1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/ADT/ilist_iterator.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopIterator.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/IR/Use.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/ValueHandle.h" 51 #include "llvm/IR/ValueMap.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/GenericDomTree.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 59 #include "llvm/Transforms/Utils/Cloning.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include "llvm/Transforms/Utils/LoopSimplify.h" 62 #include "llvm/Transforms/Utils/LoopUtils.h" 63 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 64 #include "llvm/Transforms/Utils/UnrollLoop.h" 65 #include "llvm/Transforms/Utils/ValueMapper.h" 66 #include <algorithm> 67 #include <assert.h> 68 #include <numeric> 69 #include <type_traits> 70 #include <vector> 71 72 namespace llvm { 73 class DataLayout; 74 class Value; 75 } // namespace llvm 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-unroll" 80 81 // TODO: Should these be here or in LoopUnroll? 82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 85 "latch (completely or otherwise)"); 86 87 static cl::opt<bool> 88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 89 cl::desc("Allow runtime unrolled loops to be unrolled " 90 "with epilog instead of prolog.")); 91 92 static cl::opt<bool> 93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 94 cl::desc("Verify domtree after unrolling"), 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true) 97 #else 98 cl::init(false) 99 #endif 100 ); 101 102 static cl::opt<bool> 103 UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden, 104 cl::desc("Verify loopinfo after unrolling"), 105 #ifdef EXPENSIVE_CHECKS 106 cl::init(true) 107 #else 108 cl::init(false) 109 #endif 110 ); 111 112 113 /// Check if unrolling created a situation where we need to insert phi nodes to 114 /// preserve LCSSA form. 115 /// \param Blocks is a vector of basic blocks representing unrolled loop. 116 /// \param L is the outer loop. 117 /// It's possible that some of the blocks are in L, and some are not. In this 118 /// case, if there is a use is outside L, and definition is inside L, we need to 119 /// insert a phi-node, otherwise LCSSA will be broken. 120 /// The function is just a helper function for llvm::UnrollLoop that returns 121 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 122 static bool needToInsertPhisForLCSSA(Loop *L, 123 const std::vector<BasicBlock *> &Blocks, 124 LoopInfo *LI) { 125 for (BasicBlock *BB : Blocks) { 126 if (LI->getLoopFor(BB) == L) 127 continue; 128 for (Instruction &I : *BB) { 129 for (Use &U : I.operands()) { 130 if (const auto *Def = dyn_cast<Instruction>(U)) { 131 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 132 if (!DefLoop) 133 continue; 134 if (DefLoop->contains(L)) 135 return true; 136 } 137 } 138 } 139 } 140 return false; 141 } 142 143 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 144 /// and adds a mapping from the original loop to the new loop to NewLoops. 145 /// Returns nullptr if no new loop was created and a pointer to the 146 /// original loop OriginalBB was part of otherwise. 147 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 148 BasicBlock *ClonedBB, LoopInfo *LI, 149 NewLoopsMap &NewLoops) { 150 // Figure out which loop New is in. 151 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 152 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 153 154 Loop *&NewLoop = NewLoops[OldLoop]; 155 if (!NewLoop) { 156 // Found a new sub-loop. 157 assert(OriginalBB == OldLoop->getHeader() && 158 "Header should be first in RPO"); 159 160 NewLoop = LI->AllocateLoop(); 161 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 162 163 if (NewLoopParent) 164 NewLoopParent->addChildLoop(NewLoop); 165 else 166 LI->addTopLevelLoop(NewLoop); 167 168 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 169 return OldLoop; 170 } else { 171 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 172 return nullptr; 173 } 174 } 175 176 /// The function chooses which type of unroll (epilog or prolog) is more 177 /// profitabale. 178 /// Epilog unroll is more profitable when there is PHI that starts from 179 /// constant. In this case epilog will leave PHI start from constant, 180 /// but prolog will convert it to non-constant. 181 /// 182 /// loop: 183 /// PN = PHI [I, Latch], [CI, PreHeader] 184 /// I = foo(PN) 185 /// ... 186 /// 187 /// Epilog unroll case. 188 /// loop: 189 /// PN = PHI [I2, Latch], [CI, PreHeader] 190 /// I1 = foo(PN) 191 /// I2 = foo(I1) 192 /// ... 193 /// Prolog unroll case. 194 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 195 /// loop: 196 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 197 /// I1 = foo(PN) 198 /// I2 = foo(I1) 199 /// ... 200 /// 201 static bool isEpilogProfitable(Loop *L) { 202 BasicBlock *PreHeader = L->getLoopPreheader(); 203 BasicBlock *Header = L->getHeader(); 204 assert(PreHeader && Header); 205 for (const PHINode &PN : Header->phis()) { 206 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 207 return true; 208 } 209 return false; 210 } 211 212 /// Perform some cleanup and simplifications on loops after unrolling. It is 213 /// useful to simplify the IV's in the new loop, as well as do a quick 214 /// simplify/dce pass of the instructions. 215 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 216 ScalarEvolution *SE, DominatorTree *DT, 217 AssumptionCache *AC, 218 const TargetTransformInfo *TTI) { 219 // Simplify any new induction variables in the partially unrolled loop. 220 if (SE && SimplifyIVs) { 221 SmallVector<WeakTrackingVH, 16> DeadInsts; 222 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 223 224 // Aggressively clean up dead instructions that simplifyLoopIVs already 225 // identified. Any remaining should be cleaned up below. 226 while (!DeadInsts.empty()) { 227 Value *V = DeadInsts.pop_back_val(); 228 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 229 RecursivelyDeleteTriviallyDeadInstructions(Inst); 230 } 231 } 232 233 // At this point, the code is well formed. Perform constprop, instsimplify, 234 // and dce. 235 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 236 SmallVector<WeakTrackingVH, 16> DeadInsts; 237 for (BasicBlock *BB : L->getBlocks()) { 238 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 239 if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC})) 240 if (LI->replacementPreservesLCSSAForm(&Inst, V)) 241 Inst.replaceAllUsesWith(V); 242 if (isInstructionTriviallyDead(&Inst)) 243 DeadInsts.emplace_back(&Inst); 244 } 245 // We can't do recursive deletion until we're done iterating, as we might 246 // have a phi which (potentially indirectly) uses instructions later in 247 // the block we're iterating through. 248 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 249 } 250 } 251 252 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 253 /// can only fail when the loop's latch block is not terminated by a conditional 254 /// branch instruction. However, if the trip count (and multiple) are not known, 255 /// loop unrolling will mostly produce more code that is no faster. 256 /// 257 /// If Runtime is true then UnrollLoop will try to insert a prologue or 258 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop 259 /// will not runtime-unroll the loop if computing the run-time trip count will 260 /// be expensive and AllowExpensiveTripCount is false. 261 /// 262 /// The LoopInfo Analysis that is passed will be kept consistent. 263 /// 264 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 265 /// DominatorTree if they are non-null. 266 /// 267 /// If RemainderLoop is non-null, it will receive the remainder loop (if 268 /// required and not fully unrolled). 269 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 270 ScalarEvolution *SE, DominatorTree *DT, 271 AssumptionCache *AC, 272 const TargetTransformInfo *TTI, 273 OptimizationRemarkEmitter *ORE, 274 bool PreserveLCSSA, Loop **RemainderLoop) { 275 assert(DT && "DomTree is required"); 276 277 if (!L->getLoopPreheader()) { 278 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 279 return LoopUnrollResult::Unmodified; 280 } 281 282 if (!L->getLoopLatch()) { 283 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 284 return LoopUnrollResult::Unmodified; 285 } 286 287 // Loops with indirectbr cannot be cloned. 288 if (!L->isSafeToClone()) { 289 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 290 return LoopUnrollResult::Unmodified; 291 } 292 293 if (L->getHeader()->hasAddressTaken()) { 294 // The loop-rotate pass can be helpful to avoid this in many cases. 295 LLVM_DEBUG( 296 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 297 return LoopUnrollResult::Unmodified; 298 } 299 300 assert(ULO.Count > 0); 301 302 // All these values should be taken only after peeling because they might have 303 // changed. 304 BasicBlock *Preheader = L->getLoopPreheader(); 305 BasicBlock *Header = L->getHeader(); 306 BasicBlock *LatchBlock = L->getLoopLatch(); 307 SmallVector<BasicBlock *, 4> ExitBlocks; 308 L->getExitBlocks(ExitBlocks); 309 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 310 311 const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); 312 const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 313 314 // Effectively "DCE" unrolled iterations that are beyond the max tripcount 315 // and will never be executed. 316 if (MaxTripCount && ULO.Count > MaxTripCount) 317 ULO.Count = MaxTripCount; 318 319 struct ExitInfo { 320 unsigned TripCount; 321 unsigned TripMultiple; 322 unsigned BreakoutTrip; 323 bool ExitOnTrue; 324 BasicBlock *FirstExitingBlock = nullptr; 325 SmallVector<BasicBlock *> ExitingBlocks; 326 }; 327 DenseMap<BasicBlock *, ExitInfo> ExitInfos; 328 SmallVector<BasicBlock *, 4> ExitingBlocks; 329 L->getExitingBlocks(ExitingBlocks); 330 for (auto *ExitingBlock : ExitingBlocks) { 331 // The folding code is not prepared to deal with non-branch instructions 332 // right now. 333 auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 334 if (!BI) 335 continue; 336 337 ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second; 338 Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 339 Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 340 if (Info.TripCount != 0) { 341 Info.BreakoutTrip = Info.TripCount % ULO.Count; 342 Info.TripMultiple = 0; 343 } else { 344 Info.BreakoutTrip = Info.TripMultiple = 345 (unsigned)std::gcd(ULO.Count, Info.TripMultiple); 346 } 347 Info.ExitOnTrue = !L->contains(BI->getSuccessor(0)); 348 Info.ExitingBlocks.push_back(ExitingBlock); 349 LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName() 350 << ": TripCount=" << Info.TripCount 351 << ", TripMultiple=" << Info.TripMultiple 352 << ", BreakoutTrip=" << Info.BreakoutTrip << "\n"); 353 } 354 355 // Are we eliminating the loop control altogether? Note that we can know 356 // we're eliminating the backedge without knowing exactly which iteration 357 // of the unrolled body exits. 358 const bool CompletelyUnroll = ULO.Count == MaxTripCount; 359 360 const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero; 361 362 // There's no point in performing runtime unrolling if this unroll count 363 // results in a full unroll. 364 if (CompletelyUnroll) 365 ULO.Runtime = false; 366 367 // Go through all exits of L and see if there are any phi-nodes there. We just 368 // conservatively assume that they're inserted to preserve LCSSA form, which 369 // means that complete unrolling might break this form. We need to either fix 370 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 371 // now we just recompute LCSSA for the outer loop, but it should be possible 372 // to fix it in-place. 373 bool NeedToFixLCSSA = 374 PreserveLCSSA && CompletelyUnroll && 375 any_of(ExitBlocks, 376 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 377 378 // The current loop unroll pass can unroll loops that have 379 // (1) single latch; and 380 // (2a) latch is unconditional; or 381 // (2b) latch is conditional and is an exiting block 382 // FIXME: The implementation can be extended to work with more complicated 383 // cases, e.g. loops with multiple latches. 384 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 385 386 // A conditional branch which exits the loop, which can be optimized to an 387 // unconditional branch in the unrolled loop in some cases. 388 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 389 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 390 LLVM_DEBUG( 391 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 392 return LoopUnrollResult::Unmodified; 393 } 394 395 // Loops containing convergent instructions cannot use runtime unrolling, 396 // as the prologue/epilogue may add additional control-dependencies to 397 // convergent operations. 398 LLVM_DEBUG( 399 { 400 bool HasConvergent = false; 401 for (auto &BB : L->blocks()) 402 for (auto &I : *BB) 403 if (auto *CB = dyn_cast<CallBase>(&I)) 404 HasConvergent |= CB->isConvergent(); 405 assert((!HasConvergent || !ULO.Runtime) && 406 "Can't runtime unroll if loop contains a convergent operation."); 407 }); 408 409 bool EpilogProfitability = 410 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 411 : isEpilogProfitable(L); 412 413 if (ULO.Runtime && 414 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 415 EpilogProfitability, ULO.UnrollRemainder, 416 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 417 PreserveLCSSA, RemainderLoop)) { 418 if (ULO.Force) 419 ULO.Runtime = false; 420 else { 421 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 422 "generated when assuming runtime trip count\n"); 423 return LoopUnrollResult::Unmodified; 424 } 425 } 426 427 using namespace ore; 428 // Report the unrolling decision. 429 if (CompletelyUnroll) { 430 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 431 << " with trip count " << ULO.Count << "!\n"); 432 if (ORE) 433 ORE->emit([&]() { 434 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 435 L->getHeader()) 436 << "completely unrolled loop with " 437 << NV("UnrollCount", ULO.Count) << " iterations"; 438 }); 439 } else { 440 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 441 << ULO.Count); 442 if (ULO.Runtime) 443 LLVM_DEBUG(dbgs() << " with run-time trip count"); 444 LLVM_DEBUG(dbgs() << "!\n"); 445 446 if (ORE) 447 ORE->emit([&]() { 448 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 449 L->getHeader()); 450 Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count); 451 if (ULO.Runtime) 452 Diag << " with run-time trip count"; 453 return Diag; 454 }); 455 } 456 457 // We are going to make changes to this loop. SCEV may be keeping cached info 458 // about it, in particular about backedge taken count. The changes we make 459 // are guaranteed to invalidate this information for our loop. It is tempting 460 // to only invalidate the loop being unrolled, but it is incorrect as long as 461 // all exiting branches from all inner loops have impact on the outer loops, 462 // and if something changes inside them then any of outer loops may also 463 // change. When we forget outermost loop, we also forget all contained loops 464 // and this is what we need here. 465 if (SE) { 466 if (ULO.ForgetAllSCEV) 467 SE->forgetAllLoops(); 468 else { 469 SE->forgetTopmostLoop(L); 470 SE->forgetBlockAndLoopDispositions(); 471 } 472 } 473 474 if (!LatchIsExiting) 475 ++NumUnrolledNotLatch; 476 477 // For the first iteration of the loop, we should use the precloned values for 478 // PHI nodes. Insert associations now. 479 ValueToValueMapTy LastValueMap; 480 std::vector<PHINode*> OrigPHINode; 481 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 482 OrigPHINode.push_back(cast<PHINode>(I)); 483 } 484 485 std::vector<BasicBlock *> Headers; 486 std::vector<BasicBlock *> Latches; 487 Headers.push_back(Header); 488 Latches.push_back(LatchBlock); 489 490 // The current on-the-fly SSA update requires blocks to be processed in 491 // reverse postorder so that LastValueMap contains the correct value at each 492 // exit. 493 LoopBlocksDFS DFS(L); 494 DFS.perform(LI); 495 496 // Stash the DFS iterators before adding blocks to the loop. 497 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 498 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 499 500 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 501 502 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 503 // might break loop-simplified form for these loops (as they, e.g., would 504 // share the same exit blocks). We'll keep track of loops for which we can 505 // break this so that later we can re-simplify them. 506 SmallSetVector<Loop *, 4> LoopsToSimplify; 507 for (Loop *SubLoop : *L) 508 LoopsToSimplify.insert(SubLoop); 509 510 // When a FSDiscriminator is enabled, we don't need to add the multiply 511 // factors to the discriminators. 512 if (Header->getParent()->shouldEmitDebugInfoForProfiling() && 513 !EnableFSDiscriminator) 514 for (BasicBlock *BB : L->getBlocks()) 515 for (Instruction &I : *BB) 516 if (!isa<DbgInfoIntrinsic>(&I)) 517 if (const DILocation *DIL = I.getDebugLoc()) { 518 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 519 if (NewDIL) 520 I.setDebugLoc(*NewDIL); 521 else 522 LLVM_DEBUG(dbgs() 523 << "Failed to create new discriminator: " 524 << DIL->getFilename() << " Line: " << DIL->getLine()); 525 } 526 527 // Identify what noalias metadata is inside the loop: if it is inside the 528 // loop, the associated metadata must be cloned for each iteration. 529 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 530 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 531 532 // We place the unrolled iterations immediately after the original loop 533 // latch. This is a reasonable default placement if we don't have block 534 // frequencies, and if we do, well the layout will be adjusted later. 535 auto BlockInsertPt = std::next(LatchBlock->getIterator()); 536 for (unsigned It = 1; It != ULO.Count; ++It) { 537 SmallVector<BasicBlock *, 8> NewBlocks; 538 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 539 NewLoops[L] = L; 540 541 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 542 ValueToValueMapTy VMap; 543 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 544 Header->getParent()->insert(BlockInsertPt, New); 545 546 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 547 "Header should not be in a sub-loop"); 548 // Tell LI about New. 549 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 550 if (OldLoop) 551 LoopsToSimplify.insert(NewLoops[OldLoop]); 552 553 if (*BB == Header) 554 // Loop over all of the PHI nodes in the block, changing them to use 555 // the incoming values from the previous block. 556 for (PHINode *OrigPHI : OrigPHINode) { 557 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 558 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 559 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 560 if (It > 1 && L->contains(InValI)) 561 InVal = LastValueMap[InValI]; 562 VMap[OrigPHI] = InVal; 563 NewPHI->eraseFromParent(); 564 } 565 566 // Update our running map of newest clones 567 LastValueMap[*BB] = New; 568 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 569 VI != VE; ++VI) 570 LastValueMap[VI->first] = VI->second; 571 572 // Add phi entries for newly created values to all exit blocks. 573 for (BasicBlock *Succ : successors(*BB)) { 574 if (L->contains(Succ)) 575 continue; 576 for (PHINode &PHI : Succ->phis()) { 577 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 578 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 579 if (It != LastValueMap.end()) 580 Incoming = It->second; 581 PHI.addIncoming(Incoming, New); 582 SE->forgetValue(&PHI); 583 } 584 } 585 // Keep track of new headers and latches as we create them, so that 586 // we can insert the proper branches later. 587 if (*BB == Header) 588 Headers.push_back(New); 589 if (*BB == LatchBlock) 590 Latches.push_back(New); 591 592 // Keep track of the exiting block and its successor block contained in 593 // the loop for the current iteration. 594 auto ExitInfoIt = ExitInfos.find(*BB); 595 if (ExitInfoIt != ExitInfos.end()) 596 ExitInfoIt->second.ExitingBlocks.push_back(New); 597 598 NewBlocks.push_back(New); 599 UnrolledLoopBlocks.push_back(New); 600 601 // Update DomTree: since we just copy the loop body, and each copy has a 602 // dedicated entry block (copy of the header block), this header's copy 603 // dominates all copied blocks. That means, dominance relations in the 604 // copied body are the same as in the original body. 605 if (*BB == Header) 606 DT->addNewBlock(New, Latches[It - 1]); 607 else { 608 auto BBDomNode = DT->getNode(*BB); 609 auto BBIDom = BBDomNode->getIDom(); 610 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 611 DT->addNewBlock( 612 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 613 } 614 } 615 616 // Remap all instructions in the most recent iteration 617 remapInstructionsInBlocks(NewBlocks, LastValueMap); 618 for (BasicBlock *NewBlock : NewBlocks) 619 for (Instruction &I : *NewBlock) 620 if (auto *II = dyn_cast<AssumeInst>(&I)) 621 AC->registerAssumption(II); 622 623 { 624 // Identify what other metadata depends on the cloned version. After 625 // cloning, replace the metadata with the corrected version for both 626 // memory instructions and noalias intrinsics. 627 std::string ext = (Twine("It") + Twine(It)).str(); 628 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 629 Header->getContext(), ext); 630 } 631 } 632 633 // Loop over the PHI nodes in the original block, setting incoming values. 634 for (PHINode *PN : OrigPHINode) { 635 if (CompletelyUnroll) { 636 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 637 PN->eraseFromParent(); 638 } else if (ULO.Count > 1) { 639 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 640 // If this value was defined in the loop, take the value defined by the 641 // last iteration of the loop. 642 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 643 if (L->contains(InValI)) 644 InVal = LastValueMap[InVal]; 645 } 646 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 647 PN->addIncoming(InVal, Latches.back()); 648 } 649 } 650 651 // Connect latches of the unrolled iterations to the headers of the next 652 // iteration. Currently they point to the header of the same iteration. 653 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 654 unsigned j = (i + 1) % e; 655 Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]); 656 } 657 658 // Update dominators of blocks we might reach through exits. 659 // Immediate dominator of such block might change, because we add more 660 // routes which can lead to the exit: we can now reach it from the copied 661 // iterations too. 662 if (ULO.Count > 1) { 663 for (auto *BB : OriginalLoopBlocks) { 664 auto *BBDomNode = DT->getNode(BB); 665 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 666 for (auto *ChildDomNode : BBDomNode->children()) { 667 auto *ChildBB = ChildDomNode->getBlock(); 668 if (!L->contains(ChildBB)) 669 ChildrenToUpdate.push_back(ChildBB); 670 } 671 // The new idom of the block will be the nearest common dominator 672 // of all copies of the previous idom. This is equivalent to the 673 // nearest common dominator of the previous idom and the first latch, 674 // which dominates all copies of the previous idom. 675 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 676 for (auto *ChildBB : ChildrenToUpdate) 677 DT->changeImmediateDominator(ChildBB, NewIDom); 678 } 679 } 680 681 assert(!UnrollVerifyDomtree || 682 DT->verify(DominatorTree::VerificationLevel::Fast)); 683 684 SmallVector<DominatorTree::UpdateType> DTUpdates; 685 auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { 686 auto *Term = cast<BranchInst>(Src->getTerminator()); 687 const unsigned Idx = ExitOnTrue ^ WillExit; 688 BasicBlock *Dest = Term->getSuccessor(Idx); 689 BasicBlock *DeadSucc = Term->getSuccessor(1-Idx); 690 691 // Remove predecessors from all non-Dest successors. 692 DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true); 693 694 // Replace the conditional branch with an unconditional one. 695 BranchInst::Create(Dest, Term); 696 Term->eraseFromParent(); 697 698 DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc); 699 }; 700 701 auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j, 702 bool IsLatch) -> std::optional<bool> { 703 if (CompletelyUnroll) { 704 if (PreserveOnlyFirst) { 705 if (i == 0) 706 return std::nullopt; 707 return j == 0; 708 } 709 // Complete (but possibly inexact) unrolling 710 if (j == 0) 711 return true; 712 if (Info.TripCount && j != Info.TripCount) 713 return false; 714 return std::nullopt; 715 } 716 717 if (ULO.Runtime) { 718 // If runtime unrolling inserts a prologue, information about non-latch 719 // exits may be stale. 720 if (IsLatch && j != 0) 721 return false; 722 return std::nullopt; 723 } 724 725 if (j != Info.BreakoutTrip && 726 (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) { 727 // If we know the trip count or a multiple of it, we can safely use an 728 // unconditional branch for some iterations. 729 return false; 730 } 731 return std::nullopt; 732 }; 733 734 // Fold branches for iterations where we know that they will exit or not 735 // exit. 736 for (auto &Pair : ExitInfos) { 737 ExitInfo &Info = Pair.second; 738 for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) { 739 // The branch destination. 740 unsigned j = (i + 1) % e; 741 bool IsLatch = Pair.first == LatchBlock; 742 std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch); 743 if (!KnownWillExit) { 744 if (!Info.FirstExitingBlock) 745 Info.FirstExitingBlock = Info.ExitingBlocks[i]; 746 continue; 747 } 748 749 // We don't fold known-exiting branches for non-latch exits here, 750 // because this ensures that both all loop blocks and all exit blocks 751 // remain reachable in the CFG. 752 // TODO: We could fold these branches, but it would require much more 753 // sophisticated updates to LoopInfo. 754 if (*KnownWillExit && !IsLatch) { 755 if (!Info.FirstExitingBlock) 756 Info.FirstExitingBlock = Info.ExitingBlocks[i]; 757 continue; 758 } 759 760 SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue); 761 } 762 } 763 764 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 765 DomTreeUpdater *DTUToUse = &DTU; 766 if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) { 767 // Manually update the DT if there's a single exiting node. In that case 768 // there's a single exit node and it is sufficient to update the nodes 769 // immediately dominated by the original exiting block. They will become 770 // dominated by the first exiting block that leaves the loop after 771 // unrolling. Note that the CFG inside the loop does not change, so there's 772 // no need to update the DT inside the unrolled loop. 773 DTUToUse = nullptr; 774 auto &[OriginalExit, Info] = *ExitInfos.begin(); 775 if (!Info.FirstExitingBlock) 776 Info.FirstExitingBlock = Info.ExitingBlocks.back(); 777 for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) { 778 if (L->contains(C->getBlock())) 779 continue; 780 C->setIDom(DT->getNode(Info.FirstExitingBlock)); 781 } 782 } else { 783 DTU.applyUpdates(DTUpdates); 784 } 785 786 // When completely unrolling, the last latch becomes unreachable. 787 if (!LatchIsExiting && CompletelyUnroll) { 788 // There is no need to update the DT here, because there must be a unique 789 // latch. Hence if the latch is not exiting it must directly branch back to 790 // the original loop header and does not dominate any nodes. 791 assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?"); 792 changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA); 793 } 794 795 // Merge adjacent basic blocks, if possible. 796 for (BasicBlock *Latch : Latches) { 797 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 798 assert((Term || 799 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 800 "Need a branch as terminator, except when fully unrolling with " 801 "unconditional latch"); 802 if (Term && Term->isUnconditional()) { 803 BasicBlock *Dest = Term->getSuccessor(0); 804 BasicBlock *Fold = Dest->getUniquePredecessor(); 805 if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI, 806 /*MSSAU=*/nullptr, /*MemDep=*/nullptr, 807 /*PredecessorWithTwoSuccessors=*/false, 808 DTUToUse ? nullptr : DT)) { 809 // Dest has been folded into Fold. Update our worklists accordingly. 810 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 811 llvm::erase_value(UnrolledLoopBlocks, Dest); 812 } 813 } 814 } 815 816 if (DTUToUse) { 817 // Apply updates to the DomTree. 818 DT = &DTU.getDomTree(); 819 } 820 assert(!UnrollVerifyDomtree || 821 DT->verify(DominatorTree::VerificationLevel::Fast)); 822 823 // At this point, the code is well formed. We now simplify the unrolled loop, 824 // doing constant propagation and dead code elimination as we go. 825 simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC, 826 TTI); 827 828 NumCompletelyUnrolled += CompletelyUnroll; 829 ++NumUnrolled; 830 831 Loop *OuterL = L->getParentLoop(); 832 // Update LoopInfo if the loop is completely removed. 833 if (CompletelyUnroll) 834 LI->erase(L); 835 836 // LoopInfo should not be valid, confirm that. 837 if (UnrollVerifyLoopInfo) 838 LI->verify(*DT); 839 840 // After complete unrolling most of the blocks should be contained in OuterL. 841 // However, some of them might happen to be out of OuterL (e.g. if they 842 // precede a loop exit). In this case we might need to insert PHI nodes in 843 // order to preserve LCSSA form. 844 // We don't need to check this if we already know that we need to fix LCSSA 845 // form. 846 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 847 // it should be possible to fix it in-place. 848 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 849 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 850 851 // Make sure that loop-simplify form is preserved. We want to simplify 852 // at least one layer outside of the loop that was unrolled so that any 853 // changes to the parent loop exposed by the unrolling are considered. 854 if (OuterL) { 855 // OuterL includes all loops for which we can break loop-simplify, so 856 // it's sufficient to simplify only it (it'll recursively simplify inner 857 // loops too). 858 if (NeedToFixLCSSA) { 859 // LCSSA must be performed on the outermost affected loop. The unrolled 860 // loop's last loop latch is guaranteed to be in the outermost loop 861 // after LoopInfo's been updated by LoopInfo::erase. 862 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 863 Loop *FixLCSSALoop = OuterL; 864 if (!FixLCSSALoop->contains(LatchLoop)) 865 while (FixLCSSALoop->getParentLoop() != LatchLoop) 866 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 867 868 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 869 } else if (PreserveLCSSA) { 870 assert(OuterL->isLCSSAForm(*DT) && 871 "Loops should be in LCSSA form after loop-unroll."); 872 } 873 874 // TODO: That potentially might be compile-time expensive. We should try 875 // to fix the loop-simplified form incrementally. 876 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 877 } else { 878 // Simplify loops for which we might've broken loop-simplify form. 879 for (Loop *SubLoop : LoopsToSimplify) 880 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 881 } 882 883 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 884 : LoopUnrollResult::PartiallyUnrolled; 885 } 886 887 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 888 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 889 /// such metadata node exists, then nullptr is returned. 890 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 891 // First operand should refer to the loop id itself. 892 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 893 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 894 895 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 896 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 897 if (!MD) 898 continue; 899 900 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 901 if (!S) 902 continue; 903 904 if (Name.equals(S->getString())) 905 return MD; 906 } 907 return nullptr; 908 } 909