618           dbgs()
619           << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
620              "enabled!\n");
621       return false;
622     }
623   }
624   // Use Scalar Evolution to compute the trip count. This allows more loops to
625   // be unrolled than relying on induction var simplification.
626   if (!SE)
627     return false;
628 
629   // Only unroll loops with a computable trip count.
630   // We calculate the backedge count by using getExitCount on the Latch block,
631   // which is proven to be the only exiting block in this loop. This is same as
632   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
633   // exiting blocks).
634   const SCEV *BECountSC = SE->getExitCount(L, Latch);
635   if (isa<SCEVCouldNotCompute>(BECountSC)) {
636     LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
637     return false;
638   }
639 
640   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
641 
642   // Add 1 since the backedge count doesn't include the first loop iteration.
643   // (Note that overflow can occur, this is handled explicitly below)
644   const SCEV *TripCountSC =
645       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
646   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
647     LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
648     return false;
649   }
650 
651   BasicBlock *PreHeader = L->getLoopPreheader();
652   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
653   const DataLayout &DL = Header->getModule()->getDataLayout();
654   SCEVExpander Expander(*SE, DL, "loop-unroll");
655   if (!AllowExpensiveTripCount &&
656       Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
657                                    TTI, PreHeaderBR)) {
658     LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
659     return false;
660   }
661 
662   // This constraint lets us deal with an overflowing trip count easily; see the
663   // comment on ModVal below.
664   if (Log2_32(Count) > BEWidth) {
665     LLVM_DEBUG(
666         dbgs()
667         << "Count failed constraint on overflow trip count calculation.\n");
668     return false;
669   }
670 
671   // Loop structure is the following:
672   //
673   // PreHeader
674   //   Header
675   //   ...
676   //   Latch
677   // LatchExit
678 
679   BasicBlock *NewPreHeader;
680   BasicBlock *NewExit = nullptr;
681   BasicBlock *PrologExit = nullptr;
682   BasicBlock *EpilogPreHeader = nullptr;
683   BasicBlock *PrologPreHeader = nullptr;
684 
685   if (UseEpilogRemainder) {
686     // If epilog remainder
687     // Split PreHeader to insert a branch around loop for unrolling.
688     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
689     NewPreHeader->setName(PreHeader->getName() + ".new");
690     // Split LatchExit to create phi nodes from branch above.
691     NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
692                                      nullptr, PreserveLCSSA);
693     // NewExit gets its DebugLoc from LatchExit, which is not part of the
694     // original Loop.
695     // Fix this by setting Loop's DebugLoc to NewExit.
696     auto *NewExitTerminator = NewExit->getTerminator();
697     NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
698     // Split NewExit to insert epilog remainder loop.
699     EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
700     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
701 
702     // If the latch exits from multiple level of nested loops, then
703     // by assumption there must be another loop exit which branches to the
704     // outer loop and we must adjust the loop for the newly inserted blocks
705     // to account for the fact that our epilogue is still in the same outer
706     // loop. Note that this leaves loopinfo temporarily out of sync with the
707     // CFG until the actual epilogue loop is inserted.
708     if (auto *ParentL = L->getParentLoop())
709       if (LI->getLoopFor(LatchExit) != ParentL) {
710         LI->removeBlock(NewExit);
711         ParentL->addBasicBlockToLoop(NewExit, *LI);
712         LI->removeBlock(EpilogPreHeader);
713         ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI);
714       }
715 
716   } else {
717     // If prolog remainder
718     // Split the original preheader twice to insert prolog remainder loop
719     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
720     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
721     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
722                             DT, LI);
723     PrologExit->setName(Header->getName() + ".prol.loopexit");
724     // Split PrologExit to get NewPreHeader.
725     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
726     NewPreHeader->setName(PreHeader->getName() + ".new");
727   }
728   // Loop structure should be the following:
729   //  Epilog             Prolog
730   //
731   // PreHeader         PreHeader
732   // *NewPreHeader     *PrologPreHeader
733   //   Header          *PrologExit
734   //   ...             *NewPreHeader
735   //   Latch             Header
736   // *NewExit            ...
737   // *EpilogPreHeader    Latch
738   // LatchExit              LatchExit
739 
740   // Calculate conditions for branch around loop for unrolling
741   // in epilog case and around prolog remainder loop in prolog case.
742   // Compute the number of extra iterations required, which is:
743   //  extra iterations = run-time trip count % loop unroll factor
744   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
745   IRBuilder<> B(PreHeaderBR);
746   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
747                                             PreHeaderBR);
748   Value *BECount;
749   // If there are other exits before the latch, that may cause the latch exit
750   // branch to never be executed, and the latch exit count may be poison.
751   // In this case, freeze the TripCount and base BECount on the frozen
752   // TripCount. We will introduce two branches using these values, and it's
753   // important that they see a consistent value (which would not be guaranteed
754   // if were frozen independently.)
755   if ((!OtherExits.empty() || !SE->loopHasNoAbnormalExits(L)) &&
756       !isGuaranteedNotToBeUndefOrPoison(TripCount, AC, PreHeaderBR, DT)) {
757     TripCount = B.CreateFreeze(TripCount);
758     BECount =
759         B.CreateAdd(TripCount, ConstantInt::get(TripCount->getType(), -1));
760   } else {
761     // If we don't need to freeze, use SCEVExpander for BECount as well, to
762     // allow slightly better value reuse.
763     BECount =
764         Expander.expandCodeFor(BECountSC, BECountSC->getType(), PreHeaderBR);
765   }
766 
767   Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
768 
769   Value *BranchVal =
770       UseEpilogRemainder ? B.CreateICmpULT(BECount,
771                                            ConstantInt::get(BECount->getType(),
772                                                             Count - 1)) :
773                            B.CreateIsNotNull(ModVal, "lcmp.mod");
774   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
775   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
776   // Branch to either remainder (extra iterations) loop or unrolling loop.
777   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
778   PreHeaderBR->eraseFromParent();
779   if (DT) {
780     if (UseEpilogRemainder)
781       DT->changeImmediateDominator(NewExit, PreHeader);
782     else
783       DT->changeImmediateDominator(PrologExit, PreHeader);
784   }
785   Function *F = Header->getParent();
786   // Get an ordered list of blocks in the loop to help with the ordering of the
787   // cloned blocks in the prolog/epilog code
788   LoopBlocksDFS LoopBlocks(L);
789   LoopBlocks.perform(LI);
790 
791   //
792   // For each extra loop iteration, create a copy of the loop's basic blocks
793   // and generate a condition that branches to the copy depending on the
794   // number of 'left over' iterations.
795   //
796   std::vector<BasicBlock *> NewBlocks;
797   ValueToValueMapTy VMap;
798 
799   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
800   // the loop, otherwise we create a cloned loop to execute the extra
801   // iterations. This function adds the appropriate CFG connections.
802   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
803   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
804   Loop *remainderLoop = CloneLoopBlocks(
805       L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot,
806       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
807 
808   // Assign the maximum possible trip count as the back edge weight for the
809   // remainder loop if the original loop comes with a branch weight.
810   if (remainderLoop && !UnrollRemainder)
811     updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count);
812 
813   // Insert the cloned blocks into the function.
814   F->getBasicBlockList().splice(InsertBot->getIterator(),
815                                 F->getBasicBlockList(),
816                                 NewBlocks[0]->getIterator(),
817                                 F->end());
818 
819   // Now the loop blocks are cloned and the other exiting blocks from the
820   // remainder are connected to the original Loop's exit blocks. The remaining
821   // work is to update the phi nodes in the original loop, and take in the
822   // values from the cloned region.
823   for (auto *BB : OtherExits) {
824     // Given we preserve LCSSA form, we know that the values used outside the
825     // loop will be used through these phi nodes at the exit blocks that are
826     // transformed below.
827     for (PHINode &PN : BB->phis()) {
828      unsigned oldNumOperands = PN.getNumIncomingValues();
829      // Add the incoming values from the remainder code to the end of the phi
830      // node.
831      for (unsigned i = 0; i < oldNumOperands; i++){
832        auto *PredBB =PN.getIncomingBlock(i);
833        if (PredBB == Latch)
834          // The latch exit is handled seperately, see connectX
835          continue;
836        if (!L->contains(PredBB))
837          // Even if we had dedicated exits, the code above inserted an
838          // extra branch which can reach the latch exit.
839          continue;
840 
841        auto *V = PN.getIncomingValue(i);
842        if (Instruction *I = dyn_cast<Instruction>(V))
843          if (L->contains(I))
844            V = VMap.lookup(I);
845        PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
846      }
847    }
848 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
849     for (BasicBlock *SuccBB : successors(BB)) {
850       assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) &&
851              "Breaks the definition of dedicated exits!");
852     }
853 #endif
854   }
855 
856   // Update the immediate dominator of the exit blocks and blocks that are
857   // reachable from the exit blocks. This is needed because we now have paths
858   // from both the original loop and the remainder code reaching the exit
859   // blocks. While the IDom of these exit blocks were from the original loop,
860   // now the IDom is the preheader (which decides whether the original loop or
861   // remainder code should run).
862   if (DT && !L->getExitingBlock()) {
863     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
864     // NB! We have to examine the dom children of all loop blocks, not just
865     // those which are the IDom of the exit blocks. This is because blocks
866     // reachable from the exit blocks can have their IDom as the nearest common
867     // dominator of the exit blocks.
868     for (auto *BB : L->blocks()) {
869       auto *DomNodeBB = DT->getNode(BB);
870       for (auto *DomChild : DomNodeBB->children()) {
871         auto *DomChildBB = DomChild->getBlock();
872         if (!L->contains(LI->getLoopFor(DomChildBB)))
873           ChildrenToUpdate.push_back(DomChildBB);
874       }
875     }
876     for (auto *BB : ChildrenToUpdate)
877       DT->changeImmediateDominator(BB, PreHeader);
878   }
879 
880   // Loop structure should be the following:
881   //  Epilog             Prolog
882   //
883   // PreHeader         PreHeader
884   // NewPreHeader      PrologPreHeader
885   //   Header            PrologHeader
886   //   ...               ...
887   //   Latch             PrologLatch
888   // NewExit           PrologExit
889   // EpilogPreHeader   NewPreHeader
890   //   EpilogHeader      Header
891   //   ...               ...
892   //   EpilogLatch       Latch
893   // LatchExit              LatchExit
894 
895   // Rewrite the cloned instruction operands to use the values created when the
896   // clone is created.
897   for (BasicBlock *BB : NewBlocks) {
898     for (Instruction &I : *BB) {
899       RemapInstruction(&I, VMap,
900                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
901     }
902   }
903 
904   if (UseEpilogRemainder) {
905     // Connect the epilog code to the original loop and update the
906     // PHI functions.
907     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, EpilogPreHeader,
908                   NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE);
909 
910     // Update counter in loop for unrolling.
911     // Use an incrementing IV.  Pre-incr/post-incr is backedge/trip count.
912     // Subtle: TestVal can be 0 if we wrapped when computing the trip count,
913     // thus we must compare the post-increment (wrapping) value.
914     IRBuilder<> B2(NewPreHeader->getTerminator());
915     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
916     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
917     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
918                                       Header->getFirstNonPHI());
919     B2.SetInsertPoint(LatchBR);
920     auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
921     auto *One = ConstantInt::get(NewIdx->getType(), 1);
922     Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
923     auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
924     Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp");
925     NewIdx->addIncoming(Zero, NewPreHeader);
926     NewIdx->addIncoming(IdxNext, Latch);
927     LatchBR->setCondition(IdxCmp);
928   } else {
929     // Connect the prolog code to the original loop and update the
930     // PHI functions.
931     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
932                   NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE);
933   }
934 
935   // If this loop is nested, then the loop unroller changes the code in the any
936   // of its parent loops, so the Scalar Evolution pass needs to be run again.
937   SE->forgetTopmostLoop(L);
938 
939   // Verify that the Dom Tree and Loop Info are correct.
940 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
941   if (DT) {
942     assert(DT->verify(DominatorTree::VerificationLevel::Full));
943     LI->verify(*DT);
944   }
945 #endif
946 
947   // For unroll factor 2 remainder loop will have 1 iteration.
948   if (Count == 2 && DT && LI && SE) {
949     // TODO: This code could probably be pulled out into a helper function
950     // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion.
951     BasicBlock *RemainderLatch = remainderLoop->getLoopLatch();
952     assert(RemainderLatch);
953     SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(),
954                                              remainderLoop->getBlocks().end());
955     breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr);
956     remainderLoop = nullptr;
957 
958     // Simplify loop values after breaking the backedge
959     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
960     SmallVector<WeakTrackingVH, 16> DeadInsts;
961     for (BasicBlock *BB : RemainderBlocks) {
962       for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
963         if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
964           if (LI->replacementPreservesLCSSAForm(&Inst, V))
965             Inst.replaceAllUsesWith(V);
966         if (isInstructionTriviallyDead(&Inst))
967           DeadInsts.emplace_back(&Inst);
968       }
969       // We can't do recursive deletion until we're done iterating, as we might
970       // have a phi which (potentially indirectly) uses instructions later in
971       // the block we're iterating through.
972       RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
973     }
974 
975     // Merge latch into exit block.
976     auto *ExitBB = RemainderLatch->getSingleSuccessor();
977     assert(ExitBB && "required after breaking cond br backedge");
978     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
979     MergeBlockIntoPredecessor(ExitBB, &DTU, LI);
980   }
981 
982   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
983   // cannot rely on the LoopUnrollPass to do this because it only does
984   // canonicalization for parent/subloops and not the sibling loops.
985   if (OtherExits.size() > 0) {
986     // Generate dedicated exit blocks for the original loop, to preserve
987     // LoopSimplifyForm.
988     formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
989     // Generate dedicated exit blocks for the remainder loop if one exists, to
990     // preserve LoopSimplifyForm.
991     if (remainderLoop)
992       formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
993   }
994 
995   auto UnrollResult = LoopUnrollResult::Unmodified;
996   if (remainderLoop && UnrollRemainder) {
997     LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
998     UnrollResult =
999         UnrollLoop(remainderLoop,
1000                    {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false,
1001                     /*AllowExpensiveTripCount*/ false,
1002                     /*UnrollRemainder*/ false, ForgetAllSCEV},
1003                    LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
1004   }
1005 
1006   if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1007     *ResultLoop = remainderLoop;
1008   NumRuntimeUnrolled++;
1009   return true;
1010 }
1011