xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp (revision b9128a37faafede823eb456aa65a11ac69997284)
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/ADT/ilist_iterator.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopIterator.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DiagnosticInfo.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/IR/ValueMap.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/GenericDomTree.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
59 #include "llvm/Transforms/Utils/Cloning.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include "llvm/Transforms/Utils/LoopSimplify.h"
62 #include "llvm/Transforms/Utils/LoopUtils.h"
63 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
64 #include "llvm/Transforms/Utils/UnrollLoop.h"
65 #include "llvm/Transforms/Utils/ValueMapper.h"
66 #include <algorithm>
67 #include <assert.h>
68 #include <numeric>
69 #include <type_traits>
70 #include <vector>
71 
72 namespace llvm {
73 class DataLayout;
74 class Value;
75 } // namespace llvm
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-unroll"
80 
81 // TODO: Should these be here or in LoopUnroll?
82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
85                                "latch (completely or otherwise)");
86 
87 static cl::opt<bool>
88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
89                     cl::desc("Allow runtime unrolled loops to be unrolled "
90                              "with epilog instead of prolog."));
91 
92 static cl::opt<bool>
93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
94                     cl::desc("Verify domtree after unrolling"),
95 #ifdef EXPENSIVE_CHECKS
96     cl::init(true)
97 #else
98     cl::init(false)
99 #endif
100                     );
101 
102 static cl::opt<bool>
103 UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
104                     cl::desc("Verify loopinfo after unrolling"),
105 #ifdef EXPENSIVE_CHECKS
106     cl::init(true)
107 #else
108     cl::init(false)
109 #endif
110                     );
111 
112 
113 /// Check if unrolling created a situation where we need to insert phi nodes to
114 /// preserve LCSSA form.
115 /// \param Blocks is a vector of basic blocks representing unrolled loop.
116 /// \param L is the outer loop.
117 /// It's possible that some of the blocks are in L, and some are not. In this
118 /// case, if there is a use is outside L, and definition is inside L, we need to
119 /// insert a phi-node, otherwise LCSSA will be broken.
120 /// The function is just a helper function for llvm::UnrollLoop that returns
121 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
122 static bool needToInsertPhisForLCSSA(Loop *L,
123                                      const std::vector<BasicBlock *> &Blocks,
124                                      LoopInfo *LI) {
125   for (BasicBlock *BB : Blocks) {
126     if (LI->getLoopFor(BB) == L)
127       continue;
128     for (Instruction &I : *BB) {
129       for (Use &U : I.operands()) {
130         if (const auto *Def = dyn_cast<Instruction>(U)) {
131           Loop *DefLoop = LI->getLoopFor(Def->getParent());
132           if (!DefLoop)
133             continue;
134           if (DefLoop->contains(L))
135             return true;
136         }
137       }
138     }
139   }
140   return false;
141 }
142 
143 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
144 /// and adds a mapping from the original loop to the new loop to NewLoops.
145 /// Returns nullptr if no new loop was created and a pointer to the
146 /// original loop OriginalBB was part of otherwise.
147 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
148                                            BasicBlock *ClonedBB, LoopInfo *LI,
149                                            NewLoopsMap &NewLoops) {
150   // Figure out which loop New is in.
151   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
152   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
153 
154   Loop *&NewLoop = NewLoops[OldLoop];
155   if (!NewLoop) {
156     // Found a new sub-loop.
157     assert(OriginalBB == OldLoop->getHeader() &&
158            "Header should be first in RPO");
159 
160     NewLoop = LI->AllocateLoop();
161     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
162 
163     if (NewLoopParent)
164       NewLoopParent->addChildLoop(NewLoop);
165     else
166       LI->addTopLevelLoop(NewLoop);
167 
168     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
169     return OldLoop;
170   } else {
171     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
172     return nullptr;
173   }
174 }
175 
176 /// The function chooses which type of unroll (epilog or prolog) is more
177 /// profitabale.
178 /// Epilog unroll is more profitable when there is PHI that starts from
179 /// constant.  In this case epilog will leave PHI start from constant,
180 /// but prolog will convert it to non-constant.
181 ///
182 /// loop:
183 ///   PN = PHI [I, Latch], [CI, PreHeader]
184 ///   I = foo(PN)
185 ///   ...
186 ///
187 /// Epilog unroll case.
188 /// loop:
189 ///   PN = PHI [I2, Latch], [CI, PreHeader]
190 ///   I1 = foo(PN)
191 ///   I2 = foo(I1)
192 ///   ...
193 /// Prolog unroll case.
194 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
195 /// loop:
196 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
197 ///   I1 = foo(PN)
198 ///   I2 = foo(I1)
199 ///   ...
200 ///
201 static bool isEpilogProfitable(Loop *L) {
202   BasicBlock *PreHeader = L->getLoopPreheader();
203   BasicBlock *Header = L->getHeader();
204   assert(PreHeader && Header);
205   for (const PHINode &PN : Header->phis()) {
206     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
207       return true;
208   }
209   return false;
210 }
211 
212 /// Perform some cleanup and simplifications on loops after unrolling. It is
213 /// useful to simplify the IV's in the new loop, as well as do a quick
214 /// simplify/dce pass of the instructions.
215 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
216                                    ScalarEvolution *SE, DominatorTree *DT,
217                                    AssumptionCache *AC,
218                                    const TargetTransformInfo *TTI) {
219   using namespace llvm::PatternMatch;
220 
221   // Simplify any new induction variables in the partially unrolled loop.
222   if (SE && SimplifyIVs) {
223     SmallVector<WeakTrackingVH, 16> DeadInsts;
224     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
225 
226     // Aggressively clean up dead instructions that simplifyLoopIVs already
227     // identified. Any remaining should be cleaned up below.
228     while (!DeadInsts.empty()) {
229       Value *V = DeadInsts.pop_back_val();
230       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
231         RecursivelyDeleteTriviallyDeadInstructions(Inst);
232     }
233   }
234 
235   // At this point, the code is well formed.  Perform constprop, instsimplify,
236   // and dce.
237   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
238   SmallVector<WeakTrackingVH, 16> DeadInsts;
239   for (BasicBlock *BB : L->getBlocks()) {
240     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
241       if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
242         if (LI->replacementPreservesLCSSAForm(&Inst, V))
243           Inst.replaceAllUsesWith(V);
244       if (isInstructionTriviallyDead(&Inst))
245         DeadInsts.emplace_back(&Inst);
246 
247       // Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in
248       // unrolled loops, and handling this early allows following code to
249       // identify the IV as a "simple recurrence" without first folding away
250       // a long chain of adds.
251       {
252         Value *X;
253         const APInt *C1, *C2;
254         if (match(&Inst, m_Add(m_Add(m_Value(X), m_APInt(C1)), m_APInt(C2)))) {
255           auto *InnerI = dyn_cast<Instruction>(Inst.getOperand(0));
256           auto *InnerOBO = cast<OverflowingBinaryOperator>(Inst.getOperand(0));
257           bool SignedOverflow;
258           APInt NewC = C1->sadd_ov(*C2, SignedOverflow);
259           Inst.setOperand(0, X);
260           Inst.setOperand(1, ConstantInt::get(Inst.getType(), NewC));
261           Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() &&
262                                     InnerOBO->hasNoUnsignedWrap());
263           Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() &&
264                                   InnerOBO->hasNoSignedWrap() &&
265                                   !SignedOverflow);
266           if (InnerI && isInstructionTriviallyDead(InnerI))
267             DeadInsts.emplace_back(InnerI);
268         }
269       }
270     }
271     // We can't do recursive deletion until we're done iterating, as we might
272     // have a phi which (potentially indirectly) uses instructions later in
273     // the block we're iterating through.
274     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
275   }
276 }
277 
278 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
279 /// can only fail when the loop's latch block is not terminated by a conditional
280 /// branch instruction. However, if the trip count (and multiple) are not known,
281 /// loop unrolling will mostly produce more code that is no faster.
282 ///
283 /// If Runtime is true then UnrollLoop will try to insert a prologue or
284 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
285 /// will not runtime-unroll the loop if computing the run-time trip count will
286 /// be expensive and AllowExpensiveTripCount is false.
287 ///
288 /// The LoopInfo Analysis that is passed will be kept consistent.
289 ///
290 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
291 /// DominatorTree if they are non-null.
292 ///
293 /// If RemainderLoop is non-null, it will receive the remainder loop (if
294 /// required and not fully unrolled).
295 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
296                                   ScalarEvolution *SE, DominatorTree *DT,
297                                   AssumptionCache *AC,
298                                   const TargetTransformInfo *TTI,
299                                   OptimizationRemarkEmitter *ORE,
300                                   bool PreserveLCSSA, Loop **RemainderLoop) {
301   assert(DT && "DomTree is required");
302 
303   if (!L->getLoopPreheader()) {
304     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
305     return LoopUnrollResult::Unmodified;
306   }
307 
308   if (!L->getLoopLatch()) {
309     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
310     return LoopUnrollResult::Unmodified;
311   }
312 
313   // Loops with indirectbr cannot be cloned.
314   if (!L->isSafeToClone()) {
315     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
316     return LoopUnrollResult::Unmodified;
317   }
318 
319   if (L->getHeader()->hasAddressTaken()) {
320     // The loop-rotate pass can be helpful to avoid this in many cases.
321     LLVM_DEBUG(
322         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
323     return LoopUnrollResult::Unmodified;
324   }
325 
326   assert(ULO.Count > 0);
327 
328   // All these values should be taken only after peeling because they might have
329   // changed.
330   BasicBlock *Preheader = L->getLoopPreheader();
331   BasicBlock *Header = L->getHeader();
332   BasicBlock *LatchBlock = L->getLoopLatch();
333   SmallVector<BasicBlock *, 4> ExitBlocks;
334   L->getExitBlocks(ExitBlocks);
335   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
336 
337   const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
338   const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
339   unsigned EstimatedLoopInvocationWeight = 0;
340   std::optional<unsigned> OriginalTripCount =
341       llvm::getLoopEstimatedTripCount(L, &EstimatedLoopInvocationWeight);
342 
343   // Effectively "DCE" unrolled iterations that are beyond the max tripcount
344   // and will never be executed.
345   if (MaxTripCount && ULO.Count > MaxTripCount)
346     ULO.Count = MaxTripCount;
347 
348   struct ExitInfo {
349     unsigned TripCount;
350     unsigned TripMultiple;
351     unsigned BreakoutTrip;
352     bool ExitOnTrue;
353     BasicBlock *FirstExitingBlock = nullptr;
354     SmallVector<BasicBlock *> ExitingBlocks;
355   };
356   DenseMap<BasicBlock *, ExitInfo> ExitInfos;
357   SmallVector<BasicBlock *, 4> ExitingBlocks;
358   L->getExitingBlocks(ExitingBlocks);
359   for (auto *ExitingBlock : ExitingBlocks) {
360     // The folding code is not prepared to deal with non-branch instructions
361     // right now.
362     auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
363     if (!BI)
364       continue;
365 
366     ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
367     Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
368     Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
369     if (Info.TripCount != 0) {
370       Info.BreakoutTrip = Info.TripCount % ULO.Count;
371       Info.TripMultiple = 0;
372     } else {
373       Info.BreakoutTrip = Info.TripMultiple =
374           (unsigned)std::gcd(ULO.Count, Info.TripMultiple);
375     }
376     Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
377     Info.ExitingBlocks.push_back(ExitingBlock);
378     LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
379                       << ": TripCount=" << Info.TripCount
380                       << ", TripMultiple=" << Info.TripMultiple
381                       << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
382   }
383 
384   // Are we eliminating the loop control altogether?  Note that we can know
385   // we're eliminating the backedge without knowing exactly which iteration
386   // of the unrolled body exits.
387   const bool CompletelyUnroll = ULO.Count == MaxTripCount;
388 
389   const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
390 
391   // There's no point in performing runtime unrolling if this unroll count
392   // results in a full unroll.
393   if (CompletelyUnroll)
394     ULO.Runtime = false;
395 
396   // Go through all exits of L and see if there are any phi-nodes there. We just
397   // conservatively assume that they're inserted to preserve LCSSA form, which
398   // means that complete unrolling might break this form. We need to either fix
399   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
400   // now we just recompute LCSSA for the outer loop, but it should be possible
401   // to fix it in-place.
402   bool NeedToFixLCSSA =
403       PreserveLCSSA && CompletelyUnroll &&
404       any_of(ExitBlocks,
405              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
406 
407   // The current loop unroll pass can unroll loops that have
408   // (1) single latch; and
409   // (2a) latch is unconditional; or
410   // (2b) latch is conditional and is an exiting block
411   // FIXME: The implementation can be extended to work with more complicated
412   // cases, e.g. loops with multiple latches.
413   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
414 
415   // A conditional branch which exits the loop, which can be optimized to an
416   // unconditional branch in the unrolled loop in some cases.
417   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
418   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
419     LLVM_DEBUG(
420         dbgs() << "Can't unroll; a conditional latch must exit the loop");
421     return LoopUnrollResult::Unmodified;
422   }
423 
424   // Loops containing convergent instructions cannot use runtime unrolling,
425   // as the prologue/epilogue may add additional control-dependencies to
426   // convergent operations.
427   LLVM_DEBUG(
428       {
429         bool HasConvergent = false;
430         for (auto &BB : L->blocks())
431           for (auto &I : *BB)
432             if (auto *CB = dyn_cast<CallBase>(&I))
433               HasConvergent |= CB->isConvergent();
434         assert((!HasConvergent || !ULO.Runtime) &&
435                "Can't runtime unroll if loop contains a convergent operation.");
436       });
437 
438   bool EpilogProfitability =
439       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
440                                               : isEpilogProfitable(L);
441 
442   if (ULO.Runtime &&
443       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
444                                   EpilogProfitability, ULO.UnrollRemainder,
445                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
446                                   PreserveLCSSA, RemainderLoop)) {
447     if (ULO.Force)
448       ULO.Runtime = false;
449     else {
450       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
451                            "generated when assuming runtime trip count\n");
452       return LoopUnrollResult::Unmodified;
453     }
454   }
455 
456   using namespace ore;
457   // Report the unrolling decision.
458   if (CompletelyUnroll) {
459     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
460                       << " with trip count " << ULO.Count << "!\n");
461     if (ORE)
462       ORE->emit([&]() {
463         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
464                                   L->getHeader())
465                << "completely unrolled loop with "
466                << NV("UnrollCount", ULO.Count) << " iterations";
467       });
468   } else {
469     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
470                       << ULO.Count);
471     if (ULO.Runtime)
472       LLVM_DEBUG(dbgs() << " with run-time trip count");
473     LLVM_DEBUG(dbgs() << "!\n");
474 
475     if (ORE)
476       ORE->emit([&]() {
477         OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
478                                 L->getHeader());
479         Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
480         if (ULO.Runtime)
481           Diag << " with run-time trip count";
482         return Diag;
483       });
484   }
485 
486   // We are going to make changes to this loop. SCEV may be keeping cached info
487   // about it, in particular about backedge taken count. The changes we make
488   // are guaranteed to invalidate this information for our loop. It is tempting
489   // to only invalidate the loop being unrolled, but it is incorrect as long as
490   // all exiting branches from all inner loops have impact on the outer loops,
491   // and if something changes inside them then any of outer loops may also
492   // change. When we forget outermost loop, we also forget all contained loops
493   // and this is what we need here.
494   if (SE) {
495     if (ULO.ForgetAllSCEV)
496       SE->forgetAllLoops();
497     else {
498       SE->forgetTopmostLoop(L);
499       SE->forgetBlockAndLoopDispositions();
500     }
501   }
502 
503   if (!LatchIsExiting)
504     ++NumUnrolledNotLatch;
505 
506   // For the first iteration of the loop, we should use the precloned values for
507   // PHI nodes.  Insert associations now.
508   ValueToValueMapTy LastValueMap;
509   std::vector<PHINode*> OrigPHINode;
510   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
511     OrigPHINode.push_back(cast<PHINode>(I));
512   }
513 
514   std::vector<BasicBlock *> Headers;
515   std::vector<BasicBlock *> Latches;
516   Headers.push_back(Header);
517   Latches.push_back(LatchBlock);
518 
519   // The current on-the-fly SSA update requires blocks to be processed in
520   // reverse postorder so that LastValueMap contains the correct value at each
521   // exit.
522   LoopBlocksDFS DFS(L);
523   DFS.perform(LI);
524 
525   // Stash the DFS iterators before adding blocks to the loop.
526   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
527   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
528 
529   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
530 
531   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
532   // might break loop-simplified form for these loops (as they, e.g., would
533   // share the same exit blocks). We'll keep track of loops for which we can
534   // break this so that later we can re-simplify them.
535   SmallSetVector<Loop *, 4> LoopsToSimplify;
536   for (Loop *SubLoop : *L)
537     LoopsToSimplify.insert(SubLoop);
538 
539   // When a FSDiscriminator is enabled, we don't need to add the multiply
540   // factors to the discriminators.
541   if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
542       !EnableFSDiscriminator)
543     for (BasicBlock *BB : L->getBlocks())
544       for (Instruction &I : *BB)
545         if (!I.isDebugOrPseudoInst())
546           if (const DILocation *DIL = I.getDebugLoc()) {
547             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
548             if (NewDIL)
549               I.setDebugLoc(*NewDIL);
550             else
551               LLVM_DEBUG(dbgs()
552                          << "Failed to create new discriminator: "
553                          << DIL->getFilename() << " Line: " << DIL->getLine());
554           }
555 
556   // Identify what noalias metadata is inside the loop: if it is inside the
557   // loop, the associated metadata must be cloned for each iteration.
558   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
559   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
560 
561   // We place the unrolled iterations immediately after the original loop
562   // latch.  This is a reasonable default placement if we don't have block
563   // frequencies, and if we do, well the layout will be adjusted later.
564   auto BlockInsertPt = std::next(LatchBlock->getIterator());
565   for (unsigned It = 1; It != ULO.Count; ++It) {
566     SmallVector<BasicBlock *, 8> NewBlocks;
567     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
568     NewLoops[L] = L;
569 
570     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
571       ValueToValueMapTy VMap;
572       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
573       Header->getParent()->insert(BlockInsertPt, New);
574 
575       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
576              "Header should not be in a sub-loop");
577       // Tell LI about New.
578       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
579       if (OldLoop)
580         LoopsToSimplify.insert(NewLoops[OldLoop]);
581 
582       if (*BB == Header)
583         // Loop over all of the PHI nodes in the block, changing them to use
584         // the incoming values from the previous block.
585         for (PHINode *OrigPHI : OrigPHINode) {
586           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
587           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
588           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
589             if (It > 1 && L->contains(InValI))
590               InVal = LastValueMap[InValI];
591           VMap[OrigPHI] = InVal;
592           NewPHI->eraseFromParent();
593         }
594 
595       // Update our running map of newest clones
596       LastValueMap[*BB] = New;
597       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
598            VI != VE; ++VI)
599         LastValueMap[VI->first] = VI->second;
600 
601       // Add phi entries for newly created values to all exit blocks.
602       for (BasicBlock *Succ : successors(*BB)) {
603         if (L->contains(Succ))
604           continue;
605         for (PHINode &PHI : Succ->phis()) {
606           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
607           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
608           if (It != LastValueMap.end())
609             Incoming = It->second;
610           PHI.addIncoming(Incoming, New);
611           SE->forgetValue(&PHI);
612         }
613       }
614       // Keep track of new headers and latches as we create them, so that
615       // we can insert the proper branches later.
616       if (*BB == Header)
617         Headers.push_back(New);
618       if (*BB == LatchBlock)
619         Latches.push_back(New);
620 
621       // Keep track of the exiting block and its successor block contained in
622       // the loop for the current iteration.
623       auto ExitInfoIt = ExitInfos.find(*BB);
624       if (ExitInfoIt != ExitInfos.end())
625         ExitInfoIt->second.ExitingBlocks.push_back(New);
626 
627       NewBlocks.push_back(New);
628       UnrolledLoopBlocks.push_back(New);
629 
630       // Update DomTree: since we just copy the loop body, and each copy has a
631       // dedicated entry block (copy of the header block), this header's copy
632       // dominates all copied blocks. That means, dominance relations in the
633       // copied body are the same as in the original body.
634       if (*BB == Header)
635         DT->addNewBlock(New, Latches[It - 1]);
636       else {
637         auto BBDomNode = DT->getNode(*BB);
638         auto BBIDom = BBDomNode->getIDom();
639         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
640         DT->addNewBlock(
641             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
642       }
643     }
644 
645     // Remap all instructions in the most recent iteration
646     remapInstructionsInBlocks(NewBlocks, LastValueMap);
647     for (BasicBlock *NewBlock : NewBlocks)
648       for (Instruction &I : *NewBlock)
649         if (auto *II = dyn_cast<AssumeInst>(&I))
650           AC->registerAssumption(II);
651 
652     {
653       // Identify what other metadata depends on the cloned version. After
654       // cloning, replace the metadata with the corrected version for both
655       // memory instructions and noalias intrinsics.
656       std::string ext = (Twine("It") + Twine(It)).str();
657       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
658                                  Header->getContext(), ext);
659     }
660   }
661 
662   // Loop over the PHI nodes in the original block, setting incoming values.
663   for (PHINode *PN : OrigPHINode) {
664     if (CompletelyUnroll) {
665       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
666       PN->eraseFromParent();
667     } else if (ULO.Count > 1) {
668       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
669       // If this value was defined in the loop, take the value defined by the
670       // last iteration of the loop.
671       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
672         if (L->contains(InValI))
673           InVal = LastValueMap[InVal];
674       }
675       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
676       PN->addIncoming(InVal, Latches.back());
677     }
678   }
679 
680   // Connect latches of the unrolled iterations to the headers of the next
681   // iteration. Currently they point to the header of the same iteration.
682   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
683     unsigned j = (i + 1) % e;
684     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
685   }
686 
687   // Update dominators of blocks we might reach through exits.
688   // Immediate dominator of such block might change, because we add more
689   // routes which can lead to the exit: we can now reach it from the copied
690   // iterations too.
691   if (ULO.Count > 1) {
692     for (auto *BB : OriginalLoopBlocks) {
693       auto *BBDomNode = DT->getNode(BB);
694       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
695       for (auto *ChildDomNode : BBDomNode->children()) {
696         auto *ChildBB = ChildDomNode->getBlock();
697         if (!L->contains(ChildBB))
698           ChildrenToUpdate.push_back(ChildBB);
699       }
700       // The new idom of the block will be the nearest common dominator
701       // of all copies of the previous idom. This is equivalent to the
702       // nearest common dominator of the previous idom and the first latch,
703       // which dominates all copies of the previous idom.
704       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
705       for (auto *ChildBB : ChildrenToUpdate)
706         DT->changeImmediateDominator(ChildBB, NewIDom);
707     }
708   }
709 
710   assert(!UnrollVerifyDomtree ||
711          DT->verify(DominatorTree::VerificationLevel::Fast));
712 
713   SmallVector<DominatorTree::UpdateType> DTUpdates;
714   auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
715     auto *Term = cast<BranchInst>(Src->getTerminator());
716     const unsigned Idx = ExitOnTrue ^ WillExit;
717     BasicBlock *Dest = Term->getSuccessor(Idx);
718     BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
719 
720     // Remove predecessors from all non-Dest successors.
721     DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
722 
723     // Replace the conditional branch with an unconditional one.
724     BranchInst::Create(Dest, Term);
725     Term->eraseFromParent();
726 
727     DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc);
728   };
729 
730   auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
731                       bool IsLatch) -> std::optional<bool> {
732     if (CompletelyUnroll) {
733       if (PreserveOnlyFirst) {
734         if (i == 0)
735           return std::nullopt;
736         return j == 0;
737       }
738       // Complete (but possibly inexact) unrolling
739       if (j == 0)
740         return true;
741       if (Info.TripCount && j != Info.TripCount)
742         return false;
743       return std::nullopt;
744     }
745 
746     if (ULO.Runtime) {
747       // If runtime unrolling inserts a prologue, information about non-latch
748       // exits may be stale.
749       if (IsLatch && j != 0)
750         return false;
751       return std::nullopt;
752     }
753 
754     if (j != Info.BreakoutTrip &&
755         (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
756       // If we know the trip count or a multiple of it, we can safely use an
757       // unconditional branch for some iterations.
758       return false;
759     }
760     return std::nullopt;
761   };
762 
763   // Fold branches for iterations where we know that they will exit or not
764   // exit.
765   for (auto &Pair : ExitInfos) {
766     ExitInfo &Info = Pair.second;
767     for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
768       // The branch destination.
769       unsigned j = (i + 1) % e;
770       bool IsLatch = Pair.first == LatchBlock;
771       std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
772       if (!KnownWillExit) {
773         if (!Info.FirstExitingBlock)
774           Info.FirstExitingBlock = Info.ExitingBlocks[i];
775         continue;
776       }
777 
778       // We don't fold known-exiting branches for non-latch exits here,
779       // because this ensures that both all loop blocks and all exit blocks
780       // remain reachable in the CFG.
781       // TODO: We could fold these branches, but it would require much more
782       // sophisticated updates to LoopInfo.
783       if (*KnownWillExit && !IsLatch) {
784         if (!Info.FirstExitingBlock)
785           Info.FirstExitingBlock = Info.ExitingBlocks[i];
786         continue;
787       }
788 
789       SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
790     }
791   }
792 
793   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
794   DomTreeUpdater *DTUToUse = &DTU;
795   if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) {
796     // Manually update the DT if there's a single exiting node. In that case
797     // there's a single exit node and it is sufficient to update the nodes
798     // immediately dominated by the original exiting block. They will become
799     // dominated by the first exiting block that leaves the loop after
800     // unrolling. Note that the CFG inside the loop does not change, so there's
801     // no need to update the DT inside the unrolled loop.
802     DTUToUse = nullptr;
803     auto &[OriginalExit, Info] = *ExitInfos.begin();
804     if (!Info.FirstExitingBlock)
805       Info.FirstExitingBlock = Info.ExitingBlocks.back();
806     for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) {
807       if (L->contains(C->getBlock()))
808         continue;
809       C->setIDom(DT->getNode(Info.FirstExitingBlock));
810     }
811   } else {
812     DTU.applyUpdates(DTUpdates);
813   }
814 
815   // When completely unrolling, the last latch becomes unreachable.
816   if (!LatchIsExiting && CompletelyUnroll) {
817     // There is no need to update the DT here, because there must be a unique
818     // latch. Hence if the latch is not exiting it must directly branch back to
819     // the original loop header and does not dominate any nodes.
820     assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?");
821     changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA);
822   }
823 
824   // Merge adjacent basic blocks, if possible.
825   for (BasicBlock *Latch : Latches) {
826     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
827     assert((Term ||
828             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
829            "Need a branch as terminator, except when fully unrolling with "
830            "unconditional latch");
831     if (Term && Term->isUnconditional()) {
832       BasicBlock *Dest = Term->getSuccessor(0);
833       BasicBlock *Fold = Dest->getUniquePredecessor();
834       if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI,
835                                     /*MSSAU=*/nullptr, /*MemDep=*/nullptr,
836                                     /*PredecessorWithTwoSuccessors=*/false,
837                                     DTUToUse ? nullptr : DT)) {
838         // Dest has been folded into Fold. Update our worklists accordingly.
839         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
840         llvm::erase(UnrolledLoopBlocks, Dest);
841       }
842     }
843   }
844 
845   if (DTUToUse) {
846     // Apply updates to the DomTree.
847     DT = &DTU.getDomTree();
848   }
849   assert(!UnrollVerifyDomtree ||
850          DT->verify(DominatorTree::VerificationLevel::Fast));
851 
852   // At this point, the code is well formed.  We now simplify the unrolled loop,
853   // doing constant propagation and dead code elimination as we go.
854   simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
855                           TTI);
856 
857   NumCompletelyUnrolled += CompletelyUnroll;
858   ++NumUnrolled;
859 
860   Loop *OuterL = L->getParentLoop();
861   // Update LoopInfo if the loop is completely removed.
862   if (CompletelyUnroll) {
863     LI->erase(L);
864     // We shouldn't try to use `L` anymore.
865     L = nullptr;
866   } else if (OriginalTripCount) {
867     // Update the trip count. Note that the remainder has already logic
868     // computing it in `UnrollRuntimeLoopRemainder`.
869     setLoopEstimatedTripCount(L, *OriginalTripCount / ULO.Count,
870                               EstimatedLoopInvocationWeight);
871   }
872 
873   // LoopInfo should not be valid, confirm that.
874   if (UnrollVerifyLoopInfo)
875     LI->verify(*DT);
876 
877   // After complete unrolling most of the blocks should be contained in OuterL.
878   // However, some of them might happen to be out of OuterL (e.g. if they
879   // precede a loop exit). In this case we might need to insert PHI nodes in
880   // order to preserve LCSSA form.
881   // We don't need to check this if we already know that we need to fix LCSSA
882   // form.
883   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
884   // it should be possible to fix it in-place.
885   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
886     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
887 
888   // Make sure that loop-simplify form is preserved. We want to simplify
889   // at least one layer outside of the loop that was unrolled so that any
890   // changes to the parent loop exposed by the unrolling are considered.
891   if (OuterL) {
892     // OuterL includes all loops for which we can break loop-simplify, so
893     // it's sufficient to simplify only it (it'll recursively simplify inner
894     // loops too).
895     if (NeedToFixLCSSA) {
896       // LCSSA must be performed on the outermost affected loop. The unrolled
897       // loop's last loop latch is guaranteed to be in the outermost loop
898       // after LoopInfo's been updated by LoopInfo::erase.
899       Loop *LatchLoop = LI->getLoopFor(Latches.back());
900       Loop *FixLCSSALoop = OuterL;
901       if (!FixLCSSALoop->contains(LatchLoop))
902         while (FixLCSSALoop->getParentLoop() != LatchLoop)
903           FixLCSSALoop = FixLCSSALoop->getParentLoop();
904 
905       formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
906     } else if (PreserveLCSSA) {
907       assert(OuterL->isLCSSAForm(*DT) &&
908              "Loops should be in LCSSA form after loop-unroll.");
909     }
910 
911     // TODO: That potentially might be compile-time expensive. We should try
912     // to fix the loop-simplified form incrementally.
913     simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
914   } else {
915     // Simplify loops for which we might've broken loop-simplify form.
916     for (Loop *SubLoop : LoopsToSimplify)
917       simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
918   }
919 
920   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
921                           : LoopUnrollResult::PartiallyUnrolled;
922 }
923 
924 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
925 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
926 /// such metadata node exists, then nullptr is returned.
927 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
928   // First operand should refer to the loop id itself.
929   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
930   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
931 
932   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
933     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
934     if (!MD)
935       continue;
936 
937     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
938     if (!S)
939       continue;
940 
941     if (Name.equals(S->getString()))
942       return MD;
943   }
944   return nullptr;
945 }
946