xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp (revision a7beca6fb113986839de73b7cf73d933464898c6)
1  //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements some loop unrolling utilities. It does not define any
10  // actual pass or policy, but provides a single function to perform loop
11  // unrolling.
12  //
13  // The process of unrolling can produce extraneous basic blocks linked with
14  // unconditional branches.  This will be corrected in the future.
15  //
16  //===----------------------------------------------------------------------===//
17  
18  #include "llvm/ADT/ArrayRef.h"
19  #include "llvm/ADT/DenseMap.h"
20  #include "llvm/ADT/STLExtras.h"
21  #include "llvm/ADT/SetVector.h"
22  #include "llvm/ADT/SmallVector.h"
23  #include "llvm/ADT/Statistic.h"
24  #include "llvm/ADT/StringRef.h"
25  #include "llvm/ADT/Twine.h"
26  #include "llvm/ADT/ilist_iterator.h"
27  #include "llvm/Analysis/AssumptionCache.h"
28  #include "llvm/Analysis/DomTreeUpdater.h"
29  #include "llvm/Analysis/InstructionSimplify.h"
30  #include "llvm/Analysis/LoopInfo.h"
31  #include "llvm/Analysis/LoopIterator.h"
32  #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33  #include "llvm/Analysis/ScalarEvolution.h"
34  #include "llvm/IR/BasicBlock.h"
35  #include "llvm/IR/CFG.h"
36  #include "llvm/IR/Constants.h"
37  #include "llvm/IR/DebugInfoMetadata.h"
38  #include "llvm/IR/DebugLoc.h"
39  #include "llvm/IR/DiagnosticInfo.h"
40  #include "llvm/IR/Dominators.h"
41  #include "llvm/IR/Function.h"
42  #include "llvm/IR/Instruction.h"
43  #include "llvm/IR/Instructions.h"
44  #include "llvm/IR/IntrinsicInst.h"
45  #include "llvm/IR/Metadata.h"
46  #include "llvm/IR/Module.h"
47  #include "llvm/IR/PatternMatch.h"
48  #include "llvm/IR/Use.h"
49  #include "llvm/IR/User.h"
50  #include "llvm/IR/ValueHandle.h"
51  #include "llvm/IR/ValueMap.h"
52  #include "llvm/Support/Casting.h"
53  #include "llvm/Support/CommandLine.h"
54  #include "llvm/Support/Debug.h"
55  #include "llvm/Support/GenericDomTree.h"
56  #include "llvm/Support/MathExtras.h"
57  #include "llvm/Support/raw_ostream.h"
58  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
59  #include "llvm/Transforms/Utils/Cloning.h"
60  #include "llvm/Transforms/Utils/Local.h"
61  #include "llvm/Transforms/Utils/LoopSimplify.h"
62  #include "llvm/Transforms/Utils/LoopUtils.h"
63  #include "llvm/Transforms/Utils/SimplifyIndVar.h"
64  #include "llvm/Transforms/Utils/UnrollLoop.h"
65  #include "llvm/Transforms/Utils/ValueMapper.h"
66  #include <algorithm>
67  #include <assert.h>
68  #include <numeric>
69  #include <type_traits>
70  #include <vector>
71  
72  namespace llvm {
73  class DataLayout;
74  class Value;
75  } // namespace llvm
76  
77  using namespace llvm;
78  
79  #define DEBUG_TYPE "loop-unroll"
80  
81  // TODO: Should these be here or in LoopUnroll?
82  STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
83  STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
84  STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
85                                 "latch (completely or otherwise)");
86  
87  static cl::opt<bool>
88  UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
89                      cl::desc("Allow runtime unrolled loops to be unrolled "
90                               "with epilog instead of prolog."));
91  
92  static cl::opt<bool>
93  UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
94                      cl::desc("Verify domtree after unrolling"),
95  #ifdef EXPENSIVE_CHECKS
96      cl::init(true)
97  #else
98      cl::init(false)
99  #endif
100                      );
101  
102  static cl::opt<bool>
103  UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
104                      cl::desc("Verify loopinfo after unrolling"),
105  #ifdef EXPENSIVE_CHECKS
106      cl::init(true)
107  #else
108      cl::init(false)
109  #endif
110                      );
111  
112  
113  /// Check if unrolling created a situation where we need to insert phi nodes to
114  /// preserve LCSSA form.
115  /// \param Blocks is a vector of basic blocks representing unrolled loop.
116  /// \param L is the outer loop.
117  /// It's possible that some of the blocks are in L, and some are not. In this
118  /// case, if there is a use is outside L, and definition is inside L, we need to
119  /// insert a phi-node, otherwise LCSSA will be broken.
120  /// The function is just a helper function for llvm::UnrollLoop that returns
121  /// true if this situation occurs, indicating that LCSSA needs to be fixed.
122  static bool needToInsertPhisForLCSSA(Loop *L,
123                                       const std::vector<BasicBlock *> &Blocks,
124                                       LoopInfo *LI) {
125    for (BasicBlock *BB : Blocks) {
126      if (LI->getLoopFor(BB) == L)
127        continue;
128      for (Instruction &I : *BB) {
129        for (Use &U : I.operands()) {
130          if (const auto *Def = dyn_cast<Instruction>(U)) {
131            Loop *DefLoop = LI->getLoopFor(Def->getParent());
132            if (!DefLoop)
133              continue;
134            if (DefLoop->contains(L))
135              return true;
136          }
137        }
138      }
139    }
140    return false;
141  }
142  
143  /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
144  /// and adds a mapping from the original loop to the new loop to NewLoops.
145  /// Returns nullptr if no new loop was created and a pointer to the
146  /// original loop OriginalBB was part of otherwise.
147  const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
148                                             BasicBlock *ClonedBB, LoopInfo *LI,
149                                             NewLoopsMap &NewLoops) {
150    // Figure out which loop New is in.
151    const Loop *OldLoop = LI->getLoopFor(OriginalBB);
152    assert(OldLoop && "Should (at least) be in the loop being unrolled!");
153  
154    Loop *&NewLoop = NewLoops[OldLoop];
155    if (!NewLoop) {
156      // Found a new sub-loop.
157      assert(OriginalBB == OldLoop->getHeader() &&
158             "Header should be first in RPO");
159  
160      NewLoop = LI->AllocateLoop();
161      Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
162  
163      if (NewLoopParent)
164        NewLoopParent->addChildLoop(NewLoop);
165      else
166        LI->addTopLevelLoop(NewLoop);
167  
168      NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
169      return OldLoop;
170    } else {
171      NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
172      return nullptr;
173    }
174  }
175  
176  /// The function chooses which type of unroll (epilog or prolog) is more
177  /// profitabale.
178  /// Epilog unroll is more profitable when there is PHI that starts from
179  /// constant.  In this case epilog will leave PHI start from constant,
180  /// but prolog will convert it to non-constant.
181  ///
182  /// loop:
183  ///   PN = PHI [I, Latch], [CI, PreHeader]
184  ///   I = foo(PN)
185  ///   ...
186  ///
187  /// Epilog unroll case.
188  /// loop:
189  ///   PN = PHI [I2, Latch], [CI, PreHeader]
190  ///   I1 = foo(PN)
191  ///   I2 = foo(I1)
192  ///   ...
193  /// Prolog unroll case.
194  ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
195  /// loop:
196  ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
197  ///   I1 = foo(PN)
198  ///   I2 = foo(I1)
199  ///   ...
200  ///
201  static bool isEpilogProfitable(Loop *L) {
202    BasicBlock *PreHeader = L->getLoopPreheader();
203    BasicBlock *Header = L->getHeader();
204    assert(PreHeader && Header);
205    for (const PHINode &PN : Header->phis()) {
206      if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
207        return true;
208    }
209    return false;
210  }
211  
212  /// Perform some cleanup and simplifications on loops after unrolling. It is
213  /// useful to simplify the IV's in the new loop, as well as do a quick
214  /// simplify/dce pass of the instructions.
215  void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
216                                     ScalarEvolution *SE, DominatorTree *DT,
217                                     AssumptionCache *AC,
218                                     const TargetTransformInfo *TTI) {
219    using namespace llvm::PatternMatch;
220  
221    // Simplify any new induction variables in the partially unrolled loop.
222    if (SE && SimplifyIVs) {
223      SmallVector<WeakTrackingVH, 16> DeadInsts;
224      simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
225  
226      // Aggressively clean up dead instructions that simplifyLoopIVs already
227      // identified. Any remaining should be cleaned up below.
228      while (!DeadInsts.empty()) {
229        Value *V = DeadInsts.pop_back_val();
230        if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
231          RecursivelyDeleteTriviallyDeadInstructions(Inst);
232      }
233    }
234  
235    // At this point, the code is well formed.  Perform constprop, instsimplify,
236    // and dce.
237    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
238    SmallVector<WeakTrackingVH, 16> DeadInsts;
239    for (BasicBlock *BB : L->getBlocks()) {
240      for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
241        if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
242          if (LI->replacementPreservesLCSSAForm(&Inst, V))
243            Inst.replaceAllUsesWith(V);
244        if (isInstructionTriviallyDead(&Inst))
245          DeadInsts.emplace_back(&Inst);
246  
247        // Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in
248        // unrolled loops, and handling this early allows following code to
249        // identify the IV as a "simple recurrence" without first folding away
250        // a long chain of adds.
251        {
252          Value *X;
253          const APInt *C1, *C2;
254          if (match(&Inst, m_Add(m_Add(m_Value(X), m_APInt(C1)), m_APInt(C2)))) {
255            auto *InnerI = dyn_cast<Instruction>(Inst.getOperand(0));
256            auto *InnerOBO = cast<OverflowingBinaryOperator>(Inst.getOperand(0));
257            bool SignedOverflow;
258            APInt NewC = C1->sadd_ov(*C2, SignedOverflow);
259            Inst.setOperand(0, X);
260            Inst.setOperand(1, ConstantInt::get(Inst.getType(), NewC));
261            Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() &&
262                                      InnerOBO->hasNoUnsignedWrap());
263            Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() &&
264                                    InnerOBO->hasNoSignedWrap() &&
265                                    !SignedOverflow);
266            if (InnerI && isInstructionTriviallyDead(InnerI))
267              DeadInsts.emplace_back(InnerI);
268          }
269        }
270      }
271      // We can't do recursive deletion until we're done iterating, as we might
272      // have a phi which (potentially indirectly) uses instructions later in
273      // the block we're iterating through.
274      RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
275    }
276  }
277  
278  /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
279  /// can only fail when the loop's latch block is not terminated by a conditional
280  /// branch instruction. However, if the trip count (and multiple) are not known,
281  /// loop unrolling will mostly produce more code that is no faster.
282  ///
283  /// If Runtime is true then UnrollLoop will try to insert a prologue or
284  /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
285  /// will not runtime-unroll the loop if computing the run-time trip count will
286  /// be expensive and AllowExpensiveTripCount is false.
287  ///
288  /// The LoopInfo Analysis that is passed will be kept consistent.
289  ///
290  /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
291  /// DominatorTree if they are non-null.
292  ///
293  /// If RemainderLoop is non-null, it will receive the remainder loop (if
294  /// required and not fully unrolled).
295  LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
296                                    ScalarEvolution *SE, DominatorTree *DT,
297                                    AssumptionCache *AC,
298                                    const TargetTransformInfo *TTI,
299                                    OptimizationRemarkEmitter *ORE,
300                                    bool PreserveLCSSA, Loop **RemainderLoop) {
301    assert(DT && "DomTree is required");
302  
303    if (!L->getLoopPreheader()) {
304      LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
305      return LoopUnrollResult::Unmodified;
306    }
307  
308    if (!L->getLoopLatch()) {
309      LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
310      return LoopUnrollResult::Unmodified;
311    }
312  
313    // Loops with indirectbr cannot be cloned.
314    if (!L->isSafeToClone()) {
315      LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
316      return LoopUnrollResult::Unmodified;
317    }
318  
319    if (L->getHeader()->hasAddressTaken()) {
320      // The loop-rotate pass can be helpful to avoid this in many cases.
321      LLVM_DEBUG(
322          dbgs() << "  Won't unroll loop: address of header block is taken.\n");
323      return LoopUnrollResult::Unmodified;
324    }
325  
326    assert(ULO.Count > 0);
327  
328    // All these values should be taken only after peeling because they might have
329    // changed.
330    BasicBlock *Preheader = L->getLoopPreheader();
331    BasicBlock *Header = L->getHeader();
332    BasicBlock *LatchBlock = L->getLoopLatch();
333    SmallVector<BasicBlock *, 4> ExitBlocks;
334    L->getExitBlocks(ExitBlocks);
335    std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
336  
337    const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
338    const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
339    unsigned EstimatedLoopInvocationWeight = 0;
340    std::optional<unsigned> OriginalTripCount =
341        llvm::getLoopEstimatedTripCount(L, &EstimatedLoopInvocationWeight);
342  
343    // Effectively "DCE" unrolled iterations that are beyond the max tripcount
344    // and will never be executed.
345    if (MaxTripCount && ULO.Count > MaxTripCount)
346      ULO.Count = MaxTripCount;
347  
348    struct ExitInfo {
349      unsigned TripCount;
350      unsigned TripMultiple;
351      unsigned BreakoutTrip;
352      bool ExitOnTrue;
353      BasicBlock *FirstExitingBlock = nullptr;
354      SmallVector<BasicBlock *> ExitingBlocks;
355    };
356    DenseMap<BasicBlock *, ExitInfo> ExitInfos;
357    SmallVector<BasicBlock *, 4> ExitingBlocks;
358    L->getExitingBlocks(ExitingBlocks);
359    for (auto *ExitingBlock : ExitingBlocks) {
360      // The folding code is not prepared to deal with non-branch instructions
361      // right now.
362      auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
363      if (!BI)
364        continue;
365  
366      ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
367      Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
368      Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
369      if (Info.TripCount != 0) {
370        Info.BreakoutTrip = Info.TripCount % ULO.Count;
371        Info.TripMultiple = 0;
372      } else {
373        Info.BreakoutTrip = Info.TripMultiple =
374            (unsigned)std::gcd(ULO.Count, Info.TripMultiple);
375      }
376      Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
377      Info.ExitingBlocks.push_back(ExitingBlock);
378      LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
379                        << ": TripCount=" << Info.TripCount
380                        << ", TripMultiple=" << Info.TripMultiple
381                        << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
382    }
383  
384    // Are we eliminating the loop control altogether?  Note that we can know
385    // we're eliminating the backedge without knowing exactly which iteration
386    // of the unrolled body exits.
387    const bool CompletelyUnroll = ULO.Count == MaxTripCount;
388  
389    const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
390  
391    // There's no point in performing runtime unrolling if this unroll count
392    // results in a full unroll.
393    if (CompletelyUnroll)
394      ULO.Runtime = false;
395  
396    // Go through all exits of L and see if there are any phi-nodes there. We just
397    // conservatively assume that they're inserted to preserve LCSSA form, which
398    // means that complete unrolling might break this form. We need to either fix
399    // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
400    // now we just recompute LCSSA for the outer loop, but it should be possible
401    // to fix it in-place.
402    bool NeedToFixLCSSA =
403        PreserveLCSSA && CompletelyUnroll &&
404        any_of(ExitBlocks,
405               [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
406  
407    // The current loop unroll pass can unroll loops that have
408    // (1) single latch; and
409    // (2a) latch is unconditional; or
410    // (2b) latch is conditional and is an exiting block
411    // FIXME: The implementation can be extended to work with more complicated
412    // cases, e.g. loops with multiple latches.
413    BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
414  
415    // A conditional branch which exits the loop, which can be optimized to an
416    // unconditional branch in the unrolled loop in some cases.
417    bool LatchIsExiting = L->isLoopExiting(LatchBlock);
418    if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
419      LLVM_DEBUG(
420          dbgs() << "Can't unroll; a conditional latch must exit the loop");
421      return LoopUnrollResult::Unmodified;
422    }
423  
424    // Loops containing convergent instructions cannot use runtime unrolling,
425    // as the prologue/epilogue may add additional control-dependencies to
426    // convergent operations.
427    LLVM_DEBUG(
428        {
429          bool HasConvergent = false;
430          for (auto &BB : L->blocks())
431            for (auto &I : *BB)
432              if (auto *CB = dyn_cast<CallBase>(&I))
433                HasConvergent |= CB->isConvergent();
434          assert((!HasConvergent || !ULO.Runtime) &&
435                 "Can't runtime unroll if loop contains a convergent operation.");
436        });
437  
438    bool EpilogProfitability =
439        UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
440                                                : isEpilogProfitable(L);
441  
442    if (ULO.Runtime &&
443        !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
444                                    EpilogProfitability, ULO.UnrollRemainder,
445                                    ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
446                                    PreserveLCSSA, RemainderLoop)) {
447      if (ULO.Force)
448        ULO.Runtime = false;
449      else {
450        LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
451                             "generated when assuming runtime trip count\n");
452        return LoopUnrollResult::Unmodified;
453      }
454    }
455  
456    using namespace ore;
457    // Report the unrolling decision.
458    if (CompletelyUnroll) {
459      LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
460                        << " with trip count " << ULO.Count << "!\n");
461      if (ORE)
462        ORE->emit([&]() {
463          return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
464                                    L->getHeader())
465                 << "completely unrolled loop with "
466                 << NV("UnrollCount", ULO.Count) << " iterations";
467        });
468    } else {
469      LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
470                        << ULO.Count);
471      if (ULO.Runtime)
472        LLVM_DEBUG(dbgs() << " with run-time trip count");
473      LLVM_DEBUG(dbgs() << "!\n");
474  
475      if (ORE)
476        ORE->emit([&]() {
477          OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
478                                  L->getHeader());
479          Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
480          if (ULO.Runtime)
481            Diag << " with run-time trip count";
482          return Diag;
483        });
484    }
485  
486    // We are going to make changes to this loop. SCEV may be keeping cached info
487    // about it, in particular about backedge taken count. The changes we make
488    // are guaranteed to invalidate this information for our loop. It is tempting
489    // to only invalidate the loop being unrolled, but it is incorrect as long as
490    // all exiting branches from all inner loops have impact on the outer loops,
491    // and if something changes inside them then any of outer loops may also
492    // change. When we forget outermost loop, we also forget all contained loops
493    // and this is what we need here.
494    if (SE) {
495      if (ULO.ForgetAllSCEV)
496        SE->forgetAllLoops();
497      else {
498        SE->forgetTopmostLoop(L);
499        SE->forgetBlockAndLoopDispositions();
500      }
501    }
502  
503    if (!LatchIsExiting)
504      ++NumUnrolledNotLatch;
505  
506    // For the first iteration of the loop, we should use the precloned values for
507    // PHI nodes.  Insert associations now.
508    ValueToValueMapTy LastValueMap;
509    std::vector<PHINode*> OrigPHINode;
510    for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
511      OrigPHINode.push_back(cast<PHINode>(I));
512    }
513  
514    std::vector<BasicBlock *> Headers;
515    std::vector<BasicBlock *> Latches;
516    Headers.push_back(Header);
517    Latches.push_back(LatchBlock);
518  
519    // The current on-the-fly SSA update requires blocks to be processed in
520    // reverse postorder so that LastValueMap contains the correct value at each
521    // exit.
522    LoopBlocksDFS DFS(L);
523    DFS.perform(LI);
524  
525    // Stash the DFS iterators before adding blocks to the loop.
526    LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
527    LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
528  
529    std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
530  
531    // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
532    // might break loop-simplified form for these loops (as they, e.g., would
533    // share the same exit blocks). We'll keep track of loops for which we can
534    // break this so that later we can re-simplify them.
535    SmallSetVector<Loop *, 4> LoopsToSimplify;
536    for (Loop *SubLoop : *L)
537      LoopsToSimplify.insert(SubLoop);
538  
539    // When a FSDiscriminator is enabled, we don't need to add the multiply
540    // factors to the discriminators.
541    if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
542        !EnableFSDiscriminator)
543      for (BasicBlock *BB : L->getBlocks())
544        for (Instruction &I : *BB)
545          if (!I.isDebugOrPseudoInst())
546            if (const DILocation *DIL = I.getDebugLoc()) {
547              auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
548              if (NewDIL)
549                I.setDebugLoc(*NewDIL);
550              else
551                LLVM_DEBUG(dbgs()
552                           << "Failed to create new discriminator: "
553                           << DIL->getFilename() << " Line: " << DIL->getLine());
554            }
555  
556    // Identify what noalias metadata is inside the loop: if it is inside the
557    // loop, the associated metadata must be cloned for each iteration.
558    SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
559    identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
560  
561    // We place the unrolled iterations immediately after the original loop
562    // latch.  This is a reasonable default placement if we don't have block
563    // frequencies, and if we do, well the layout will be adjusted later.
564    auto BlockInsertPt = std::next(LatchBlock->getIterator());
565    for (unsigned It = 1; It != ULO.Count; ++It) {
566      SmallVector<BasicBlock *, 8> NewBlocks;
567      SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
568      NewLoops[L] = L;
569  
570      for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
571        ValueToValueMapTy VMap;
572        BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
573        Header->getParent()->insert(BlockInsertPt, New);
574  
575        assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
576               "Header should not be in a sub-loop");
577        // Tell LI about New.
578        const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
579        if (OldLoop)
580          LoopsToSimplify.insert(NewLoops[OldLoop]);
581  
582        if (*BB == Header)
583          // Loop over all of the PHI nodes in the block, changing them to use
584          // the incoming values from the previous block.
585          for (PHINode *OrigPHI : OrigPHINode) {
586            PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
587            Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
588            if (Instruction *InValI = dyn_cast<Instruction>(InVal))
589              if (It > 1 && L->contains(InValI))
590                InVal = LastValueMap[InValI];
591            VMap[OrigPHI] = InVal;
592            NewPHI->eraseFromParent();
593          }
594  
595        // Update our running map of newest clones
596        LastValueMap[*BB] = New;
597        for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
598             VI != VE; ++VI)
599          LastValueMap[VI->first] = VI->second;
600  
601        // Add phi entries for newly created values to all exit blocks.
602        for (BasicBlock *Succ : successors(*BB)) {
603          if (L->contains(Succ))
604            continue;
605          for (PHINode &PHI : Succ->phis()) {
606            Value *Incoming = PHI.getIncomingValueForBlock(*BB);
607            ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
608            if (It != LastValueMap.end())
609              Incoming = It->second;
610            PHI.addIncoming(Incoming, New);
611            SE->forgetValue(&PHI);
612          }
613        }
614        // Keep track of new headers and latches as we create them, so that
615        // we can insert the proper branches later.
616        if (*BB == Header)
617          Headers.push_back(New);
618        if (*BB == LatchBlock)
619          Latches.push_back(New);
620  
621        // Keep track of the exiting block and its successor block contained in
622        // the loop for the current iteration.
623        auto ExitInfoIt = ExitInfos.find(*BB);
624        if (ExitInfoIt != ExitInfos.end())
625          ExitInfoIt->second.ExitingBlocks.push_back(New);
626  
627        NewBlocks.push_back(New);
628        UnrolledLoopBlocks.push_back(New);
629  
630        // Update DomTree: since we just copy the loop body, and each copy has a
631        // dedicated entry block (copy of the header block), this header's copy
632        // dominates all copied blocks. That means, dominance relations in the
633        // copied body are the same as in the original body.
634        if (*BB == Header)
635          DT->addNewBlock(New, Latches[It - 1]);
636        else {
637          auto BBDomNode = DT->getNode(*BB);
638          auto BBIDom = BBDomNode->getIDom();
639          BasicBlock *OriginalBBIDom = BBIDom->getBlock();
640          DT->addNewBlock(
641              New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
642        }
643      }
644  
645      // Remap all instructions in the most recent iteration
646      remapInstructionsInBlocks(NewBlocks, LastValueMap);
647      for (BasicBlock *NewBlock : NewBlocks)
648        for (Instruction &I : *NewBlock)
649          if (auto *II = dyn_cast<AssumeInst>(&I))
650            AC->registerAssumption(II);
651  
652      {
653        // Identify what other metadata depends on the cloned version. After
654        // cloning, replace the metadata with the corrected version for both
655        // memory instructions and noalias intrinsics.
656        std::string ext = (Twine("It") + Twine(It)).str();
657        cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
658                                   Header->getContext(), ext);
659      }
660    }
661  
662    // Loop over the PHI nodes in the original block, setting incoming values.
663    for (PHINode *PN : OrigPHINode) {
664      if (CompletelyUnroll) {
665        PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
666        PN->eraseFromParent();
667      } else if (ULO.Count > 1) {
668        Value *InVal = PN->removeIncomingValue(LatchBlock, false);
669        // If this value was defined in the loop, take the value defined by the
670        // last iteration of the loop.
671        if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
672          if (L->contains(InValI))
673            InVal = LastValueMap[InVal];
674        }
675        assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
676        PN->addIncoming(InVal, Latches.back());
677      }
678    }
679  
680    // Connect latches of the unrolled iterations to the headers of the next
681    // iteration. Currently they point to the header of the same iteration.
682    for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
683      unsigned j = (i + 1) % e;
684      Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
685    }
686  
687    // Update dominators of blocks we might reach through exits.
688    // Immediate dominator of such block might change, because we add more
689    // routes which can lead to the exit: we can now reach it from the copied
690    // iterations too.
691    if (ULO.Count > 1) {
692      for (auto *BB : OriginalLoopBlocks) {
693        auto *BBDomNode = DT->getNode(BB);
694        SmallVector<BasicBlock *, 16> ChildrenToUpdate;
695        for (auto *ChildDomNode : BBDomNode->children()) {
696          auto *ChildBB = ChildDomNode->getBlock();
697          if (!L->contains(ChildBB))
698            ChildrenToUpdate.push_back(ChildBB);
699        }
700        // The new idom of the block will be the nearest common dominator
701        // of all copies of the previous idom. This is equivalent to the
702        // nearest common dominator of the previous idom and the first latch,
703        // which dominates all copies of the previous idom.
704        BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
705        for (auto *ChildBB : ChildrenToUpdate)
706          DT->changeImmediateDominator(ChildBB, NewIDom);
707      }
708    }
709  
710    assert(!UnrollVerifyDomtree ||
711           DT->verify(DominatorTree::VerificationLevel::Fast));
712  
713    SmallVector<DominatorTree::UpdateType> DTUpdates;
714    auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
715      auto *Term = cast<BranchInst>(Src->getTerminator());
716      const unsigned Idx = ExitOnTrue ^ WillExit;
717      BasicBlock *Dest = Term->getSuccessor(Idx);
718      BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
719  
720      // Remove predecessors from all non-Dest successors.
721      DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
722  
723      // Replace the conditional branch with an unconditional one.
724      BranchInst::Create(Dest, Term);
725      Term->eraseFromParent();
726  
727      DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc);
728    };
729  
730    auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
731                        bool IsLatch) -> std::optional<bool> {
732      if (CompletelyUnroll) {
733        if (PreserveOnlyFirst) {
734          if (i == 0)
735            return std::nullopt;
736          return j == 0;
737        }
738        // Complete (but possibly inexact) unrolling
739        if (j == 0)
740          return true;
741        if (Info.TripCount && j != Info.TripCount)
742          return false;
743        return std::nullopt;
744      }
745  
746      if (ULO.Runtime) {
747        // If runtime unrolling inserts a prologue, information about non-latch
748        // exits may be stale.
749        if (IsLatch && j != 0)
750          return false;
751        return std::nullopt;
752      }
753  
754      if (j != Info.BreakoutTrip &&
755          (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
756        // If we know the trip count or a multiple of it, we can safely use an
757        // unconditional branch for some iterations.
758        return false;
759      }
760      return std::nullopt;
761    };
762  
763    // Fold branches for iterations where we know that they will exit or not
764    // exit.
765    for (auto &Pair : ExitInfos) {
766      ExitInfo &Info = Pair.second;
767      for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
768        // The branch destination.
769        unsigned j = (i + 1) % e;
770        bool IsLatch = Pair.first == LatchBlock;
771        std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
772        if (!KnownWillExit) {
773          if (!Info.FirstExitingBlock)
774            Info.FirstExitingBlock = Info.ExitingBlocks[i];
775          continue;
776        }
777  
778        // We don't fold known-exiting branches for non-latch exits here,
779        // because this ensures that both all loop blocks and all exit blocks
780        // remain reachable in the CFG.
781        // TODO: We could fold these branches, but it would require much more
782        // sophisticated updates to LoopInfo.
783        if (*KnownWillExit && !IsLatch) {
784          if (!Info.FirstExitingBlock)
785            Info.FirstExitingBlock = Info.ExitingBlocks[i];
786          continue;
787        }
788  
789        SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
790      }
791    }
792  
793    DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
794    DomTreeUpdater *DTUToUse = &DTU;
795    if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) {
796      // Manually update the DT if there's a single exiting node. In that case
797      // there's a single exit node and it is sufficient to update the nodes
798      // immediately dominated by the original exiting block. They will become
799      // dominated by the first exiting block that leaves the loop after
800      // unrolling. Note that the CFG inside the loop does not change, so there's
801      // no need to update the DT inside the unrolled loop.
802      DTUToUse = nullptr;
803      auto &[OriginalExit, Info] = *ExitInfos.begin();
804      if (!Info.FirstExitingBlock)
805        Info.FirstExitingBlock = Info.ExitingBlocks.back();
806      for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) {
807        if (L->contains(C->getBlock()))
808          continue;
809        C->setIDom(DT->getNode(Info.FirstExitingBlock));
810      }
811    } else {
812      DTU.applyUpdates(DTUpdates);
813    }
814  
815    // When completely unrolling, the last latch becomes unreachable.
816    if (!LatchIsExiting && CompletelyUnroll) {
817      // There is no need to update the DT here, because there must be a unique
818      // latch. Hence if the latch is not exiting it must directly branch back to
819      // the original loop header and does not dominate any nodes.
820      assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?");
821      changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA);
822    }
823  
824    // Merge adjacent basic blocks, if possible.
825    for (BasicBlock *Latch : Latches) {
826      BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
827      assert((Term ||
828              (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
829             "Need a branch as terminator, except when fully unrolling with "
830             "unconditional latch");
831      if (Term && Term->isUnconditional()) {
832        BasicBlock *Dest = Term->getSuccessor(0);
833        BasicBlock *Fold = Dest->getUniquePredecessor();
834        if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI,
835                                      /*MSSAU=*/nullptr, /*MemDep=*/nullptr,
836                                      /*PredecessorWithTwoSuccessors=*/false,
837                                      DTUToUse ? nullptr : DT)) {
838          // Dest has been folded into Fold. Update our worklists accordingly.
839          std::replace(Latches.begin(), Latches.end(), Dest, Fold);
840          llvm::erase(UnrolledLoopBlocks, Dest);
841        }
842      }
843    }
844  
845    if (DTUToUse) {
846      // Apply updates to the DomTree.
847      DT = &DTU.getDomTree();
848    }
849    assert(!UnrollVerifyDomtree ||
850           DT->verify(DominatorTree::VerificationLevel::Fast));
851  
852    // At this point, the code is well formed.  We now simplify the unrolled loop,
853    // doing constant propagation and dead code elimination as we go.
854    simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
855                            TTI);
856  
857    NumCompletelyUnrolled += CompletelyUnroll;
858    ++NumUnrolled;
859  
860    Loop *OuterL = L->getParentLoop();
861    // Update LoopInfo if the loop is completely removed.
862    if (CompletelyUnroll) {
863      LI->erase(L);
864      // We shouldn't try to use `L` anymore.
865      L = nullptr;
866    } else if (OriginalTripCount) {
867      // Update the trip count. Note that the remainder has already logic
868      // computing it in `UnrollRuntimeLoopRemainder`.
869      setLoopEstimatedTripCount(L, *OriginalTripCount / ULO.Count,
870                                EstimatedLoopInvocationWeight);
871    }
872  
873    // LoopInfo should not be valid, confirm that.
874    if (UnrollVerifyLoopInfo)
875      LI->verify(*DT);
876  
877    // After complete unrolling most of the blocks should be contained in OuterL.
878    // However, some of them might happen to be out of OuterL (e.g. if they
879    // precede a loop exit). In this case we might need to insert PHI nodes in
880    // order to preserve LCSSA form.
881    // We don't need to check this if we already know that we need to fix LCSSA
882    // form.
883    // TODO: For now we just recompute LCSSA for the outer loop in this case, but
884    // it should be possible to fix it in-place.
885    if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
886      NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
887  
888    // Make sure that loop-simplify form is preserved. We want to simplify
889    // at least one layer outside of the loop that was unrolled so that any
890    // changes to the parent loop exposed by the unrolling are considered.
891    if (OuterL) {
892      // OuterL includes all loops for which we can break loop-simplify, so
893      // it's sufficient to simplify only it (it'll recursively simplify inner
894      // loops too).
895      if (NeedToFixLCSSA) {
896        // LCSSA must be performed on the outermost affected loop. The unrolled
897        // loop's last loop latch is guaranteed to be in the outermost loop
898        // after LoopInfo's been updated by LoopInfo::erase.
899        Loop *LatchLoop = LI->getLoopFor(Latches.back());
900        Loop *FixLCSSALoop = OuterL;
901        if (!FixLCSSALoop->contains(LatchLoop))
902          while (FixLCSSALoop->getParentLoop() != LatchLoop)
903            FixLCSSALoop = FixLCSSALoop->getParentLoop();
904  
905        formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
906      } else if (PreserveLCSSA) {
907        assert(OuterL->isLCSSAForm(*DT) &&
908               "Loops should be in LCSSA form after loop-unroll.");
909      }
910  
911      // TODO: That potentially might be compile-time expensive. We should try
912      // to fix the loop-simplified form incrementally.
913      simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
914    } else {
915      // Simplify loops for which we might've broken loop-simplify form.
916      for (Loop *SubLoop : LoopsToSimplify)
917        simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
918    }
919  
920    return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
921                            : LoopUnrollResult::PartiallyUnrolled;
922  }
923  
924  /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
925  /// node with the given name (for example, "llvm.loop.unroll.count"). If no
926  /// such metadata node exists, then nullptr is returned.
927  MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
928    // First operand should refer to the loop id itself.
929    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
930    assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
931  
932    for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
933      MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
934      if (!MD)
935        continue;
936  
937      MDString *S = dyn_cast<MDString>(MD->getOperand(0));
938      if (!S)
939        continue;
940  
941      if (Name.equals(S->getString()))
942        return MD;
943    }
944    return nullptr;
945  }
946