xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 27ef5d48c729defb83a8822143dc71ab17f9d68b)
1  //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements some loop unrolling utilities for loops with run-time
10  // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
11  // trip counts.
12  //
13  // The functions in this file are used to generate extra code when the
14  // run-time trip count modulo the unroll factor is not 0.  When this is the
15  // case, we need to generate code to execute these 'left over' iterations.
16  //
17  // The current strategy generates an if-then-else sequence prior to the
18  // unrolled loop to execute the 'left over' iterations before or after the
19  // unrolled loop.
20  //
21  //===----------------------------------------------------------------------===//
22  
23  #include "llvm/ADT/Statistic.h"
24  #include "llvm/Analysis/DomTreeUpdater.h"
25  #include "llvm/Analysis/InstructionSimplify.h"
26  #include "llvm/Analysis/LoopIterator.h"
27  #include "llvm/Analysis/ScalarEvolution.h"
28  #include "llvm/Analysis/ValueTracking.h"
29  #include "llvm/IR/BasicBlock.h"
30  #include "llvm/IR/Dominators.h"
31  #include "llvm/IR/MDBuilder.h"
32  #include "llvm/IR/Module.h"
33  #include "llvm/IR/ProfDataUtils.h"
34  #include "llvm/Support/CommandLine.h"
35  #include "llvm/Support/Debug.h"
36  #include "llvm/Support/raw_ostream.h"
37  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38  #include "llvm/Transforms/Utils/Cloning.h"
39  #include "llvm/Transforms/Utils/Local.h"
40  #include "llvm/Transforms/Utils/LoopUtils.h"
41  #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
42  #include "llvm/Transforms/Utils/UnrollLoop.h"
43  #include <algorithm>
44  
45  using namespace llvm;
46  
47  #define DEBUG_TYPE "loop-unroll"
48  
49  STATISTIC(NumRuntimeUnrolled,
50            "Number of loops unrolled with run-time trip counts");
51  static cl::opt<bool> UnrollRuntimeMultiExit(
52      "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
53      cl::desc("Allow runtime unrolling for loops with multiple exits, when "
54               "epilog is generated"));
55  static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
56      "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
57      cl::desc("Assume the non latch exit block to be predictable"));
58  
59  // Probability that the loop trip count is so small that after the prolog
60  // we do not enter the unrolled loop at all.
61  // It is unlikely that the loop trip count is smaller than the unroll factor;
62  // other than that, the choice of constant is not tuned yet.
63  static const uint32_t UnrolledLoopHeaderWeights[] = {1, 127};
64  // Probability that the loop trip count is so small that we skip the unrolled
65  // loop completely and immediately enter the epilogue loop.
66  // It is unlikely that the loop trip count is smaller than the unroll factor;
67  // other than that, the choice of constant is not tuned yet.
68  static const uint32_t EpilogHeaderWeights[] = {1, 127};
69  
70  /// Connect the unrolling prolog code to the original loop.
71  /// The unrolling prolog code contains code to execute the
72  /// 'extra' iterations if the run-time trip count modulo the
73  /// unroll count is non-zero.
74  ///
75  /// This function performs the following:
76  /// - Create PHI nodes at prolog end block to combine values
77  ///   that exit the prolog code and jump around the prolog.
78  /// - Add a PHI operand to a PHI node at the loop exit block
79  ///   for values that exit the prolog and go around the loop.
80  /// - Branch around the original loop if the trip count is less
81  ///   than the unroll factor.
82  ///
83  static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
84                            BasicBlock *PrologExit,
85                            BasicBlock *OriginalLoopLatchExit,
86                            BasicBlock *PreHeader, BasicBlock *NewPreHeader,
87                            ValueToValueMapTy &VMap, DominatorTree *DT,
88                            LoopInfo *LI, bool PreserveLCSSA,
89                            ScalarEvolution &SE) {
90    // Loop structure should be the following:
91    // Preheader
92    //  PrologHeader
93    //  ...
94    //  PrologLatch
95    //  PrologExit
96    //   NewPreheader
97    //    Header
98    //    ...
99    //    Latch
100    //      LatchExit
101    BasicBlock *Latch = L->getLoopLatch();
102    assert(Latch && "Loop must have a latch");
103    BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
104  
105    // Create a PHI node for each outgoing value from the original loop
106    // (which means it is an outgoing value from the prolog code too).
107    // The new PHI node is inserted in the prolog end basic block.
108    // The new PHI node value is added as an operand of a PHI node in either
109    // the loop header or the loop exit block.
110    for (BasicBlock *Succ : successors(Latch)) {
111      for (PHINode &PN : Succ->phis()) {
112        // Add a new PHI node to the prolog end block and add the
113        // appropriate incoming values.
114        // TODO: This code assumes that the PrologExit (or the LatchExit block for
115        // prolog loop) contains only one predecessor from the loop, i.e. the
116        // PrologLatch. When supporting multiple-exiting block loops, we can have
117        // two or more blocks that have the LatchExit as the target in the
118        // original loop.
119        PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr");
120        NewPN->insertBefore(PrologExit->getFirstNonPHIIt());
121        // Adding a value to the new PHI node from the original loop preheader.
122        // This is the value that skips all the prolog code.
123        if (L->contains(&PN)) {
124          // Succ is loop header.
125          NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
126                             PreHeader);
127        } else {
128          // Succ is LatchExit.
129          NewPN->addIncoming(PoisonValue::get(PN.getType()), PreHeader);
130        }
131  
132        Value *V = PN.getIncomingValueForBlock(Latch);
133        if (Instruction *I = dyn_cast<Instruction>(V)) {
134          if (L->contains(I)) {
135            V = VMap.lookup(I);
136          }
137        }
138        // Adding a value to the new PHI node from the last prolog block
139        // that was created.
140        NewPN->addIncoming(V, PrologLatch);
141  
142        // Update the existing PHI node operand with the value from the
143        // new PHI node.  How this is done depends on if the existing
144        // PHI node is in the original loop block, or the exit block.
145        if (L->contains(&PN))
146          PN.setIncomingValueForBlock(NewPreHeader, NewPN);
147        else
148          PN.addIncoming(NewPN, PrologExit);
149        SE.forgetValue(&PN);
150      }
151    }
152  
153    // Make sure that created prolog loop is in simplified form
154    SmallVector<BasicBlock *, 4> PrologExitPreds;
155    Loop *PrologLoop = LI->getLoopFor(PrologLatch);
156    if (PrologLoop) {
157      for (BasicBlock *PredBB : predecessors(PrologExit))
158        if (PrologLoop->contains(PredBB))
159          PrologExitPreds.push_back(PredBB);
160  
161      SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
162                             nullptr, PreserveLCSSA);
163    }
164  
165    // Create a branch around the original loop, which is taken if there are no
166    // iterations remaining to be executed after running the prologue.
167    Instruction *InsertPt = PrologExit->getTerminator();
168    IRBuilder<> B(InsertPt);
169  
170    assert(Count != 0 && "nonsensical Count!");
171  
172    // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
173    // This means %xtraiter is (BECount + 1) and all of the iterations of this
174    // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
175    // then (BECount + 1) cannot unsigned-overflow.
176    Value *BrLoopExit =
177        B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
178    // Split the exit to maintain loop canonicalization guarantees
179    SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
180    SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
181                           nullptr, PreserveLCSSA);
182    // Add the branch to the exit block (around the unrolled loop)
183    MDNode *BranchWeights = nullptr;
184    if (hasBranchWeightMD(*Latch->getTerminator())) {
185      // Assume loop is nearly always entered.
186      MDBuilder MDB(B.getContext());
187      BranchWeights = MDB.createBranchWeights(UnrolledLoopHeaderWeights);
188    }
189    B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader,
190                   BranchWeights);
191    InsertPt->eraseFromParent();
192    if (DT) {
193      auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit,
194                                                    PrologExit);
195      DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom);
196    }
197  }
198  
199  /// Connect the unrolling epilog code to the original loop.
200  /// The unrolling epilog code contains code to execute the
201  /// 'extra' iterations if the run-time trip count modulo the
202  /// unroll count is non-zero.
203  ///
204  /// This function performs the following:
205  /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
206  /// - Create PHI nodes at the unrolling loop exit to combine
207  ///   values that exit the unrolling loop code and jump around it.
208  /// - Update PHI operands in the epilog loop by the new PHI nodes
209  /// - Branch around the epilog loop if extra iters (ModVal) is zero.
210  ///
211  static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
212                            BasicBlock *Exit, BasicBlock *PreHeader,
213                            BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
214                            ValueToValueMapTy &VMap, DominatorTree *DT,
215                            LoopInfo *LI, bool PreserveLCSSA, ScalarEvolution &SE,
216                            unsigned Count) {
217    BasicBlock *Latch = L->getLoopLatch();
218    assert(Latch && "Loop must have a latch");
219    BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
220  
221    // Loop structure should be the following:
222    //
223    // PreHeader
224    // NewPreHeader
225    //   Header
226    //   ...
227    //   Latch
228    // NewExit (PN)
229    // EpilogPreHeader
230    //   EpilogHeader
231    //   ...
232    //   EpilogLatch
233    // Exit (EpilogPN)
234  
235    // Update PHI nodes at NewExit and Exit.
236    for (PHINode &PN : NewExit->phis()) {
237      // PN should be used in another PHI located in Exit block as
238      // Exit was split by SplitBlockPredecessors into Exit and NewExit
239      // Basically it should look like:
240      // NewExit:
241      //   PN = PHI [I, Latch]
242      // ...
243      // Exit:
244      //   EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
245      //
246      // Exits from non-latch blocks point to the original exit block and the
247      // epilogue edges have already been added.
248      //
249      // There is EpilogPreHeader incoming block instead of NewExit as
250      // NewExit was spilt 1 more time to get EpilogPreHeader.
251      assert(PN.hasOneUse() && "The phi should have 1 use");
252      PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
253      assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
254  
255      // Add incoming PreHeader from branch around the Loop
256      PN.addIncoming(PoisonValue::get(PN.getType()), PreHeader);
257      SE.forgetValue(&PN);
258  
259      Value *V = PN.getIncomingValueForBlock(Latch);
260      Instruction *I = dyn_cast<Instruction>(V);
261      if (I && L->contains(I))
262        // If value comes from an instruction in the loop add VMap value.
263        V = VMap.lookup(I);
264      // For the instruction out of the loop, constant or undefined value
265      // insert value itself.
266      EpilogPN->addIncoming(V, EpilogLatch);
267  
268      assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
269            "EpilogPN should have EpilogPreHeader incoming block");
270      // Change EpilogPreHeader incoming block to NewExit.
271      EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
272                                 NewExit);
273      // Now PHIs should look like:
274      // NewExit:
275      //   PN = PHI [I, Latch], [poison, PreHeader]
276      // ...
277      // Exit:
278      //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
279    }
280  
281    // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
282    // Update corresponding PHI nodes in epilog loop.
283    for (BasicBlock *Succ : successors(Latch)) {
284      // Skip this as we already updated phis in exit blocks.
285      if (!L->contains(Succ))
286        continue;
287      for (PHINode &PN : Succ->phis()) {
288        // Add new PHI nodes to the loop exit block and update epilog
289        // PHIs with the new PHI values.
290        PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr");
291        NewPN->insertBefore(NewExit->getFirstNonPHIIt());
292        // Adding a value to the new PHI node from the unrolling loop preheader.
293        NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
294        // Adding a value to the new PHI node from the unrolling loop latch.
295        NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
296  
297        // Update the existing PHI node operand with the value from the new PHI
298        // node.  Corresponding instruction in epilog loop should be PHI.
299        PHINode *VPN = cast<PHINode>(VMap[&PN]);
300        VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
301      }
302    }
303  
304    Instruction *InsertPt = NewExit->getTerminator();
305    IRBuilder<> B(InsertPt);
306    Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
307    assert(Exit && "Loop must have a single exit block only");
308    // Split the epilogue exit to maintain loop canonicalization guarantees
309    SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
310    SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
311                           PreserveLCSSA);
312    // Add the branch to the exit block (around the unrolling loop)
313    MDNode *BranchWeights = nullptr;
314    if (hasBranchWeightMD(*Latch->getTerminator())) {
315      // Assume equal distribution in interval [0, Count).
316      MDBuilder MDB(B.getContext());
317      BranchWeights = MDB.createBranchWeights(1, Count - 1);
318    }
319    B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit, BranchWeights);
320    InsertPt->eraseFromParent();
321    if (DT) {
322      auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
323      DT->changeImmediateDominator(Exit, NewDom);
324    }
325  
326    // Split the main loop exit to maintain canonicalization guarantees.
327    SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
328    SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
329                           PreserveLCSSA);
330  }
331  
332  /// Create a clone of the blocks in a loop and connect them together. A new
333  /// loop will be created including all cloned blocks, and the iterator of the
334  /// new loop switched to count NewIter down to 0.
335  /// The cloned blocks should be inserted between InsertTop and InsertBot.
336  /// InsertTop should be new preheader, InsertBot new loop exit.
337  /// Returns the new cloned loop that is created.
338  static Loop *
339  CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder,
340                  const bool UnrollRemainder,
341                  BasicBlock *InsertTop,
342                  BasicBlock *InsertBot, BasicBlock *Preheader,
343                               std::vector<BasicBlock *> &NewBlocks,
344                               LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
345                               DominatorTree *DT, LoopInfo *LI, unsigned Count) {
346    StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
347    BasicBlock *Header = L->getHeader();
348    BasicBlock *Latch = L->getLoopLatch();
349    Function *F = Header->getParent();
350    LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
351    LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
352    Loop *ParentLoop = L->getParentLoop();
353    NewLoopsMap NewLoops;
354    NewLoops[ParentLoop] = ParentLoop;
355  
356    // For each block in the original loop, create a new copy,
357    // and update the value map with the newly created values.
358    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
359      BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
360      NewBlocks.push_back(NewBB);
361  
362      addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
363  
364      VMap[*BB] = NewBB;
365      if (Header == *BB) {
366        // For the first block, add a CFG connection to this newly
367        // created block.
368        InsertTop->getTerminator()->setSuccessor(0, NewBB);
369      }
370  
371      if (DT) {
372        if (Header == *BB) {
373          // The header is dominated by the preheader.
374          DT->addNewBlock(NewBB, InsertTop);
375        } else {
376          // Copy information from original loop to unrolled loop.
377          BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
378          DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
379        }
380      }
381  
382      if (Latch == *BB) {
383        // For the last block, create a loop back to cloned head.
384        VMap.erase((*BB)->getTerminator());
385        // Use an incrementing IV.  Pre-incr/post-incr is backedge/trip count.
386        // Subtle: NewIter can be 0 if we wrapped when computing the trip count,
387        // thus we must compare the post-increment (wrapping) value.
388        BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
389        BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
390        IRBuilder<> Builder(LatchBR);
391        PHINode *NewIdx =
392            PHINode::Create(NewIter->getType(), 2, suffix + ".iter");
393        NewIdx->insertBefore(FirstLoopBB->getFirstNonPHIIt());
394        auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
395        auto *One = ConstantInt::get(NewIdx->getType(), 1);
396        Value *IdxNext =
397            Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
398        Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp");
399        MDNode *BranchWeights = nullptr;
400        if (hasBranchWeightMD(*LatchBR)) {
401          uint32_t ExitWeight;
402          uint32_t BackEdgeWeight;
403          if (Count >= 3) {
404            // Note: We do not enter this loop for zero-remainders. The check
405            // is at the end of the loop. We assume equal distribution between
406            // possible remainders in [1, Count).
407            ExitWeight = 1;
408            BackEdgeWeight = (Count - 2) / 2;
409          } else {
410            // Unnecessary backedge, should never be taken. The conditional
411            // jump should be optimized away later.
412            ExitWeight = 1;
413            BackEdgeWeight = 0;
414          }
415          MDBuilder MDB(Builder.getContext());
416          BranchWeights = MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
417        }
418        Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot, BranchWeights);
419        NewIdx->addIncoming(Zero, InsertTop);
420        NewIdx->addIncoming(IdxNext, NewBB);
421        LatchBR->eraseFromParent();
422      }
423    }
424  
425    // Change the incoming values to the ones defined in the preheader or
426    // cloned loop.
427    for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
428      PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
429      unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
430      NewPHI->setIncomingBlock(idx, InsertTop);
431      BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
432      idx = NewPHI->getBasicBlockIndex(Latch);
433      Value *InVal = NewPHI->getIncomingValue(idx);
434      NewPHI->setIncomingBlock(idx, NewLatch);
435      if (Value *V = VMap.lookup(InVal))
436        NewPHI->setIncomingValue(idx, V);
437    }
438  
439    Loop *NewLoop = NewLoops[L];
440    assert(NewLoop && "L should have been cloned");
441    MDNode *LoopID = NewLoop->getLoopID();
442  
443    // Only add loop metadata if the loop is not going to be completely
444    // unrolled.
445    if (UnrollRemainder)
446      return NewLoop;
447  
448    std::optional<MDNode *> NewLoopID = makeFollowupLoopID(
449        LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
450    if (NewLoopID) {
451      NewLoop->setLoopID(*NewLoopID);
452  
453      // Do not setLoopAlreadyUnrolled if loop attributes have been defined
454      // explicitly.
455      return NewLoop;
456    }
457  
458    // Add unroll disable metadata to disable future unrolling for this loop.
459    NewLoop->setLoopAlreadyUnrolled();
460    return NewLoop;
461  }
462  
463  /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
464  /// we return true only if UnrollRuntimeMultiExit is set to true.
465  static bool canProfitablyUnrollMultiExitLoop(
466      Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
467      bool UseEpilogRemainder) {
468  
469    // Priority goes to UnrollRuntimeMultiExit if it's supplied.
470    if (UnrollRuntimeMultiExit.getNumOccurrences())
471      return UnrollRuntimeMultiExit;
472  
473    // The main pain point with multi-exit loop unrolling is that once unrolled,
474    // we will not be able to merge all blocks into a straight line code.
475    // There are branches within the unrolled loop that go to the OtherExits.
476    // The second point is the increase in code size, but this is true
477    // irrespective of multiple exits.
478  
479    // Note: Both the heuristics below are coarse grained. We are essentially
480    // enabling unrolling of loops that have a single side exit other than the
481    // normal LatchExit (i.e. exiting into a deoptimize block).
482    // The heuristics considered are:
483    // 1. low number of branches in the unrolled version.
484    // 2. high predictability of these extra branches.
485    // We avoid unrolling loops that have more than two exiting blocks. This
486    // limits the total number of branches in the unrolled loop to be atmost
487    // the unroll factor (since one of the exiting blocks is the latch block).
488    SmallVector<BasicBlock*, 4> ExitingBlocks;
489    L->getExitingBlocks(ExitingBlocks);
490    if (ExitingBlocks.size() > 2)
491      return false;
492  
493    // Allow unrolling of loops with no non latch exit blocks.
494    if (OtherExits.size() == 0)
495      return true;
496  
497    // The second heuristic is that L has one exit other than the latchexit and
498    // that exit is a deoptimize block. We know that deoptimize blocks are rarely
499    // taken, which also implies the branch leading to the deoptimize block is
500    // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
501    // assume the other exit branch is predictable even if it has no deoptimize
502    // call.
503    return (OtherExits.size() == 1 &&
504            (UnrollRuntimeOtherExitPredictable ||
505             OtherExits[0]->getPostdominatingDeoptimizeCall()));
506    // TODO: These can be fine-tuned further to consider code size or deopt states
507    // that are captured by the deoptimize exit block.
508    // Also, we can extend this to support more cases, if we actually
509    // know of kinds of multiexit loops that would benefit from unrolling.
510  }
511  
512  /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
513  /// accounting for the possibility of unsigned overflow in the 2s complement
514  /// domain. Preconditions:
515  /// 1) TripCount = BECount + 1 (allowing overflow)
516  /// 2) Log2(Count) <= BitWidth(BECount)
517  static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
518                                    Value *TripCount, unsigned Count) {
519    // Note that TripCount is BECount + 1.
520    if (isPowerOf2_32(Count))
521      // If the expression is zero, then either:
522      //  1. There are no iterations to be run in the prolog/epilog loop.
523      // OR
524      //  2. The addition computing TripCount overflowed.
525      //
526      // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
527      // the number of iterations that remain to be run in the original loop is a
528      // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
529      // precondition of this method).
530      return B.CreateAnd(TripCount, Count - 1, "xtraiter");
531  
532    // As (BECount + 1) can potentially unsigned overflow we count
533    // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
534    Constant *CountC = ConstantInt::get(BECount->getType(), Count);
535    Value *ModValTmp = B.CreateURem(BECount, CountC);
536    Value *ModValAdd = B.CreateAdd(ModValTmp,
537                                   ConstantInt::get(ModValTmp->getType(), 1));
538    // At that point (BECount % Count) + 1 could be equal to Count.
539    // To handle this case we need to take mod by Count one more time.
540    return B.CreateURem(ModValAdd, CountC, "xtraiter");
541  }
542  
543  
544  /// Insert code in the prolog/epilog code when unrolling a loop with a
545  /// run-time trip-count.
546  ///
547  /// This method assumes that the loop unroll factor is total number
548  /// of loop bodies in the loop after unrolling. (Some folks refer
549  /// to the unroll factor as the number of *extra* copies added).
550  /// We assume also that the loop unroll factor is a power-of-two. So, after
551  /// unrolling the loop, the number of loop bodies executed is 2,
552  /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
553  /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
554  /// the switch instruction is generated.
555  ///
556  /// ***Prolog case***
557  ///        extraiters = tripcount % loopfactor
558  ///        if (extraiters == 0) jump Loop:
559  ///        else jump Prol:
560  /// Prol:  LoopBody;
561  ///        extraiters -= 1                 // Omitted if unroll factor is 2.
562  ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
563  ///        if (tripcount < loopfactor) jump End:
564  /// Loop:
565  /// ...
566  /// End:
567  ///
568  /// ***Epilog case***
569  ///        extraiters = tripcount % loopfactor
570  ///        if (tripcount < loopfactor) jump LoopExit:
571  ///        unroll_iters = tripcount - extraiters
572  /// Loop:  LoopBody; (executes unroll_iter times);
573  ///        unroll_iter -= 1
574  ///        if (unroll_iter != 0) jump Loop:
575  /// LoopExit:
576  ///        if (extraiters == 0) jump EpilExit:
577  /// Epil:  LoopBody; (executes extraiters times)
578  ///        extraiters -= 1                 // Omitted if unroll factor is 2.
579  ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
580  /// EpilExit:
581  
582  bool llvm::UnrollRuntimeLoopRemainder(
583      Loop *L, unsigned Count, bool AllowExpensiveTripCount,
584      bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
585      LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
586      const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
587    LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
588    LLVM_DEBUG(L->dump());
589    LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
590                                  : dbgs() << "Using prolog remainder.\n");
591  
592    // Make sure the loop is in canonical form.
593    if (!L->isLoopSimplifyForm()) {
594      LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
595      return false;
596    }
597  
598    // Guaranteed by LoopSimplifyForm.
599    BasicBlock *Latch = L->getLoopLatch();
600    BasicBlock *Header = L->getHeader();
601  
602    BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
603  
604    if (!LatchBR || LatchBR->isUnconditional()) {
605      // The loop-rotate pass can be helpful to avoid this in many cases.
606      LLVM_DEBUG(
607          dbgs()
608          << "Loop latch not terminated by a conditional branch.\n");
609      return false;
610    }
611  
612    unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
613    BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
614  
615    if (L->contains(LatchExit)) {
616      // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
617      // targets of the Latch be an exit block out of the loop.
618      LLVM_DEBUG(
619          dbgs()
620          << "One of the loop latch successors must be the exit block.\n");
621      return false;
622    }
623  
624    // These are exit blocks other than the target of the latch exiting block.
625    SmallVector<BasicBlock *, 4> OtherExits;
626    L->getUniqueNonLatchExitBlocks(OtherExits);
627    // Support only single exit and exiting block unless multi-exit loop
628    // unrolling is enabled.
629    if (!L->getExitingBlock() || OtherExits.size()) {
630      // We rely on LCSSA form being preserved when the exit blocks are transformed.
631      // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
632      if (!PreserveLCSSA)
633        return false;
634  
635      if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit,
636                                            UseEpilogRemainder)) {
637        LLVM_DEBUG(
638            dbgs()
639            << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
640               "enabled!\n");
641        return false;
642      }
643    }
644    // Use Scalar Evolution to compute the trip count. This allows more loops to
645    // be unrolled than relying on induction var simplification.
646    if (!SE)
647      return false;
648  
649    // Only unroll loops with a computable trip count.
650    // We calculate the backedge count by using getExitCount on the Latch block,
651    // which is proven to be the only exiting block in this loop. This is same as
652    // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
653    // exiting blocks).
654    const SCEV *BECountSC = SE->getExitCount(L, Latch);
655    if (isa<SCEVCouldNotCompute>(BECountSC)) {
656      LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
657      return false;
658    }
659  
660    unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
661  
662    // Add 1 since the backedge count doesn't include the first loop iteration.
663    // (Note that overflow can occur, this is handled explicitly below)
664    const SCEV *TripCountSC =
665        SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
666    if (isa<SCEVCouldNotCompute>(TripCountSC)) {
667      LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
668      return false;
669    }
670  
671    BasicBlock *PreHeader = L->getLoopPreheader();
672    BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
673    const DataLayout &DL = Header->getDataLayout();
674    SCEVExpander Expander(*SE, DL, "loop-unroll");
675    if (!AllowExpensiveTripCount &&
676        Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
677                                     TTI, PreHeaderBR)) {
678      LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
679      return false;
680    }
681  
682    // This constraint lets us deal with an overflowing trip count easily; see the
683    // comment on ModVal below.
684    if (Log2_32(Count) > BEWidth) {
685      LLVM_DEBUG(
686          dbgs()
687          << "Count failed constraint on overflow trip count calculation.\n");
688      return false;
689    }
690  
691    // Loop structure is the following:
692    //
693    // PreHeader
694    //   Header
695    //   ...
696    //   Latch
697    // LatchExit
698  
699    BasicBlock *NewPreHeader;
700    BasicBlock *NewExit = nullptr;
701    BasicBlock *PrologExit = nullptr;
702    BasicBlock *EpilogPreHeader = nullptr;
703    BasicBlock *PrologPreHeader = nullptr;
704  
705    if (UseEpilogRemainder) {
706      // If epilog remainder
707      // Split PreHeader to insert a branch around loop for unrolling.
708      NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
709      NewPreHeader->setName(PreHeader->getName() + ".new");
710      // Split LatchExit to create phi nodes from branch above.
711      NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
712                                       nullptr, PreserveLCSSA);
713      // NewExit gets its DebugLoc from LatchExit, which is not part of the
714      // original Loop.
715      // Fix this by setting Loop's DebugLoc to NewExit.
716      auto *NewExitTerminator = NewExit->getTerminator();
717      NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
718      // Split NewExit to insert epilog remainder loop.
719      EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
720      EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
721  
722      // If the latch exits from multiple level of nested loops, then
723      // by assumption there must be another loop exit which branches to the
724      // outer loop and we must adjust the loop for the newly inserted blocks
725      // to account for the fact that our epilogue is still in the same outer
726      // loop. Note that this leaves loopinfo temporarily out of sync with the
727      // CFG until the actual epilogue loop is inserted.
728      if (auto *ParentL = L->getParentLoop())
729        if (LI->getLoopFor(LatchExit) != ParentL) {
730          LI->removeBlock(NewExit);
731          ParentL->addBasicBlockToLoop(NewExit, *LI);
732          LI->removeBlock(EpilogPreHeader);
733          ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI);
734        }
735  
736    } else {
737      // If prolog remainder
738      // Split the original preheader twice to insert prolog remainder loop
739      PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
740      PrologPreHeader->setName(Header->getName() + ".prol.preheader");
741      PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
742                              DT, LI);
743      PrologExit->setName(Header->getName() + ".prol.loopexit");
744      // Split PrologExit to get NewPreHeader.
745      NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
746      NewPreHeader->setName(PreHeader->getName() + ".new");
747    }
748    // Loop structure should be the following:
749    //  Epilog             Prolog
750    //
751    // PreHeader         PreHeader
752    // *NewPreHeader     *PrologPreHeader
753    //   Header          *PrologExit
754    //   ...             *NewPreHeader
755    //   Latch             Header
756    // *NewExit            ...
757    // *EpilogPreHeader    Latch
758    // LatchExit              LatchExit
759  
760    // Calculate conditions for branch around loop for unrolling
761    // in epilog case and around prolog remainder loop in prolog case.
762    // Compute the number of extra iterations required, which is:
763    //  extra iterations = run-time trip count % loop unroll factor
764    PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
765    IRBuilder<> B(PreHeaderBR);
766    Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
767                                              PreHeaderBR);
768    Value *BECount;
769    // If there are other exits before the latch, that may cause the latch exit
770    // branch to never be executed, and the latch exit count may be poison.
771    // In this case, freeze the TripCount and base BECount on the frozen
772    // TripCount. We will introduce two branches using these values, and it's
773    // important that they see a consistent value (which would not be guaranteed
774    // if were frozen independently.)
775    if ((!OtherExits.empty() || !SE->loopHasNoAbnormalExits(L)) &&
776        !isGuaranteedNotToBeUndefOrPoison(TripCount, AC, PreHeaderBR, DT)) {
777      TripCount = B.CreateFreeze(TripCount);
778      BECount =
779          B.CreateAdd(TripCount, Constant::getAllOnesValue(TripCount->getType()));
780    } else {
781      // If we don't need to freeze, use SCEVExpander for BECount as well, to
782      // allow slightly better value reuse.
783      BECount =
784          Expander.expandCodeFor(BECountSC, BECountSC->getType(), PreHeaderBR);
785    }
786  
787    Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
788  
789    Value *BranchVal =
790        UseEpilogRemainder ? B.CreateICmpULT(BECount,
791                                             ConstantInt::get(BECount->getType(),
792                                                              Count - 1)) :
793                             B.CreateIsNotNull(ModVal, "lcmp.mod");
794    BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
795    BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
796    // Branch to either remainder (extra iterations) loop or unrolling loop.
797    MDNode *BranchWeights = nullptr;
798    if (hasBranchWeightMD(*Latch->getTerminator())) {
799      // Assume loop is nearly always entered.
800      MDBuilder MDB(B.getContext());
801      BranchWeights = MDB.createBranchWeights(EpilogHeaderWeights);
802    }
803    B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop, BranchWeights);
804    PreHeaderBR->eraseFromParent();
805    if (DT) {
806      if (UseEpilogRemainder)
807        DT->changeImmediateDominator(NewExit, PreHeader);
808      else
809        DT->changeImmediateDominator(PrologExit, PreHeader);
810    }
811    Function *F = Header->getParent();
812    // Get an ordered list of blocks in the loop to help with the ordering of the
813    // cloned blocks in the prolog/epilog code
814    LoopBlocksDFS LoopBlocks(L);
815    LoopBlocks.perform(LI);
816  
817    //
818    // For each extra loop iteration, create a copy of the loop's basic blocks
819    // and generate a condition that branches to the copy depending on the
820    // number of 'left over' iterations.
821    //
822    std::vector<BasicBlock *> NewBlocks;
823    ValueToValueMapTy VMap;
824  
825    // Clone all the basic blocks in the loop. If Count is 2, we don't clone
826    // the loop, otherwise we create a cloned loop to execute the extra
827    // iterations. This function adds the appropriate CFG connections.
828    BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
829    BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
830    Loop *remainderLoop = CloneLoopBlocks(
831        L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot,
832        NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI, Count);
833  
834    // Insert the cloned blocks into the function.
835    F->splice(InsertBot->getIterator(), F, NewBlocks[0]->getIterator(), F->end());
836  
837    // Now the loop blocks are cloned and the other exiting blocks from the
838    // remainder are connected to the original Loop's exit blocks. The remaining
839    // work is to update the phi nodes in the original loop, and take in the
840    // values from the cloned region.
841    for (auto *BB : OtherExits) {
842      // Given we preserve LCSSA form, we know that the values used outside the
843      // loop will be used through these phi nodes at the exit blocks that are
844      // transformed below.
845      for (PHINode &PN : BB->phis()) {
846       unsigned oldNumOperands = PN.getNumIncomingValues();
847       // Add the incoming values from the remainder code to the end of the phi
848       // node.
849       for (unsigned i = 0; i < oldNumOperands; i++){
850         auto *PredBB =PN.getIncomingBlock(i);
851         if (PredBB == Latch)
852           // The latch exit is handled separately, see connectX
853           continue;
854         if (!L->contains(PredBB))
855           // Even if we had dedicated exits, the code above inserted an
856           // extra branch which can reach the latch exit.
857           continue;
858  
859         auto *V = PN.getIncomingValue(i);
860         if (Instruction *I = dyn_cast<Instruction>(V))
861           if (L->contains(I))
862             V = VMap.lookup(I);
863         PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
864       }
865     }
866  #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
867      for (BasicBlock *SuccBB : successors(BB)) {
868        assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) &&
869               "Breaks the definition of dedicated exits!");
870      }
871  #endif
872    }
873  
874    // Update the immediate dominator of the exit blocks and blocks that are
875    // reachable from the exit blocks. This is needed because we now have paths
876    // from both the original loop and the remainder code reaching the exit
877    // blocks. While the IDom of these exit blocks were from the original loop,
878    // now the IDom is the preheader (which decides whether the original loop or
879    // remainder code should run).
880    if (DT && !L->getExitingBlock()) {
881      SmallVector<BasicBlock *, 16> ChildrenToUpdate;
882      // NB! We have to examine the dom children of all loop blocks, not just
883      // those which are the IDom of the exit blocks. This is because blocks
884      // reachable from the exit blocks can have their IDom as the nearest common
885      // dominator of the exit blocks.
886      for (auto *BB : L->blocks()) {
887        auto *DomNodeBB = DT->getNode(BB);
888        for (auto *DomChild : DomNodeBB->children()) {
889          auto *DomChildBB = DomChild->getBlock();
890          if (!L->contains(LI->getLoopFor(DomChildBB)))
891            ChildrenToUpdate.push_back(DomChildBB);
892        }
893      }
894      for (auto *BB : ChildrenToUpdate)
895        DT->changeImmediateDominator(BB, PreHeader);
896    }
897  
898    // Loop structure should be the following:
899    //  Epilog             Prolog
900    //
901    // PreHeader         PreHeader
902    // NewPreHeader      PrologPreHeader
903    //   Header            PrologHeader
904    //   ...               ...
905    //   Latch             PrologLatch
906    // NewExit           PrologExit
907    // EpilogPreHeader   NewPreHeader
908    //   EpilogHeader      Header
909    //   ...               ...
910    //   EpilogLatch       Latch
911    // LatchExit              LatchExit
912  
913    // Rewrite the cloned instruction operands to use the values created when the
914    // clone is created.
915    for (BasicBlock *BB : NewBlocks) {
916      Module *M = BB->getModule();
917      for (Instruction &I : *BB) {
918        RemapInstruction(&I, VMap,
919                         RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
920        RemapDbgRecordRange(M, I.getDbgRecordRange(), VMap,
921                            RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
922      }
923    }
924  
925    if (UseEpilogRemainder) {
926      // Connect the epilog code to the original loop and update the
927      // PHI functions.
928      ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, EpilogPreHeader,
929                    NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE, Count);
930  
931      // Update counter in loop for unrolling.
932      // Use an incrementing IV.  Pre-incr/post-incr is backedge/trip count.
933      // Subtle: TestVal can be 0 if we wrapped when computing the trip count,
934      // thus we must compare the post-increment (wrapping) value.
935      IRBuilder<> B2(NewPreHeader->getTerminator());
936      Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
937      BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
938      PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter");
939      NewIdx->insertBefore(Header->getFirstNonPHIIt());
940      B2.SetInsertPoint(LatchBR);
941      auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
942      auto *One = ConstantInt::get(NewIdx->getType(), 1);
943      Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
944      auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
945      Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp");
946      NewIdx->addIncoming(Zero, NewPreHeader);
947      NewIdx->addIncoming(IdxNext, Latch);
948      LatchBR->setCondition(IdxCmp);
949    } else {
950      // Connect the prolog code to the original loop and update the
951      // PHI functions.
952      ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
953                    NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE);
954    }
955  
956    // If this loop is nested, then the loop unroller changes the code in the any
957    // of its parent loops, so the Scalar Evolution pass needs to be run again.
958    SE->forgetTopmostLoop(L);
959  
960    // Verify that the Dom Tree and Loop Info are correct.
961  #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
962    if (DT) {
963      assert(DT->verify(DominatorTree::VerificationLevel::Full));
964      LI->verify(*DT);
965    }
966  #endif
967  
968    // For unroll factor 2 remainder loop will have 1 iteration.
969    if (Count == 2 && DT && LI && SE) {
970      // TODO: This code could probably be pulled out into a helper function
971      // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion.
972      BasicBlock *RemainderLatch = remainderLoop->getLoopLatch();
973      assert(RemainderLatch);
974      SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(),
975                                               remainderLoop->getBlocks().end());
976      breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr);
977      remainderLoop = nullptr;
978  
979      // Simplify loop values after breaking the backedge
980      const DataLayout &DL = L->getHeader()->getDataLayout();
981      SmallVector<WeakTrackingVH, 16> DeadInsts;
982      for (BasicBlock *BB : RemainderBlocks) {
983        for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
984          if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
985            if (LI->replacementPreservesLCSSAForm(&Inst, V))
986              Inst.replaceAllUsesWith(V);
987          if (isInstructionTriviallyDead(&Inst))
988            DeadInsts.emplace_back(&Inst);
989        }
990        // We can't do recursive deletion until we're done iterating, as we might
991        // have a phi which (potentially indirectly) uses instructions later in
992        // the block we're iterating through.
993        RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
994      }
995  
996      // Merge latch into exit block.
997      auto *ExitBB = RemainderLatch->getSingleSuccessor();
998      assert(ExitBB && "required after breaking cond br backedge");
999      DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1000      MergeBlockIntoPredecessor(ExitBB, &DTU, LI);
1001    }
1002  
1003    // Canonicalize to LoopSimplifyForm both original and remainder loops. We
1004    // cannot rely on the LoopUnrollPass to do this because it only does
1005    // canonicalization for parent/subloops and not the sibling loops.
1006    if (OtherExits.size() > 0) {
1007      // Generate dedicated exit blocks for the original loop, to preserve
1008      // LoopSimplifyForm.
1009      formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
1010      // Generate dedicated exit blocks for the remainder loop if one exists, to
1011      // preserve LoopSimplifyForm.
1012      if (remainderLoop)
1013        formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
1014    }
1015  
1016    auto UnrollResult = LoopUnrollResult::Unmodified;
1017    if (remainderLoop && UnrollRemainder) {
1018      LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
1019      UnrollLoopOptions ULO;
1020      ULO.Count = Count - 1;
1021      ULO.Force = false;
1022      ULO.Runtime = false;
1023      ULO.AllowExpensiveTripCount = false;
1024      ULO.UnrollRemainder = false;
1025      ULO.ForgetAllSCEV = ForgetAllSCEV;
1026      assert(!getLoopConvergenceHeart(L) &&
1027             "A loop with a convergence heart does not allow runtime unrolling.");
1028      UnrollResult = UnrollLoop(remainderLoop, ULO, LI, SE, DT, AC, TTI,
1029                                /*ORE*/ nullptr, PreserveLCSSA);
1030    }
1031  
1032    if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1033      *ResultLoop = remainderLoop;
1034    NumRuntimeUnrolled++;
1035    return true;
1036  }
1037