1 //===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements loop unroll and jam as a routine, much like 10 // LoopUnroll.cpp implements loop unroll. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/DependenceAnalysis.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopAnalysisManager.h" 20 #include "llvm/Analysis/LoopIterator.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpander.h" 25 #include "llvm/Analysis/Utils/Local.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/LoopSimplify.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 39 #include "llvm/Transforms/Utils/UnrollLoop.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "loop-unroll-and-jam" 43 44 STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed"); 45 STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed"); 46 47 typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet; 48 49 // Partition blocks in an outer/inner loop pair into blocks before and after 50 // the loop 51 static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop, 52 BasicBlockSet &ForeBlocks, 53 BasicBlockSet &SubLoopBlocks, 54 BasicBlockSet &AftBlocks, 55 DominatorTree *DT) { 56 BasicBlock *SubLoopLatch = SubLoop->getLoopLatch(); 57 SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end()); 58 59 for (BasicBlock *BB : L->blocks()) { 60 if (!SubLoop->contains(BB)) { 61 if (DT->dominates(SubLoopLatch, BB)) 62 AftBlocks.insert(BB); 63 else 64 ForeBlocks.insert(BB); 65 } 66 } 67 68 // Check that all blocks in ForeBlocks together dominate the subloop 69 // TODO: This might ideally be done better with a dominator/postdominators. 70 BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader(); 71 for (BasicBlock *BB : ForeBlocks) { 72 if (BB == SubLoopPreHeader) 73 continue; 74 Instruction *TI = BB->getTerminator(); 75 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 76 if (!ForeBlocks.count(TI->getSuccessor(i))) 77 return false; 78 } 79 80 return true; 81 } 82 83 // Looks at the phi nodes in Header for values coming from Latch. For these 84 // instructions and all their operands calls Visit on them, keeping going for 85 // all the operands in AftBlocks. Returns false if Visit returns false, 86 // otherwise returns true. This is used to process the instructions in the 87 // Aft blocks that need to be moved before the subloop. It is used in two 88 // places. One to check that the required set of instructions can be moved 89 // before the loop. Then to collect the instructions to actually move in 90 // moveHeaderPhiOperandsToForeBlocks. 91 template <typename T> 92 static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch, 93 BasicBlockSet &AftBlocks, T Visit) { 94 SmallVector<Instruction *, 8> Worklist; 95 for (auto &Phi : Header->phis()) { 96 Value *V = Phi.getIncomingValueForBlock(Latch); 97 if (Instruction *I = dyn_cast<Instruction>(V)) 98 Worklist.push_back(I); 99 } 100 101 while (!Worklist.empty()) { 102 Instruction *I = Worklist.back(); 103 Worklist.pop_back(); 104 if (!Visit(I)) 105 return false; 106 107 if (AftBlocks.count(I->getParent())) 108 for (auto &U : I->operands()) 109 if (Instruction *II = dyn_cast<Instruction>(U)) 110 Worklist.push_back(II); 111 } 112 113 return true; 114 } 115 116 // Move the phi operands of Header from Latch out of AftBlocks to InsertLoc. 117 static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header, 118 BasicBlock *Latch, 119 Instruction *InsertLoc, 120 BasicBlockSet &AftBlocks) { 121 // We need to ensure we move the instructions in the correct order, 122 // starting with the earliest required instruction and moving forward. 123 std::vector<Instruction *> Visited; 124 processHeaderPhiOperands(Header, Latch, AftBlocks, 125 [&Visited, &AftBlocks](Instruction *I) { 126 if (AftBlocks.count(I->getParent())) 127 Visited.push_back(I); 128 return true; 129 }); 130 131 // Move all instructions in program order to before the InsertLoc 132 BasicBlock *InsertLocBB = InsertLoc->getParent(); 133 for (Instruction *I : reverse(Visited)) { 134 if (I->getParent() != InsertLocBB) 135 I->moveBefore(InsertLoc); 136 } 137 } 138 139 /* 140 This method performs Unroll and Jam. For a simple loop like: 141 for (i = ..) 142 Fore(i) 143 for (j = ..) 144 SubLoop(i, j) 145 Aft(i) 146 147 Instead of doing normal inner or outer unrolling, we do: 148 for (i = .., i+=2) 149 Fore(i) 150 Fore(i+1) 151 for (j = ..) 152 SubLoop(i, j) 153 SubLoop(i+1, j) 154 Aft(i) 155 Aft(i+1) 156 157 So the outer loop is essetially unrolled and then the inner loops are fused 158 ("jammed") together into a single loop. This can increase speed when there 159 are loads in SubLoop that are invariant to i, as they become shared between 160 the now jammed inner loops. 161 162 We do this by spliting the blocks in the loop into Fore, Subloop and Aft. 163 Fore blocks are those before the inner loop, Aft are those after. Normal 164 Unroll code is used to copy each of these sets of blocks and the results are 165 combined together into the final form above. 166 167 isSafeToUnrollAndJam should be used prior to calling this to make sure the 168 unrolling will be valid. Checking profitablility is also advisable. 169 170 If EpilogueLoop is non-null, it receives the epilogue loop (if it was 171 necessary to create one and not fully unrolled). 172 */ 173 LoopUnrollResult llvm::UnrollAndJamLoop( 174 Loop *L, unsigned Count, unsigned TripCount, unsigned TripMultiple, 175 bool UnrollRemainder, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 176 AssumptionCache *AC, OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) { 177 178 // When we enter here we should have already checked that it is safe 179 BasicBlock *Header = L->getHeader(); 180 assert(L->getSubLoops().size() == 1); 181 Loop *SubLoop = *L->begin(); 182 183 // Don't enter the unroll code if there is nothing to do. 184 if (TripCount == 0 && Count < 2) { 185 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n"); 186 return LoopUnrollResult::Unmodified; 187 } 188 189 assert(Count > 0); 190 assert(TripMultiple > 0); 191 assert(TripCount == 0 || TripCount % TripMultiple == 0); 192 193 // Are we eliminating the loop control altogether? 194 bool CompletelyUnroll = (Count == TripCount); 195 196 // We use the runtime remainder in cases where we don't know trip multiple 197 if (TripMultiple == 1 || TripMultiple % Count != 0) { 198 if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false, 199 /*UseEpilogRemainder*/ true, 200 UnrollRemainder, /*ForgetAllSCEV*/ false, 201 LI, SE, DT, AC, true, EpilogueLoop)) { 202 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be " 203 "generated when assuming runtime trip count\n"); 204 return LoopUnrollResult::Unmodified; 205 } 206 } 207 208 // Notify ScalarEvolution that the loop will be substantially changed, 209 // if not outright eliminated. 210 if (SE) { 211 SE->forgetLoop(L); 212 SE->forgetLoop(SubLoop); 213 } 214 215 using namespace ore; 216 // Report the unrolling decision. 217 if (CompletelyUnroll) { 218 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %" 219 << Header->getName() << " with trip count " << TripCount 220 << "!\n"); 221 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 222 L->getHeader()) 223 << "completely unroll and jammed loop with " 224 << NV("UnrollCount", TripCount) << " iterations"); 225 } else { 226 auto DiagBuilder = [&]() { 227 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 228 L->getHeader()); 229 return Diag << "unroll and jammed loop by a factor of " 230 << NV("UnrollCount", Count); 231 }; 232 233 LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName() 234 << " by " << Count); 235 if (TripMultiple != 1) { 236 LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 237 ORE->emit([&]() { 238 return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple) 239 << " trips per branch"; 240 }); 241 } else { 242 LLVM_DEBUG(dbgs() << " with run-time trip count"); 243 ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; }); 244 } 245 LLVM_DEBUG(dbgs() << "!\n"); 246 } 247 248 BasicBlock *Preheader = L->getLoopPreheader(); 249 BasicBlock *LatchBlock = L->getLoopLatch(); 250 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 251 assert(Preheader && LatchBlock && Header); 252 assert(BI && !BI->isUnconditional()); 253 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 254 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 255 bool SubLoopContinueOnTrue = SubLoop->contains( 256 SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0)); 257 258 // Partition blocks in an outer/inner loop pair into blocks before and after 259 // the loop 260 BasicBlockSet SubLoopBlocks; 261 BasicBlockSet ForeBlocks; 262 BasicBlockSet AftBlocks; 263 partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks, 264 DT); 265 266 // We keep track of the entering/first and exiting/last block of each of 267 // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of 268 // blocks easier. 269 std::vector<BasicBlock *> ForeBlocksFirst; 270 std::vector<BasicBlock *> ForeBlocksLast; 271 std::vector<BasicBlock *> SubLoopBlocksFirst; 272 std::vector<BasicBlock *> SubLoopBlocksLast; 273 std::vector<BasicBlock *> AftBlocksFirst; 274 std::vector<BasicBlock *> AftBlocksLast; 275 ForeBlocksFirst.push_back(Header); 276 ForeBlocksLast.push_back(SubLoop->getLoopPreheader()); 277 SubLoopBlocksFirst.push_back(SubLoop->getHeader()); 278 SubLoopBlocksLast.push_back(SubLoop->getExitingBlock()); 279 AftBlocksFirst.push_back(SubLoop->getExitBlock()); 280 AftBlocksLast.push_back(L->getExitingBlock()); 281 // Maps Blocks[0] -> Blocks[It] 282 ValueToValueMapTy LastValueMap; 283 284 // Move any instructions from fore phi operands from AftBlocks into Fore. 285 moveHeaderPhiOperandsToForeBlocks( 286 Header, LatchBlock, SubLoop->getLoopPreheader()->getTerminator(), 287 AftBlocks); 288 289 // The current on-the-fly SSA update requires blocks to be processed in 290 // reverse postorder so that LastValueMap contains the correct value at each 291 // exit. 292 LoopBlocksDFS DFS(L); 293 DFS.perform(LI); 294 // Stash the DFS iterators before adding blocks to the loop. 295 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 296 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 297 298 if (Header->getParent()->isDebugInfoForProfiling()) 299 for (BasicBlock *BB : L->getBlocks()) 300 for (Instruction &I : *BB) 301 if (!isa<DbgInfoIntrinsic>(&I)) 302 if (const DILocation *DIL = I.getDebugLoc()) { 303 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(Count); 304 if (NewDIL) 305 I.setDebugLoc(NewDIL.getValue()); 306 else 307 LLVM_DEBUG(dbgs() 308 << "Failed to create new discriminator: " 309 << DIL->getFilename() << " Line: " << DIL->getLine()); 310 } 311 312 // Copy all blocks 313 for (unsigned It = 1; It != Count; ++It) { 314 std::vector<BasicBlock *> NewBlocks; 315 // Maps Blocks[It] -> Blocks[It-1] 316 DenseMap<Value *, Value *> PrevItValueMap; 317 318 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 319 ValueToValueMapTy VMap; 320 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 321 Header->getParent()->getBasicBlockList().push_back(New); 322 323 if (ForeBlocks.count(*BB)) { 324 L->addBasicBlockToLoop(New, *LI); 325 326 if (*BB == ForeBlocksFirst[0]) 327 ForeBlocksFirst.push_back(New); 328 if (*BB == ForeBlocksLast[0]) 329 ForeBlocksLast.push_back(New); 330 } else if (SubLoopBlocks.count(*BB)) { 331 SubLoop->addBasicBlockToLoop(New, *LI); 332 333 if (*BB == SubLoopBlocksFirst[0]) 334 SubLoopBlocksFirst.push_back(New); 335 if (*BB == SubLoopBlocksLast[0]) 336 SubLoopBlocksLast.push_back(New); 337 } else if (AftBlocks.count(*BB)) { 338 L->addBasicBlockToLoop(New, *LI); 339 340 if (*BB == AftBlocksFirst[0]) 341 AftBlocksFirst.push_back(New); 342 if (*BB == AftBlocksLast[0]) 343 AftBlocksLast.push_back(New); 344 } else { 345 llvm_unreachable("BB being cloned should be in Fore/Sub/Aft"); 346 } 347 348 // Update our running maps of newest clones 349 PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]); 350 LastValueMap[*BB] = New; 351 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 352 VI != VE; ++VI) { 353 PrevItValueMap[VI->second] = 354 const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]); 355 LastValueMap[VI->first] = VI->second; 356 } 357 358 NewBlocks.push_back(New); 359 360 // Update DomTree: 361 if (*BB == ForeBlocksFirst[0]) 362 DT->addNewBlock(New, ForeBlocksLast[It - 1]); 363 else if (*BB == SubLoopBlocksFirst[0]) 364 DT->addNewBlock(New, SubLoopBlocksLast[It - 1]); 365 else if (*BB == AftBlocksFirst[0]) 366 DT->addNewBlock(New, AftBlocksLast[It - 1]); 367 else { 368 // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree 369 // structure. 370 auto BBDomNode = DT->getNode(*BB); 371 auto BBIDom = BBDomNode->getIDom(); 372 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 373 assert(OriginalBBIDom); 374 assert(LastValueMap[cast<Value>(OriginalBBIDom)]); 375 DT->addNewBlock( 376 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 377 } 378 } 379 380 // Remap all instructions in the most recent iteration 381 for (BasicBlock *NewBlock : NewBlocks) { 382 for (Instruction &I : *NewBlock) { 383 ::remapInstruction(&I, LastValueMap); 384 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 385 if (II->getIntrinsicID() == Intrinsic::assume) 386 AC->registerAssumption(II); 387 } 388 } 389 390 // Alter the ForeBlocks phi's, pointing them at the latest version of the 391 // value from the previous iteration's phis 392 for (PHINode &Phi : ForeBlocksFirst[It]->phis()) { 393 Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]); 394 assert(OldValue && "should have incoming edge from Aft[It]"); 395 Value *NewValue = OldValue; 396 if (Value *PrevValue = PrevItValueMap[OldValue]) 397 NewValue = PrevValue; 398 399 assert(Phi.getNumOperands() == 2); 400 Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]); 401 Phi.setIncomingValue(0, NewValue); 402 Phi.removeIncomingValue(1); 403 } 404 } 405 406 // Now that all the basic blocks for the unrolled iterations are in place, 407 // finish up connecting the blocks and phi nodes. At this point LastValueMap 408 // is the last unrolled iterations values. 409 410 // Update Phis in BB from OldBB to point to NewBB 411 auto updatePHIBlocks = [](BasicBlock *BB, BasicBlock *OldBB, 412 BasicBlock *NewBB) { 413 for (PHINode &Phi : BB->phis()) { 414 int I = Phi.getBasicBlockIndex(OldBB); 415 Phi.setIncomingBlock(I, NewBB); 416 } 417 }; 418 // Update Phis in BB from OldBB to point to NewBB and use the latest value 419 // from LastValueMap 420 auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB, 421 BasicBlock *NewBB, 422 ValueToValueMapTy &LastValueMap) { 423 for (PHINode &Phi : BB->phis()) { 424 for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) { 425 if (Phi.getIncomingBlock(b) == OldBB) { 426 Value *OldValue = Phi.getIncomingValue(b); 427 if (Value *LastValue = LastValueMap[OldValue]) 428 Phi.setIncomingValue(b, LastValue); 429 Phi.setIncomingBlock(b, NewBB); 430 break; 431 } 432 } 433 } 434 }; 435 // Move all the phis from Src into Dest 436 auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) { 437 Instruction *insertPoint = Dest->getFirstNonPHI(); 438 while (PHINode *Phi = dyn_cast<PHINode>(Src->begin())) 439 Phi->moveBefore(insertPoint); 440 }; 441 442 // Update the PHI values outside the loop to point to the last block 443 updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(), 444 LastValueMap); 445 446 // Update ForeBlocks successors and phi nodes 447 BranchInst *ForeTerm = 448 cast<BranchInst>(ForeBlocksLast.back()->getTerminator()); 449 BasicBlock *Dest = SubLoopBlocksFirst[0]; 450 ForeTerm->setSuccessor(0, Dest); 451 452 if (CompletelyUnroll) { 453 while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) { 454 Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader)); 455 Phi->getParent()->getInstList().erase(Phi); 456 } 457 } else { 458 // Update the PHI values to point to the last aft block 459 updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0], 460 AftBlocksLast.back(), LastValueMap); 461 } 462 463 for (unsigned It = 1; It != Count; It++) { 464 // Remap ForeBlock successors from previous iteration to this 465 BranchInst *ForeTerm = 466 cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator()); 467 BasicBlock *Dest = ForeBlocksFirst[It]; 468 ForeTerm->setSuccessor(0, Dest); 469 } 470 471 // Subloop successors and phis 472 BranchInst *SubTerm = 473 cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator()); 474 SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]); 475 SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]); 476 updatePHIBlocks(SubLoopBlocksFirst[0], ForeBlocksLast[0], 477 ForeBlocksLast.back()); 478 updatePHIBlocks(SubLoopBlocksFirst[0], SubLoopBlocksLast[0], 479 SubLoopBlocksLast.back()); 480 481 for (unsigned It = 1; It != Count; It++) { 482 // Replace the conditional branch of the previous iteration subloop with an 483 // unconditional one to this one 484 BranchInst *SubTerm = 485 cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator()); 486 BranchInst::Create(SubLoopBlocksFirst[It], SubTerm); 487 SubTerm->eraseFromParent(); 488 489 updatePHIBlocks(SubLoopBlocksFirst[It], ForeBlocksLast[It], 490 ForeBlocksLast.back()); 491 updatePHIBlocks(SubLoopBlocksFirst[It], SubLoopBlocksLast[It], 492 SubLoopBlocksLast.back()); 493 movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]); 494 } 495 496 // Aft blocks successors and phis 497 BranchInst *Term = cast<BranchInst>(AftBlocksLast.back()->getTerminator()); 498 if (CompletelyUnroll) { 499 BranchInst::Create(LoopExit, Term); 500 Term->eraseFromParent(); 501 } else { 502 Term->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]); 503 } 504 updatePHIBlocks(AftBlocksFirst[0], SubLoopBlocksLast[0], 505 SubLoopBlocksLast.back()); 506 507 for (unsigned It = 1; It != Count; It++) { 508 // Replace the conditional branch of the previous iteration subloop with an 509 // unconditional one to this one 510 BranchInst *AftTerm = 511 cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator()); 512 BranchInst::Create(AftBlocksFirst[It], AftTerm); 513 AftTerm->eraseFromParent(); 514 515 updatePHIBlocks(AftBlocksFirst[It], SubLoopBlocksLast[It], 516 SubLoopBlocksLast.back()); 517 movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]); 518 } 519 520 // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the 521 // new ones required. 522 if (Count != 1) { 523 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 524 DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0], 525 SubLoopBlocksFirst[0]); 526 DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, 527 SubLoopBlocksLast[0], AftBlocksFirst[0]); 528 529 DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert, 530 ForeBlocksLast.back(), SubLoopBlocksFirst[0]); 531 DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert, 532 SubLoopBlocksLast.back(), AftBlocksFirst[0]); 533 DT->applyUpdates(DTUpdates); 534 } 535 536 // Merge adjacent basic blocks, if possible. 537 SmallPtrSet<BasicBlock *, 16> MergeBlocks; 538 MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end()); 539 MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end()); 540 MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end()); 541 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 542 while (!MergeBlocks.empty()) { 543 BasicBlock *BB = *MergeBlocks.begin(); 544 BranchInst *Term = dyn_cast<BranchInst>(BB->getTerminator()); 545 if (Term && Term->isUnconditional() && L->contains(Term->getSuccessor(0))) { 546 BasicBlock *Dest = Term->getSuccessor(0); 547 BasicBlock *Fold = Dest->getUniquePredecessor(); 548 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 549 // Don't remove BB and add Fold as they are the same BB 550 assert(Fold == BB); 551 (void)Fold; 552 MergeBlocks.erase(Dest); 553 } else 554 MergeBlocks.erase(BB); 555 } else 556 MergeBlocks.erase(BB); 557 } 558 559 // At this point, the code is well formed. We now do a quick sweep over the 560 // inserted code, doing constant propagation and dead code elimination as we 561 // go. 562 simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC); 563 simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC); 564 565 NumCompletelyUnrolledAndJammed += CompletelyUnroll; 566 ++NumUnrolledAndJammed; 567 568 #ifndef NDEBUG 569 // We shouldn't have done anything to break loop simplify form or LCSSA. 570 Loop *OuterL = L->getParentLoop(); 571 Loop *OutestLoop = OuterL ? OuterL : (!CompletelyUnroll ? L : SubLoop); 572 assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI)); 573 if (!CompletelyUnroll) 574 assert(L->isLoopSimplifyForm()); 575 assert(SubLoop->isLoopSimplifyForm()); 576 assert(DT->verify()); 577 #endif 578 579 // Update LoopInfo if the loop is completely removed. 580 if (CompletelyUnroll) 581 LI->erase(L); 582 583 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 584 : LoopUnrollResult::PartiallyUnrolled; 585 } 586 587 static bool getLoadsAndStores(BasicBlockSet &Blocks, 588 SmallVector<Value *, 4> &MemInstr) { 589 // Scan the BBs and collect legal loads and stores. 590 // Returns false if non-simple loads/stores are found. 591 for (BasicBlock *BB : Blocks) { 592 for (Instruction &I : *BB) { 593 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 594 if (!Ld->isSimple()) 595 return false; 596 MemInstr.push_back(&I); 597 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 598 if (!St->isSimple()) 599 return false; 600 MemInstr.push_back(&I); 601 } else if (I.mayReadOrWriteMemory()) { 602 return false; 603 } 604 } 605 } 606 return true; 607 } 608 609 static bool checkDependencies(SmallVector<Value *, 4> &Earlier, 610 SmallVector<Value *, 4> &Later, 611 unsigned LoopDepth, bool InnerLoop, 612 DependenceInfo &DI) { 613 // Use DA to check for dependencies between loads and stores that make unroll 614 // and jam invalid 615 for (Value *I : Earlier) { 616 for (Value *J : Later) { 617 Instruction *Src = cast<Instruction>(I); 618 Instruction *Dst = cast<Instruction>(J); 619 if (Src == Dst) 620 continue; 621 // Ignore Input dependencies. 622 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 623 continue; 624 625 // Track dependencies, and if we find them take a conservative approach 626 // by allowing only = or < (not >), altough some > would be safe 627 // (depending upon unroll width). 628 // For the inner loop, we need to disallow any (> <) dependencies 629 // FIXME: Allow > so long as distance is less than unroll width 630 if (auto D = DI.depends(Src, Dst, true)) { 631 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 632 633 if (D->isConfused()) { 634 LLVM_DEBUG(dbgs() << " Confused dependency between:\n" 635 << " " << *Src << "\n" 636 << " " << *Dst << "\n"); 637 return false; 638 } 639 if (!InnerLoop) { 640 if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT) { 641 LLVM_DEBUG(dbgs() << " > dependency between:\n" 642 << " " << *Src << "\n" 643 << " " << *Dst << "\n"); 644 return false; 645 } 646 } else { 647 assert(LoopDepth + 1 <= D->getLevels()); 648 if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT && 649 D->getDirection(LoopDepth + 1) & Dependence::DVEntry::LT) { 650 LLVM_DEBUG(dbgs() << " < > dependency between:\n" 651 << " " << *Src << "\n" 652 << " " << *Dst << "\n"); 653 return false; 654 } 655 } 656 } 657 } 658 } 659 return true; 660 } 661 662 static bool checkDependencies(Loop *L, BasicBlockSet &ForeBlocks, 663 BasicBlockSet &SubLoopBlocks, 664 BasicBlockSet &AftBlocks, DependenceInfo &DI) { 665 // Get all loads/store pairs for each blocks 666 SmallVector<Value *, 4> ForeMemInstr; 667 SmallVector<Value *, 4> SubLoopMemInstr; 668 SmallVector<Value *, 4> AftMemInstr; 669 if (!getLoadsAndStores(ForeBlocks, ForeMemInstr) || 670 !getLoadsAndStores(SubLoopBlocks, SubLoopMemInstr) || 671 !getLoadsAndStores(AftBlocks, AftMemInstr)) 672 return false; 673 674 // Check for dependencies between any blocks that may change order 675 unsigned LoopDepth = L->getLoopDepth(); 676 return checkDependencies(ForeMemInstr, SubLoopMemInstr, LoopDepth, false, 677 DI) && 678 checkDependencies(ForeMemInstr, AftMemInstr, LoopDepth, false, DI) && 679 checkDependencies(SubLoopMemInstr, AftMemInstr, LoopDepth, false, 680 DI) && 681 checkDependencies(SubLoopMemInstr, SubLoopMemInstr, LoopDepth, true, 682 DI); 683 } 684 685 bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT, 686 DependenceInfo &DI) { 687 /* We currently handle outer loops like this: 688 | 689 ForeFirst <----\ } 690 Blocks | } ForeBlocks 691 ForeLast | } 692 | | 693 SubLoopFirst <\ | } 694 Blocks | | } SubLoopBlocks 695 SubLoopLast -/ | } 696 | | 697 AftFirst | } 698 Blocks | } AftBlocks 699 AftLast ------/ } 700 | 701 702 There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks 703 and AftBlocks, providing that there is one edge from Fores to SubLoops, 704 one edge from SubLoops to Afts and a single outer loop exit (from Afts). 705 In practice we currently limit Aft blocks to a single block, and limit 706 things further in the profitablility checks of the unroll and jam pass. 707 708 Because of the way we rearrange basic blocks, we also require that 709 the Fore blocks on all unrolled iterations are safe to move before the 710 SubLoop blocks of all iterations. So we require that the phi node looping 711 operands of ForeHeader can be moved to at least the end of ForeEnd, so that 712 we can arrange cloned Fore Blocks before the subloop and match up Phi's 713 correctly. 714 715 i.e. The old order of blocks used to be F1 S1_1 S1_2 A1 F2 S2_1 S2_2 A2. 716 It needs to be safe to tranform this to F1 F2 S1_1 S2_1 S1_2 S2_2 A1 A2. 717 718 There are then a number of checks along the lines of no calls, no 719 exceptions, inner loop IV is consistent, etc. Note that for loops requiring 720 runtime unrolling, UnrollRuntimeLoopRemainder can also fail in 721 UnrollAndJamLoop if the trip count cannot be easily calculated. 722 */ 723 724 if (!L->isLoopSimplifyForm() || L->getSubLoops().size() != 1) 725 return false; 726 Loop *SubLoop = L->getSubLoops()[0]; 727 if (!SubLoop->isLoopSimplifyForm()) 728 return false; 729 730 BasicBlock *Header = L->getHeader(); 731 BasicBlock *Latch = L->getLoopLatch(); 732 BasicBlock *Exit = L->getExitingBlock(); 733 BasicBlock *SubLoopHeader = SubLoop->getHeader(); 734 BasicBlock *SubLoopLatch = SubLoop->getLoopLatch(); 735 BasicBlock *SubLoopExit = SubLoop->getExitingBlock(); 736 737 if (Latch != Exit) 738 return false; 739 if (SubLoopLatch != SubLoopExit) 740 return false; 741 742 if (Header->hasAddressTaken() || SubLoopHeader->hasAddressTaken()) { 743 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n"); 744 return false; 745 } 746 747 // Split blocks into Fore/SubLoop/Aft based on dominators 748 BasicBlockSet SubLoopBlocks; 749 BasicBlockSet ForeBlocks; 750 BasicBlockSet AftBlocks; 751 if (!partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, 752 AftBlocks, &DT)) { 753 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n"); 754 return false; 755 } 756 757 // Aft blocks may need to move instructions to fore blocks, which becomes more 758 // difficult if there are multiple (potentially conditionally executed) 759 // blocks. For now we just exclude loops with multiple aft blocks. 760 if (AftBlocks.size() != 1) { 761 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle " 762 "multiple blocks after the loop\n"); 763 return false; 764 } 765 766 // Check inner loop backedge count is consistent on all iterations of the 767 // outer loop 768 if (!hasIterationCountInvariantInParent(SubLoop, SE)) { 769 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is " 770 "not consistent on each iteration\n"); 771 return false; 772 } 773 774 // Check the loop safety info for exceptions. 775 SimpleLoopSafetyInfo LSI; 776 LSI.computeLoopSafetyInfo(L); 777 if (LSI.anyBlockMayThrow()) { 778 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n"); 779 return false; 780 } 781 782 // We've ruled out the easy stuff and now need to check that there are no 783 // interdependencies which may prevent us from moving the: 784 // ForeBlocks before Subloop and AftBlocks. 785 // Subloop before AftBlocks. 786 // ForeBlock phi operands before the subloop 787 788 // Make sure we can move all instructions we need to before the subloop 789 if (!processHeaderPhiOperands( 790 Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) { 791 if (SubLoop->contains(I->getParent())) 792 return false; 793 if (AftBlocks.count(I->getParent())) { 794 // If we hit a phi node in afts we know we are done (probably 795 // LCSSA) 796 if (isa<PHINode>(I)) 797 return false; 798 // Can't move instructions with side effects or memory 799 // reads/writes 800 if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory()) 801 return false; 802 } 803 // Keep going 804 return true; 805 })) { 806 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required " 807 "instructions after subloop to before it\n"); 808 return false; 809 } 810 811 // Check for memory dependencies which prohibit the unrolling we are doing. 812 // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check 813 // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub. 814 if (!checkDependencies(L, ForeBlocks, SubLoopBlocks, AftBlocks, DI)) { 815 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n"); 816 return false; 817 } 818 819 return true; 820 } 821