xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp (revision c66a499e037efd268a744e487e7d0c45a4944a9b)
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/ADT/ilist_iterator.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/LoopIterator.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/IR/ValueMap.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/GenericDomTree.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
59 #include "llvm/Transforms/Utils/Cloning.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include "llvm/Transforms/Utils/LoopSimplify.h"
62 #include "llvm/Transforms/Utils/LoopUtils.h"
63 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
64 #include "llvm/Transforms/Utils/UnrollLoop.h"
65 #include "llvm/Transforms/Utils/ValueMapper.h"
66 #include <algorithm>
67 #include <assert.h>
68 #include <numeric>
69 #include <type_traits>
70 #include <vector>
71 
72 namespace llvm {
73 class DataLayout;
74 class Value;
75 } // namespace llvm
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-unroll"
80 
81 // TODO: Should these be here or in LoopUnroll?
82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
85                                "latch (completely or otherwise)");
86 
87 static cl::opt<bool>
88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
89                     cl::desc("Allow runtime unrolled loops to be unrolled "
90                              "with epilog instead of prolog."));
91 
92 static cl::opt<bool>
93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
94                     cl::desc("Verify domtree after unrolling"),
95 #ifdef EXPENSIVE_CHECKS
96     cl::init(true)
97 #else
98     cl::init(false)
99 #endif
100                     );
101 
102 static cl::opt<bool>
103 UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
104                     cl::desc("Verify loopinfo after unrolling"),
105 #ifdef EXPENSIVE_CHECKS
106     cl::init(true)
107 #else
108     cl::init(false)
109 #endif
110                     );
111 
112 
113 /// Check if unrolling created a situation where we need to insert phi nodes to
114 /// preserve LCSSA form.
115 /// \param Blocks is a vector of basic blocks representing unrolled loop.
116 /// \param L is the outer loop.
117 /// It's possible that some of the blocks are in L, and some are not. In this
118 /// case, if there is a use is outside L, and definition is inside L, we need to
119 /// insert a phi-node, otherwise LCSSA will be broken.
120 /// The function is just a helper function for llvm::UnrollLoop that returns
121 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
122 static bool needToInsertPhisForLCSSA(Loop *L,
123                                      const std::vector<BasicBlock *> &Blocks,
124                                      LoopInfo *LI) {
125   for (BasicBlock *BB : Blocks) {
126     if (LI->getLoopFor(BB) == L)
127       continue;
128     for (Instruction &I : *BB) {
129       for (Use &U : I.operands()) {
130         if (const auto *Def = dyn_cast<Instruction>(U)) {
131           Loop *DefLoop = LI->getLoopFor(Def->getParent());
132           if (!DefLoop)
133             continue;
134           if (DefLoop->contains(L))
135             return true;
136         }
137       }
138     }
139   }
140   return false;
141 }
142 
143 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
144 /// and adds a mapping from the original loop to the new loop to NewLoops.
145 /// Returns nullptr if no new loop was created and a pointer to the
146 /// original loop OriginalBB was part of otherwise.
147 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
148                                            BasicBlock *ClonedBB, LoopInfo *LI,
149                                            NewLoopsMap &NewLoops) {
150   // Figure out which loop New is in.
151   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
152   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
153 
154   Loop *&NewLoop = NewLoops[OldLoop];
155   if (!NewLoop) {
156     // Found a new sub-loop.
157     assert(OriginalBB == OldLoop->getHeader() &&
158            "Header should be first in RPO");
159 
160     NewLoop = LI->AllocateLoop();
161     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
162 
163     if (NewLoopParent)
164       NewLoopParent->addChildLoop(NewLoop);
165     else
166       LI->addTopLevelLoop(NewLoop);
167 
168     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
169     return OldLoop;
170   } else {
171     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
172     return nullptr;
173   }
174 }
175 
176 /// The function chooses which type of unroll (epilog or prolog) is more
177 /// profitabale.
178 /// Epilog unroll is more profitable when there is PHI that starts from
179 /// constant.  In this case epilog will leave PHI start from constant,
180 /// but prolog will convert it to non-constant.
181 ///
182 /// loop:
183 ///   PN = PHI [I, Latch], [CI, PreHeader]
184 ///   I = foo(PN)
185 ///   ...
186 ///
187 /// Epilog unroll case.
188 /// loop:
189 ///   PN = PHI [I2, Latch], [CI, PreHeader]
190 ///   I1 = foo(PN)
191 ///   I2 = foo(I1)
192 ///   ...
193 /// Prolog unroll case.
194 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
195 /// loop:
196 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
197 ///   I1 = foo(PN)
198 ///   I2 = foo(I1)
199 ///   ...
200 ///
201 static bool isEpilogProfitable(Loop *L) {
202   BasicBlock *PreHeader = L->getLoopPreheader();
203   BasicBlock *Header = L->getHeader();
204   assert(PreHeader && Header);
205   for (const PHINode &PN : Header->phis()) {
206     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
207       return true;
208   }
209   return false;
210 }
211 
212 /// Perform some cleanup and simplifications on loops after unrolling. It is
213 /// useful to simplify the IV's in the new loop, as well as do a quick
214 /// simplify/dce pass of the instructions.
215 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
216                                    ScalarEvolution *SE, DominatorTree *DT,
217                                    AssumptionCache *AC,
218                                    const TargetTransformInfo *TTI) {
219   // Simplify any new induction variables in the partially unrolled loop.
220   if (SE && SimplifyIVs) {
221     SmallVector<WeakTrackingVH, 16> DeadInsts;
222     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
223 
224     // Aggressively clean up dead instructions that simplifyLoopIVs already
225     // identified. Any remaining should be cleaned up below.
226     while (!DeadInsts.empty()) {
227       Value *V = DeadInsts.pop_back_val();
228       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
229         RecursivelyDeleteTriviallyDeadInstructions(Inst);
230     }
231   }
232 
233   // At this point, the code is well formed.  Perform constprop, instsimplify,
234   // and dce.
235   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
236   SmallVector<WeakTrackingVH, 16> DeadInsts;
237   for (BasicBlock *BB : L->getBlocks()) {
238     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
239       if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
240         if (LI->replacementPreservesLCSSAForm(&Inst, V))
241           Inst.replaceAllUsesWith(V);
242       if (isInstructionTriviallyDead(&Inst))
243         DeadInsts.emplace_back(&Inst);
244     }
245     // We can't do recursive deletion until we're done iterating, as we might
246     // have a phi which (potentially indirectly) uses instructions later in
247     // the block we're iterating through.
248     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
249   }
250 }
251 
252 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
253 /// can only fail when the loop's latch block is not terminated by a conditional
254 /// branch instruction. However, if the trip count (and multiple) are not known,
255 /// loop unrolling will mostly produce more code that is no faster.
256 ///
257 /// If Runtime is true then UnrollLoop will try to insert a prologue or
258 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
259 /// will not runtime-unroll the loop if computing the run-time trip count will
260 /// be expensive and AllowExpensiveTripCount is false.
261 ///
262 /// The LoopInfo Analysis that is passed will be kept consistent.
263 ///
264 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
265 /// DominatorTree if they are non-null.
266 ///
267 /// If RemainderLoop is non-null, it will receive the remainder loop (if
268 /// required and not fully unrolled).
269 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
270                                   ScalarEvolution *SE, DominatorTree *DT,
271                                   AssumptionCache *AC,
272                                   const TargetTransformInfo *TTI,
273                                   OptimizationRemarkEmitter *ORE,
274                                   bool PreserveLCSSA, Loop **RemainderLoop) {
275   assert(DT && "DomTree is required");
276 
277   if (!L->getLoopPreheader()) {
278     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
279     return LoopUnrollResult::Unmodified;
280   }
281 
282   if (!L->getLoopLatch()) {
283     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
284     return LoopUnrollResult::Unmodified;
285   }
286 
287   // Loops with indirectbr cannot be cloned.
288   if (!L->isSafeToClone()) {
289     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
290     return LoopUnrollResult::Unmodified;
291   }
292 
293   if (L->getHeader()->hasAddressTaken()) {
294     // The loop-rotate pass can be helpful to avoid this in many cases.
295     LLVM_DEBUG(
296         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
297     return LoopUnrollResult::Unmodified;
298   }
299 
300   assert(ULO.Count > 0);
301 
302   // All these values should be taken only after peeling because they might have
303   // changed.
304   BasicBlock *Preheader = L->getLoopPreheader();
305   BasicBlock *Header = L->getHeader();
306   BasicBlock *LatchBlock = L->getLoopLatch();
307   SmallVector<BasicBlock *, 4> ExitBlocks;
308   L->getExitBlocks(ExitBlocks);
309   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
310 
311   const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
312   const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
313 
314   // Effectively "DCE" unrolled iterations that are beyond the max tripcount
315   // and will never be executed.
316   if (MaxTripCount && ULO.Count > MaxTripCount)
317     ULO.Count = MaxTripCount;
318 
319   struct ExitInfo {
320     unsigned TripCount;
321     unsigned TripMultiple;
322     unsigned BreakoutTrip;
323     bool ExitOnTrue;
324     BasicBlock *FirstExitingBlock = nullptr;
325     SmallVector<BasicBlock *> ExitingBlocks;
326   };
327   DenseMap<BasicBlock *, ExitInfo> ExitInfos;
328   SmallVector<BasicBlock *, 4> ExitingBlocks;
329   L->getExitingBlocks(ExitingBlocks);
330   for (auto *ExitingBlock : ExitingBlocks) {
331     // The folding code is not prepared to deal with non-branch instructions
332     // right now.
333     auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
334     if (!BI)
335       continue;
336 
337     ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
338     Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
339     Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
340     if (Info.TripCount != 0) {
341       Info.BreakoutTrip = Info.TripCount % ULO.Count;
342       Info.TripMultiple = 0;
343     } else {
344       Info.BreakoutTrip = Info.TripMultiple =
345           (unsigned)std::gcd(ULO.Count, Info.TripMultiple);
346     }
347     Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
348     Info.ExitingBlocks.push_back(ExitingBlock);
349     LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
350                       << ": TripCount=" << Info.TripCount
351                       << ", TripMultiple=" << Info.TripMultiple
352                       << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
353   }
354 
355   // Are we eliminating the loop control altogether?  Note that we can know
356   // we're eliminating the backedge without knowing exactly which iteration
357   // of the unrolled body exits.
358   const bool CompletelyUnroll = ULO.Count == MaxTripCount;
359 
360   const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
361 
362   // There's no point in performing runtime unrolling if this unroll count
363   // results in a full unroll.
364   if (CompletelyUnroll)
365     ULO.Runtime = false;
366 
367   // Go through all exits of L and see if there are any phi-nodes there. We just
368   // conservatively assume that they're inserted to preserve LCSSA form, which
369   // means that complete unrolling might break this form. We need to either fix
370   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
371   // now we just recompute LCSSA for the outer loop, but it should be possible
372   // to fix it in-place.
373   bool NeedToFixLCSSA =
374       PreserveLCSSA && CompletelyUnroll &&
375       any_of(ExitBlocks,
376              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
377 
378   // The current loop unroll pass can unroll loops that have
379   // (1) single latch; and
380   // (2a) latch is unconditional; or
381   // (2b) latch is conditional and is an exiting block
382   // FIXME: The implementation can be extended to work with more complicated
383   // cases, e.g. loops with multiple latches.
384   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
385 
386   // A conditional branch which exits the loop, which can be optimized to an
387   // unconditional branch in the unrolled loop in some cases.
388   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
389   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
390     LLVM_DEBUG(
391         dbgs() << "Can't unroll; a conditional latch must exit the loop");
392     return LoopUnrollResult::Unmodified;
393   }
394 
395   // Loops containing convergent instructions cannot use runtime unrolling,
396   // as the prologue/epilogue may add additional control-dependencies to
397   // convergent operations.
398   LLVM_DEBUG(
399       {
400         bool HasConvergent = false;
401         for (auto &BB : L->blocks())
402           for (auto &I : *BB)
403             if (auto *CB = dyn_cast<CallBase>(&I))
404               HasConvergent |= CB->isConvergent();
405         assert((!HasConvergent || !ULO.Runtime) &&
406                "Can't runtime unroll if loop contains a convergent operation.");
407       });
408 
409   bool EpilogProfitability =
410       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
411                                               : isEpilogProfitable(L);
412 
413   if (ULO.Runtime &&
414       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
415                                   EpilogProfitability, ULO.UnrollRemainder,
416                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
417                                   PreserveLCSSA, RemainderLoop)) {
418     if (ULO.Force)
419       ULO.Runtime = false;
420     else {
421       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
422                            "generated when assuming runtime trip count\n");
423       return LoopUnrollResult::Unmodified;
424     }
425   }
426 
427   using namespace ore;
428   // Report the unrolling decision.
429   if (CompletelyUnroll) {
430     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
431                       << " with trip count " << ULO.Count << "!\n");
432     if (ORE)
433       ORE->emit([&]() {
434         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
435                                   L->getHeader())
436                << "completely unrolled loop with "
437                << NV("UnrollCount", ULO.Count) << " iterations";
438       });
439   } else {
440     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
441                       << ULO.Count);
442     if (ULO.Runtime)
443       LLVM_DEBUG(dbgs() << " with run-time trip count");
444     LLVM_DEBUG(dbgs() << "!\n");
445 
446     if (ORE)
447       ORE->emit([&]() {
448         OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
449                                 L->getHeader());
450         Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
451         if (ULO.Runtime)
452           Diag << " with run-time trip count";
453         return Diag;
454       });
455   }
456 
457   // We are going to make changes to this loop. SCEV may be keeping cached info
458   // about it, in particular about backedge taken count. The changes we make
459   // are guaranteed to invalidate this information for our loop. It is tempting
460   // to only invalidate the loop being unrolled, but it is incorrect as long as
461   // all exiting branches from all inner loops have impact on the outer loops,
462   // and if something changes inside them then any of outer loops may also
463   // change. When we forget outermost loop, we also forget all contained loops
464   // and this is what we need here.
465   if (SE) {
466     if (ULO.ForgetAllSCEV)
467       SE->forgetAllLoops();
468     else {
469       SE->forgetTopmostLoop(L);
470       SE->forgetBlockAndLoopDispositions();
471     }
472   }
473 
474   if (!LatchIsExiting)
475     ++NumUnrolledNotLatch;
476 
477   // For the first iteration of the loop, we should use the precloned values for
478   // PHI nodes.  Insert associations now.
479   ValueToValueMapTy LastValueMap;
480   std::vector<PHINode*> OrigPHINode;
481   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
482     OrigPHINode.push_back(cast<PHINode>(I));
483   }
484 
485   std::vector<BasicBlock *> Headers;
486   std::vector<BasicBlock *> Latches;
487   Headers.push_back(Header);
488   Latches.push_back(LatchBlock);
489 
490   // The current on-the-fly SSA update requires blocks to be processed in
491   // reverse postorder so that LastValueMap contains the correct value at each
492   // exit.
493   LoopBlocksDFS DFS(L);
494   DFS.perform(LI);
495 
496   // Stash the DFS iterators before adding blocks to the loop.
497   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
498   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
499 
500   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
501 
502   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
503   // might break loop-simplified form for these loops (as they, e.g., would
504   // share the same exit blocks). We'll keep track of loops for which we can
505   // break this so that later we can re-simplify them.
506   SmallSetVector<Loop *, 4> LoopsToSimplify;
507   for (Loop *SubLoop : *L)
508     LoopsToSimplify.insert(SubLoop);
509 
510   // When a FSDiscriminator is enabled, we don't need to add the multiply
511   // factors to the discriminators.
512   if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
513       !EnableFSDiscriminator)
514     for (BasicBlock *BB : L->getBlocks())
515       for (Instruction &I : *BB)
516         if (!isa<DbgInfoIntrinsic>(&I))
517           if (const DILocation *DIL = I.getDebugLoc()) {
518             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
519             if (NewDIL)
520               I.setDebugLoc(*NewDIL);
521             else
522               LLVM_DEBUG(dbgs()
523                          << "Failed to create new discriminator: "
524                          << DIL->getFilename() << " Line: " << DIL->getLine());
525           }
526 
527   // Identify what noalias metadata is inside the loop: if it is inside the
528   // loop, the associated metadata must be cloned for each iteration.
529   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
530   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
531 
532   // We place the unrolled iterations immediately after the original loop
533   // latch.  This is a reasonable default placement if we don't have block
534   // frequencies, and if we do, well the layout will be adjusted later.
535   auto BlockInsertPt = std::next(LatchBlock->getIterator());
536   for (unsigned It = 1; It != ULO.Count; ++It) {
537     SmallVector<BasicBlock *, 8> NewBlocks;
538     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
539     NewLoops[L] = L;
540 
541     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
542       ValueToValueMapTy VMap;
543       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
544       Header->getParent()->insert(BlockInsertPt, New);
545 
546       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
547              "Header should not be in a sub-loop");
548       // Tell LI about New.
549       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
550       if (OldLoop)
551         LoopsToSimplify.insert(NewLoops[OldLoop]);
552 
553       if (*BB == Header)
554         // Loop over all of the PHI nodes in the block, changing them to use
555         // the incoming values from the previous block.
556         for (PHINode *OrigPHI : OrigPHINode) {
557           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
558           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
559           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
560             if (It > 1 && L->contains(InValI))
561               InVal = LastValueMap[InValI];
562           VMap[OrigPHI] = InVal;
563           NewPHI->eraseFromParent();
564         }
565 
566       // Update our running map of newest clones
567       LastValueMap[*BB] = New;
568       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
569            VI != VE; ++VI)
570         LastValueMap[VI->first] = VI->second;
571 
572       // Add phi entries for newly created values to all exit blocks.
573       for (BasicBlock *Succ : successors(*BB)) {
574         if (L->contains(Succ))
575           continue;
576         for (PHINode &PHI : Succ->phis()) {
577           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
578           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
579           if (It != LastValueMap.end())
580             Incoming = It->second;
581           PHI.addIncoming(Incoming, New);
582           SE->forgetValue(&PHI);
583         }
584       }
585       // Keep track of new headers and latches as we create them, so that
586       // we can insert the proper branches later.
587       if (*BB == Header)
588         Headers.push_back(New);
589       if (*BB == LatchBlock)
590         Latches.push_back(New);
591 
592       // Keep track of the exiting block and its successor block contained in
593       // the loop for the current iteration.
594       auto ExitInfoIt = ExitInfos.find(*BB);
595       if (ExitInfoIt != ExitInfos.end())
596         ExitInfoIt->second.ExitingBlocks.push_back(New);
597 
598       NewBlocks.push_back(New);
599       UnrolledLoopBlocks.push_back(New);
600 
601       // Update DomTree: since we just copy the loop body, and each copy has a
602       // dedicated entry block (copy of the header block), this header's copy
603       // dominates all copied blocks. That means, dominance relations in the
604       // copied body are the same as in the original body.
605       if (*BB == Header)
606         DT->addNewBlock(New, Latches[It - 1]);
607       else {
608         auto BBDomNode = DT->getNode(*BB);
609         auto BBIDom = BBDomNode->getIDom();
610         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
611         DT->addNewBlock(
612             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
613       }
614     }
615 
616     // Remap all instructions in the most recent iteration
617     remapInstructionsInBlocks(NewBlocks, LastValueMap);
618     for (BasicBlock *NewBlock : NewBlocks)
619       for (Instruction &I : *NewBlock)
620         if (auto *II = dyn_cast<AssumeInst>(&I))
621           AC->registerAssumption(II);
622 
623     {
624       // Identify what other metadata depends on the cloned version. After
625       // cloning, replace the metadata with the corrected version for both
626       // memory instructions and noalias intrinsics.
627       std::string ext = (Twine("It") + Twine(It)).str();
628       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
629                                  Header->getContext(), ext);
630     }
631   }
632 
633   // Loop over the PHI nodes in the original block, setting incoming values.
634   for (PHINode *PN : OrigPHINode) {
635     if (CompletelyUnroll) {
636       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
637       PN->eraseFromParent();
638     } else if (ULO.Count > 1) {
639       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
640       // If this value was defined in the loop, take the value defined by the
641       // last iteration of the loop.
642       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
643         if (L->contains(InValI))
644           InVal = LastValueMap[InVal];
645       }
646       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
647       PN->addIncoming(InVal, Latches.back());
648     }
649   }
650 
651   // Connect latches of the unrolled iterations to the headers of the next
652   // iteration. Currently they point to the header of the same iteration.
653   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
654     unsigned j = (i + 1) % e;
655     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
656   }
657 
658   // Update dominators of blocks we might reach through exits.
659   // Immediate dominator of such block might change, because we add more
660   // routes which can lead to the exit: we can now reach it from the copied
661   // iterations too.
662   if (ULO.Count > 1) {
663     for (auto *BB : OriginalLoopBlocks) {
664       auto *BBDomNode = DT->getNode(BB);
665       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
666       for (auto *ChildDomNode : BBDomNode->children()) {
667         auto *ChildBB = ChildDomNode->getBlock();
668         if (!L->contains(ChildBB))
669           ChildrenToUpdate.push_back(ChildBB);
670       }
671       // The new idom of the block will be the nearest common dominator
672       // of all copies of the previous idom. This is equivalent to the
673       // nearest common dominator of the previous idom and the first latch,
674       // which dominates all copies of the previous idom.
675       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
676       for (auto *ChildBB : ChildrenToUpdate)
677         DT->changeImmediateDominator(ChildBB, NewIDom);
678     }
679   }
680 
681   assert(!UnrollVerifyDomtree ||
682          DT->verify(DominatorTree::VerificationLevel::Fast));
683 
684   SmallVector<DominatorTree::UpdateType> DTUpdates;
685   auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
686     auto *Term = cast<BranchInst>(Src->getTerminator());
687     const unsigned Idx = ExitOnTrue ^ WillExit;
688     BasicBlock *Dest = Term->getSuccessor(Idx);
689     BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
690 
691     // Remove predecessors from all non-Dest successors.
692     DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
693 
694     // Replace the conditional branch with an unconditional one.
695     BranchInst::Create(Dest, Term);
696     Term->eraseFromParent();
697 
698     DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc);
699   };
700 
701   auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
702                       bool IsLatch) -> std::optional<bool> {
703     if (CompletelyUnroll) {
704       if (PreserveOnlyFirst) {
705         if (i == 0)
706           return std::nullopt;
707         return j == 0;
708       }
709       // Complete (but possibly inexact) unrolling
710       if (j == 0)
711         return true;
712       if (Info.TripCount && j != Info.TripCount)
713         return false;
714       return std::nullopt;
715     }
716 
717     if (ULO.Runtime) {
718       // If runtime unrolling inserts a prologue, information about non-latch
719       // exits may be stale.
720       if (IsLatch && j != 0)
721         return false;
722       return std::nullopt;
723     }
724 
725     if (j != Info.BreakoutTrip &&
726         (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
727       // If we know the trip count or a multiple of it, we can safely use an
728       // unconditional branch for some iterations.
729       return false;
730     }
731     return std::nullopt;
732   };
733 
734   // Fold branches for iterations where we know that they will exit or not
735   // exit.
736   for (auto &Pair : ExitInfos) {
737     ExitInfo &Info = Pair.second;
738     for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
739       // The branch destination.
740       unsigned j = (i + 1) % e;
741       bool IsLatch = Pair.first == LatchBlock;
742       std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
743       if (!KnownWillExit) {
744         if (!Info.FirstExitingBlock)
745           Info.FirstExitingBlock = Info.ExitingBlocks[i];
746         continue;
747       }
748 
749       // We don't fold known-exiting branches for non-latch exits here,
750       // because this ensures that both all loop blocks and all exit blocks
751       // remain reachable in the CFG.
752       // TODO: We could fold these branches, but it would require much more
753       // sophisticated updates to LoopInfo.
754       if (*KnownWillExit && !IsLatch) {
755         if (!Info.FirstExitingBlock)
756           Info.FirstExitingBlock = Info.ExitingBlocks[i];
757         continue;
758       }
759 
760       SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
761     }
762   }
763 
764   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
765   DomTreeUpdater *DTUToUse = &DTU;
766   if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) {
767     // Manually update the DT if there's a single exiting node. In that case
768     // there's a single exit node and it is sufficient to update the nodes
769     // immediately dominated by the original exiting block. They will become
770     // dominated by the first exiting block that leaves the loop after
771     // unrolling. Note that the CFG inside the loop does not change, so there's
772     // no need to update the DT inside the unrolled loop.
773     DTUToUse = nullptr;
774     auto &[OriginalExit, Info] = *ExitInfos.begin();
775     if (!Info.FirstExitingBlock)
776       Info.FirstExitingBlock = Info.ExitingBlocks.back();
777     for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) {
778       if (L->contains(C->getBlock()))
779         continue;
780       C->setIDom(DT->getNode(Info.FirstExitingBlock));
781     }
782   } else {
783     DTU.applyUpdates(DTUpdates);
784   }
785 
786   // When completely unrolling, the last latch becomes unreachable.
787   if (!LatchIsExiting && CompletelyUnroll) {
788     // There is no need to update the DT here, because there must be a unique
789     // latch. Hence if the latch is not exiting it must directly branch back to
790     // the original loop header and does not dominate any nodes.
791     assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?");
792     changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA);
793   }
794 
795   // Merge adjacent basic blocks, if possible.
796   for (BasicBlock *Latch : Latches) {
797     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
798     assert((Term ||
799             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
800            "Need a branch as terminator, except when fully unrolling with "
801            "unconditional latch");
802     if (Term && Term->isUnconditional()) {
803       BasicBlock *Dest = Term->getSuccessor(0);
804       BasicBlock *Fold = Dest->getUniquePredecessor();
805       if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI,
806                                     /*MSSAU=*/nullptr, /*MemDep=*/nullptr,
807                                     /*PredecessorWithTwoSuccessors=*/false,
808                                     DTUToUse ? nullptr : DT)) {
809         // Dest has been folded into Fold. Update our worklists accordingly.
810         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
811         llvm::erase_value(UnrolledLoopBlocks, Dest);
812       }
813     }
814   }
815 
816   if (DTUToUse) {
817     // Apply updates to the DomTree.
818     DT = &DTU.getDomTree();
819   }
820   assert(!UnrollVerifyDomtree ||
821          DT->verify(DominatorTree::VerificationLevel::Fast));
822 
823   // At this point, the code is well formed.  We now simplify the unrolled loop,
824   // doing constant propagation and dead code elimination as we go.
825   simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
826                           TTI);
827 
828   NumCompletelyUnrolled += CompletelyUnroll;
829   ++NumUnrolled;
830 
831   Loop *OuterL = L->getParentLoop();
832   // Update LoopInfo if the loop is completely removed.
833   if (CompletelyUnroll)
834     LI->erase(L);
835 
836   // LoopInfo should not be valid, confirm that.
837   if (UnrollVerifyLoopInfo)
838     LI->verify(*DT);
839 
840   // After complete unrolling most of the blocks should be contained in OuterL.
841   // However, some of them might happen to be out of OuterL (e.g. if they
842   // precede a loop exit). In this case we might need to insert PHI nodes in
843   // order to preserve LCSSA form.
844   // We don't need to check this if we already know that we need to fix LCSSA
845   // form.
846   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
847   // it should be possible to fix it in-place.
848   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
849     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
850 
851   // Make sure that loop-simplify form is preserved. We want to simplify
852   // at least one layer outside of the loop that was unrolled so that any
853   // changes to the parent loop exposed by the unrolling are considered.
854   if (OuterL) {
855     // OuterL includes all loops for which we can break loop-simplify, so
856     // it's sufficient to simplify only it (it'll recursively simplify inner
857     // loops too).
858     if (NeedToFixLCSSA) {
859       // LCSSA must be performed on the outermost affected loop. The unrolled
860       // loop's last loop latch is guaranteed to be in the outermost loop
861       // after LoopInfo's been updated by LoopInfo::erase.
862       Loop *LatchLoop = LI->getLoopFor(Latches.back());
863       Loop *FixLCSSALoop = OuterL;
864       if (!FixLCSSALoop->contains(LatchLoop))
865         while (FixLCSSALoop->getParentLoop() != LatchLoop)
866           FixLCSSALoop = FixLCSSALoop->getParentLoop();
867 
868       formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
869     } else if (PreserveLCSSA) {
870       assert(OuterL->isLCSSAForm(*DT) &&
871              "Loops should be in LCSSA form after loop-unroll.");
872     }
873 
874     // TODO: That potentially might be compile-time expensive. We should try
875     // to fix the loop-simplified form incrementally.
876     simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
877   } else {
878     // Simplify loops for which we might've broken loop-simplify form.
879     for (Loop *SubLoop : LoopsToSimplify)
880       simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
881   }
882 
883   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
884                           : LoopUnrollResult::PartiallyUnrolled;
885 }
886 
887 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
888 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
889 /// such metadata node exists, then nullptr is returned.
890 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
891   // First operand should refer to the loop id itself.
892   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
893   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
894 
895   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
896     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
897     if (!MD)
898       continue;
899 
900     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
901     if (!S)
902       continue;
903 
904     if (Name.equals(S->getString()))
905       return MD;
906   }
907   return nullptr;
908 }
909