1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/ScopedHashTable.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/MemorySSA.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/Analysis/ScalarEvolution.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/IR/ValueMap.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/GenericDomTree.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 62 #include "llvm/Transforms/Utils/Cloning.h" 63 #include "llvm/Transforms/Utils/Local.h" 64 #include "llvm/Transforms/Utils/LoopSimplify.h" 65 #include "llvm/Transforms/Utils/LoopUtils.h" 66 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 67 #include "llvm/Transforms/Utils/UnrollLoop.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <assert.h> 71 #include <numeric> 72 #include <type_traits> 73 #include <vector> 74 75 namespace llvm { 76 class DataLayout; 77 class Value; 78 } // namespace llvm 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "loop-unroll" 83 84 // TODO: Should these be here or in LoopUnroll? 85 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 86 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 87 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 88 "latch (completely or otherwise)"); 89 90 static cl::opt<bool> 91 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 92 cl::desc("Allow runtime unrolled loops to be unrolled " 93 "with epilog instead of prolog.")); 94 95 static cl::opt<bool> 96 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 97 cl::desc("Verify domtree after unrolling"), 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true) 100 #else 101 cl::init(false) 102 #endif 103 ); 104 105 static cl::opt<bool> 106 UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden, 107 cl::desc("Verify loopinfo after unrolling"), 108 #ifdef EXPENSIVE_CHECKS 109 cl::init(true) 110 #else 111 cl::init(false) 112 #endif 113 ); 114 115 116 /// Check if unrolling created a situation where we need to insert phi nodes to 117 /// preserve LCSSA form. 118 /// \param Blocks is a vector of basic blocks representing unrolled loop. 119 /// \param L is the outer loop. 120 /// It's possible that some of the blocks are in L, and some are not. In this 121 /// case, if there is a use is outside L, and definition is inside L, we need to 122 /// insert a phi-node, otherwise LCSSA will be broken. 123 /// The function is just a helper function for llvm::UnrollLoop that returns 124 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 125 static bool needToInsertPhisForLCSSA(Loop *L, 126 const std::vector<BasicBlock *> &Blocks, 127 LoopInfo *LI) { 128 for (BasicBlock *BB : Blocks) { 129 if (LI->getLoopFor(BB) == L) 130 continue; 131 for (Instruction &I : *BB) { 132 for (Use &U : I.operands()) { 133 if (const auto *Def = dyn_cast<Instruction>(U)) { 134 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 135 if (!DefLoop) 136 continue; 137 if (DefLoop->contains(L)) 138 return true; 139 } 140 } 141 } 142 } 143 return false; 144 } 145 146 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 147 /// and adds a mapping from the original loop to the new loop to NewLoops. 148 /// Returns nullptr if no new loop was created and a pointer to the 149 /// original loop OriginalBB was part of otherwise. 150 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 151 BasicBlock *ClonedBB, LoopInfo *LI, 152 NewLoopsMap &NewLoops) { 153 // Figure out which loop New is in. 154 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 155 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 156 157 Loop *&NewLoop = NewLoops[OldLoop]; 158 if (!NewLoop) { 159 // Found a new sub-loop. 160 assert(OriginalBB == OldLoop->getHeader() && 161 "Header should be first in RPO"); 162 163 NewLoop = LI->AllocateLoop(); 164 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 165 166 if (NewLoopParent) 167 NewLoopParent->addChildLoop(NewLoop); 168 else 169 LI->addTopLevelLoop(NewLoop); 170 171 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 172 return OldLoop; 173 } else { 174 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 175 return nullptr; 176 } 177 } 178 179 /// The function chooses which type of unroll (epilog or prolog) is more 180 /// profitabale. 181 /// Epilog unroll is more profitable when there is PHI that starts from 182 /// constant. In this case epilog will leave PHI start from constant, 183 /// but prolog will convert it to non-constant. 184 /// 185 /// loop: 186 /// PN = PHI [I, Latch], [CI, PreHeader] 187 /// I = foo(PN) 188 /// ... 189 /// 190 /// Epilog unroll case. 191 /// loop: 192 /// PN = PHI [I2, Latch], [CI, PreHeader] 193 /// I1 = foo(PN) 194 /// I2 = foo(I1) 195 /// ... 196 /// Prolog unroll case. 197 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 198 /// loop: 199 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 200 /// I1 = foo(PN) 201 /// I2 = foo(I1) 202 /// ... 203 /// 204 static bool isEpilogProfitable(Loop *L) { 205 BasicBlock *PreHeader = L->getLoopPreheader(); 206 BasicBlock *Header = L->getHeader(); 207 assert(PreHeader && Header); 208 for (const PHINode &PN : Header->phis()) { 209 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 210 return true; 211 } 212 return false; 213 } 214 215 struct LoadValue { 216 Instruction *DefI = nullptr; 217 unsigned Generation = 0; 218 LoadValue() = default; 219 LoadValue(Instruction *Inst, unsigned Generation) 220 : DefI(Inst), Generation(Generation) {} 221 }; 222 223 class StackNode { 224 ScopedHashTable<const SCEV *, LoadValue>::ScopeTy LoadScope; 225 unsigned CurrentGeneration; 226 unsigned ChildGeneration; 227 DomTreeNode *Node; 228 DomTreeNode::const_iterator ChildIter; 229 DomTreeNode::const_iterator EndIter; 230 bool Processed = false; 231 232 public: 233 StackNode(ScopedHashTable<const SCEV *, LoadValue> &AvailableLoads, 234 unsigned cg, DomTreeNode *N, DomTreeNode::const_iterator Child, 235 DomTreeNode::const_iterator End) 236 : LoadScope(AvailableLoads), CurrentGeneration(cg), ChildGeneration(cg), 237 Node(N), ChildIter(Child), EndIter(End) {} 238 // Accessors. 239 unsigned currentGeneration() const { return CurrentGeneration; } 240 unsigned childGeneration() const { return ChildGeneration; } 241 void childGeneration(unsigned generation) { ChildGeneration = generation; } 242 DomTreeNode *node() { return Node; } 243 DomTreeNode::const_iterator childIter() const { return ChildIter; } 244 245 DomTreeNode *nextChild() { 246 DomTreeNode *Child = *ChildIter; 247 ++ChildIter; 248 return Child; 249 } 250 251 DomTreeNode::const_iterator end() const { return EndIter; } 252 bool isProcessed() const { return Processed; } 253 void process() { Processed = true; } 254 }; 255 256 Value *getMatchingValue(LoadValue LV, LoadInst *LI, unsigned CurrentGeneration, 257 BatchAAResults &BAA, 258 function_ref<MemorySSA *()> GetMSSA) { 259 if (!LV.DefI) 260 return nullptr; 261 if (LV.DefI->getType() != LI->getType()) 262 return nullptr; 263 if (LV.Generation != CurrentGeneration) { 264 MemorySSA *MSSA = GetMSSA(); 265 if (!MSSA) 266 return nullptr; 267 auto *EarlierMA = MSSA->getMemoryAccess(LV.DefI); 268 MemoryAccess *LaterDef = 269 MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA); 270 if (!MSSA->dominates(LaterDef, EarlierMA)) 271 return nullptr; 272 } 273 return LV.DefI; 274 } 275 276 void loadCSE(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, 277 BatchAAResults &BAA, function_ref<MemorySSA *()> GetMSSA) { 278 ScopedHashTable<const SCEV *, LoadValue> AvailableLoads; 279 SmallVector<std::unique_ptr<StackNode>> NodesToProcess; 280 DomTreeNode *HeaderD = DT.getNode(L->getHeader()); 281 NodesToProcess.emplace_back(new StackNode(AvailableLoads, 0, HeaderD, 282 HeaderD->begin(), HeaderD->end())); 283 284 unsigned CurrentGeneration = 0; 285 while (!NodesToProcess.empty()) { 286 StackNode *NodeToProcess = &*NodesToProcess.back(); 287 288 CurrentGeneration = NodeToProcess->currentGeneration(); 289 290 if (!NodeToProcess->isProcessed()) { 291 // Process the node. 292 293 // If this block has a single predecessor, then the predecessor is the 294 // parent 295 // of the domtree node and all of the live out memory values are still 296 // current in this block. If this block has multiple predecessors, then 297 // they could have invalidated the live-out memory values of our parent 298 // value. For now, just be conservative and invalidate memory if this 299 // block has multiple predecessors. 300 if (!NodeToProcess->node()->getBlock()->getSinglePredecessor()) 301 ++CurrentGeneration; 302 for (auto &I : make_early_inc_range(*NodeToProcess->node()->getBlock())) { 303 304 auto *Load = dyn_cast<LoadInst>(&I); 305 if (!Load || !Load->isSimple()) { 306 if (I.mayWriteToMemory()) 307 CurrentGeneration++; 308 continue; 309 } 310 311 const SCEV *PtrSCEV = SE.getSCEV(Load->getPointerOperand()); 312 LoadValue LV = AvailableLoads.lookup(PtrSCEV); 313 if (Value *M = 314 getMatchingValue(LV, Load, CurrentGeneration, BAA, GetMSSA)) { 315 if (LI.replacementPreservesLCSSAForm(Load, M)) { 316 Load->replaceAllUsesWith(M); 317 Load->eraseFromParent(); 318 } 319 } else { 320 AvailableLoads.insert(PtrSCEV, LoadValue(Load, CurrentGeneration)); 321 } 322 } 323 NodeToProcess->childGeneration(CurrentGeneration); 324 NodeToProcess->process(); 325 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 326 // Push the next child onto the stack. 327 DomTreeNode *Child = NodeToProcess->nextChild(); 328 if (!L->contains(Child->getBlock())) 329 continue; 330 NodesToProcess.emplace_back( 331 new StackNode(AvailableLoads, NodeToProcess->childGeneration(), Child, 332 Child->begin(), Child->end())); 333 } else { 334 // It has been processed, and there are no more children to process, 335 // so delete it and pop it off the stack. 336 NodesToProcess.pop_back(); 337 } 338 } 339 } 340 341 /// Perform some cleanup and simplifications on loops after unrolling. It is 342 /// useful to simplify the IV's in the new loop, as well as do a quick 343 /// simplify/dce pass of the instructions. 344 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 345 ScalarEvolution *SE, DominatorTree *DT, 346 AssumptionCache *AC, 347 const TargetTransformInfo *TTI, 348 AAResults *AA) { 349 using namespace llvm::PatternMatch; 350 351 // Simplify any new induction variables in the partially unrolled loop. 352 if (SE && SimplifyIVs) { 353 SmallVector<WeakTrackingVH, 16> DeadInsts; 354 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 355 356 // Aggressively clean up dead instructions that simplifyLoopIVs already 357 // identified. Any remaining should be cleaned up below. 358 while (!DeadInsts.empty()) { 359 Value *V = DeadInsts.pop_back_val(); 360 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 361 RecursivelyDeleteTriviallyDeadInstructions(Inst); 362 } 363 364 if (AA) { 365 std::unique_ptr<MemorySSA> MSSA = nullptr; 366 BatchAAResults BAA(*AA); 367 loadCSE(L, *DT, *SE, *LI, BAA, [L, AA, DT, &MSSA]() -> MemorySSA * { 368 if (!MSSA) 369 MSSA.reset(new MemorySSA(*L, AA, DT)); 370 return &*MSSA; 371 }); 372 } 373 } 374 375 // At this point, the code is well formed. Perform constprop, instsimplify, 376 // and dce. 377 const DataLayout &DL = L->getHeader()->getDataLayout(); 378 SmallVector<WeakTrackingVH, 16> DeadInsts; 379 for (BasicBlock *BB : L->getBlocks()) { 380 // Remove repeated debug instructions after loop unrolling. 381 if (BB->getParent()->getSubprogram()) 382 RemoveRedundantDbgInstrs(BB); 383 384 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 385 if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC})) 386 if (LI->replacementPreservesLCSSAForm(&Inst, V)) 387 Inst.replaceAllUsesWith(V); 388 if (isInstructionTriviallyDead(&Inst)) 389 DeadInsts.emplace_back(&Inst); 390 391 // Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in 392 // unrolled loops, and handling this early allows following code to 393 // identify the IV as a "simple recurrence" without first folding away 394 // a long chain of adds. 395 { 396 Value *X; 397 const APInt *C1, *C2; 398 if (match(&Inst, m_Add(m_Add(m_Value(X), m_APInt(C1)), m_APInt(C2)))) { 399 auto *InnerI = dyn_cast<Instruction>(Inst.getOperand(0)); 400 auto *InnerOBO = cast<OverflowingBinaryOperator>(Inst.getOperand(0)); 401 bool SignedOverflow; 402 APInt NewC = C1->sadd_ov(*C2, SignedOverflow); 403 Inst.setOperand(0, X); 404 Inst.setOperand(1, ConstantInt::get(Inst.getType(), NewC)); 405 Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() && 406 InnerOBO->hasNoUnsignedWrap()); 407 Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() && 408 InnerOBO->hasNoSignedWrap() && 409 !SignedOverflow); 410 if (InnerI && isInstructionTriviallyDead(InnerI)) 411 DeadInsts.emplace_back(InnerI); 412 } 413 } 414 } 415 // We can't do recursive deletion until we're done iterating, as we might 416 // have a phi which (potentially indirectly) uses instructions later in 417 // the block we're iterating through. 418 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 419 } 420 } 421 422 // Loops containing convergent instructions that are uncontrolled or controlled 423 // from outside the loop must have a count that divides their TripMultiple. 424 LLVM_ATTRIBUTE_USED 425 static bool canHaveUnrollRemainder(const Loop *L) { 426 if (getLoopConvergenceHeart(L)) 427 return false; 428 429 // Check for uncontrolled convergent operations. 430 for (auto &BB : L->blocks()) { 431 for (auto &I : *BB) { 432 if (isa<ConvergenceControlInst>(I)) 433 return true; 434 if (auto *CB = dyn_cast<CallBase>(&I)) 435 if (CB->isConvergent()) 436 return CB->getConvergenceControlToken(); 437 } 438 } 439 return true; 440 } 441 442 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 443 /// can only fail when the loop's latch block is not terminated by a conditional 444 /// branch instruction. However, if the trip count (and multiple) are not known, 445 /// loop unrolling will mostly produce more code that is no faster. 446 /// 447 /// If Runtime is true then UnrollLoop will try to insert a prologue or 448 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop 449 /// will not runtime-unroll the loop if computing the run-time trip count will 450 /// be expensive and AllowExpensiveTripCount is false. 451 /// 452 /// The LoopInfo Analysis that is passed will be kept consistent. 453 /// 454 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 455 /// DominatorTree if they are non-null. 456 /// 457 /// If RemainderLoop is non-null, it will receive the remainder loop (if 458 /// required and not fully unrolled). 459 LoopUnrollResult 460 llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 461 ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 462 const TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE, 463 bool PreserveLCSSA, Loop **RemainderLoop, AAResults *AA) { 464 assert(DT && "DomTree is required"); 465 466 if (!L->getLoopPreheader()) { 467 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 468 return LoopUnrollResult::Unmodified; 469 } 470 471 if (!L->getLoopLatch()) { 472 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 473 return LoopUnrollResult::Unmodified; 474 } 475 476 // Loops with indirectbr cannot be cloned. 477 if (!L->isSafeToClone()) { 478 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 479 return LoopUnrollResult::Unmodified; 480 } 481 482 if (L->getHeader()->hasAddressTaken()) { 483 // The loop-rotate pass can be helpful to avoid this in many cases. 484 LLVM_DEBUG( 485 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 486 return LoopUnrollResult::Unmodified; 487 } 488 489 assert(ULO.Count > 0); 490 491 // All these values should be taken only after peeling because they might have 492 // changed. 493 BasicBlock *Preheader = L->getLoopPreheader(); 494 BasicBlock *Header = L->getHeader(); 495 BasicBlock *LatchBlock = L->getLoopLatch(); 496 SmallVector<BasicBlock *, 4> ExitBlocks; 497 L->getExitBlocks(ExitBlocks); 498 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 499 500 const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); 501 const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 502 unsigned EstimatedLoopInvocationWeight = 0; 503 std::optional<unsigned> OriginalTripCount = 504 llvm::getLoopEstimatedTripCount(L, &EstimatedLoopInvocationWeight); 505 506 // Effectively "DCE" unrolled iterations that are beyond the max tripcount 507 // and will never be executed. 508 if (MaxTripCount && ULO.Count > MaxTripCount) 509 ULO.Count = MaxTripCount; 510 511 struct ExitInfo { 512 unsigned TripCount; 513 unsigned TripMultiple; 514 unsigned BreakoutTrip; 515 bool ExitOnTrue; 516 BasicBlock *FirstExitingBlock = nullptr; 517 SmallVector<BasicBlock *> ExitingBlocks; 518 }; 519 DenseMap<BasicBlock *, ExitInfo> ExitInfos; 520 SmallVector<BasicBlock *, 4> ExitingBlocks; 521 L->getExitingBlocks(ExitingBlocks); 522 for (auto *ExitingBlock : ExitingBlocks) { 523 // The folding code is not prepared to deal with non-branch instructions 524 // right now. 525 auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 526 if (!BI) 527 continue; 528 529 ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second; 530 Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 531 Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 532 if (Info.TripCount != 0) { 533 Info.BreakoutTrip = Info.TripCount % ULO.Count; 534 Info.TripMultiple = 0; 535 } else { 536 Info.BreakoutTrip = Info.TripMultiple = 537 (unsigned)std::gcd(ULO.Count, Info.TripMultiple); 538 } 539 Info.ExitOnTrue = !L->contains(BI->getSuccessor(0)); 540 Info.ExitingBlocks.push_back(ExitingBlock); 541 LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName() 542 << ": TripCount=" << Info.TripCount 543 << ", TripMultiple=" << Info.TripMultiple 544 << ", BreakoutTrip=" << Info.BreakoutTrip << "\n"); 545 } 546 547 // Are we eliminating the loop control altogether? Note that we can know 548 // we're eliminating the backedge without knowing exactly which iteration 549 // of the unrolled body exits. 550 const bool CompletelyUnroll = ULO.Count == MaxTripCount; 551 552 const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero; 553 554 // There's no point in performing runtime unrolling if this unroll count 555 // results in a full unroll. 556 if (CompletelyUnroll) 557 ULO.Runtime = false; 558 559 // Go through all exits of L and see if there are any phi-nodes there. We just 560 // conservatively assume that they're inserted to preserve LCSSA form, which 561 // means that complete unrolling might break this form. We need to either fix 562 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 563 // now we just recompute LCSSA for the outer loop, but it should be possible 564 // to fix it in-place. 565 bool NeedToFixLCSSA = 566 PreserveLCSSA && CompletelyUnroll && 567 any_of(ExitBlocks, 568 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 569 570 // The current loop unroll pass can unroll loops that have 571 // (1) single latch; and 572 // (2a) latch is unconditional; or 573 // (2b) latch is conditional and is an exiting block 574 // FIXME: The implementation can be extended to work with more complicated 575 // cases, e.g. loops with multiple latches. 576 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 577 578 // A conditional branch which exits the loop, which can be optimized to an 579 // unconditional branch in the unrolled loop in some cases. 580 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 581 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 582 LLVM_DEBUG( 583 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 584 return LoopUnrollResult::Unmodified; 585 } 586 587 assert((!ULO.Runtime || canHaveUnrollRemainder(L)) && 588 "Can't runtime unroll if loop contains a convergent operation."); 589 590 bool EpilogProfitability = 591 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 592 : isEpilogProfitable(L); 593 594 if (ULO.Runtime && 595 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 596 EpilogProfitability, ULO.UnrollRemainder, 597 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 598 PreserveLCSSA, RemainderLoop)) { 599 if (ULO.Force) 600 ULO.Runtime = false; 601 else { 602 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 603 "generated when assuming runtime trip count\n"); 604 return LoopUnrollResult::Unmodified; 605 } 606 } 607 608 using namespace ore; 609 // Report the unrolling decision. 610 if (CompletelyUnroll) { 611 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 612 << " with trip count " << ULO.Count << "!\n"); 613 if (ORE) 614 ORE->emit([&]() { 615 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 616 L->getHeader()) 617 << "completely unrolled loop with " 618 << NV("UnrollCount", ULO.Count) << " iterations"; 619 }); 620 } else { 621 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 622 << ULO.Count); 623 if (ULO.Runtime) 624 LLVM_DEBUG(dbgs() << " with run-time trip count"); 625 LLVM_DEBUG(dbgs() << "!\n"); 626 627 if (ORE) 628 ORE->emit([&]() { 629 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 630 L->getHeader()); 631 Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count); 632 if (ULO.Runtime) 633 Diag << " with run-time trip count"; 634 return Diag; 635 }); 636 } 637 638 // We are going to make changes to this loop. SCEV may be keeping cached info 639 // about it, in particular about backedge taken count. The changes we make 640 // are guaranteed to invalidate this information for our loop. It is tempting 641 // to only invalidate the loop being unrolled, but it is incorrect as long as 642 // all exiting branches from all inner loops have impact on the outer loops, 643 // and if something changes inside them then any of outer loops may also 644 // change. When we forget outermost loop, we also forget all contained loops 645 // and this is what we need here. 646 if (SE) { 647 if (ULO.ForgetAllSCEV) 648 SE->forgetAllLoops(); 649 else { 650 SE->forgetTopmostLoop(L); 651 SE->forgetBlockAndLoopDispositions(); 652 } 653 } 654 655 if (!LatchIsExiting) 656 ++NumUnrolledNotLatch; 657 658 // For the first iteration of the loop, we should use the precloned values for 659 // PHI nodes. Insert associations now. 660 ValueToValueMapTy LastValueMap; 661 std::vector<PHINode*> OrigPHINode; 662 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 663 OrigPHINode.push_back(cast<PHINode>(I)); 664 } 665 666 std::vector<BasicBlock *> Headers; 667 std::vector<BasicBlock *> Latches; 668 Headers.push_back(Header); 669 Latches.push_back(LatchBlock); 670 671 // The current on-the-fly SSA update requires blocks to be processed in 672 // reverse postorder so that LastValueMap contains the correct value at each 673 // exit. 674 LoopBlocksDFS DFS(L); 675 DFS.perform(LI); 676 677 // Stash the DFS iterators before adding blocks to the loop. 678 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 679 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 680 681 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 682 683 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 684 // might break loop-simplified form for these loops (as they, e.g., would 685 // share the same exit blocks). We'll keep track of loops for which we can 686 // break this so that later we can re-simplify them. 687 SmallSetVector<Loop *, 4> LoopsToSimplify; 688 for (Loop *SubLoop : *L) 689 LoopsToSimplify.insert(SubLoop); 690 691 // When a FSDiscriminator is enabled, we don't need to add the multiply 692 // factors to the discriminators. 693 if (Header->getParent()->shouldEmitDebugInfoForProfiling() && 694 !EnableFSDiscriminator) 695 for (BasicBlock *BB : L->getBlocks()) 696 for (Instruction &I : *BB) 697 if (!I.isDebugOrPseudoInst()) 698 if (const DILocation *DIL = I.getDebugLoc()) { 699 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 700 if (NewDIL) 701 I.setDebugLoc(*NewDIL); 702 else 703 LLVM_DEBUG(dbgs() 704 << "Failed to create new discriminator: " 705 << DIL->getFilename() << " Line: " << DIL->getLine()); 706 } 707 708 // Identify what noalias metadata is inside the loop: if it is inside the 709 // loop, the associated metadata must be cloned for each iteration. 710 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 711 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 712 713 // We place the unrolled iterations immediately after the original loop 714 // latch. This is a reasonable default placement if we don't have block 715 // frequencies, and if we do, well the layout will be adjusted later. 716 auto BlockInsertPt = std::next(LatchBlock->getIterator()); 717 for (unsigned It = 1; It != ULO.Count; ++It) { 718 SmallVector<BasicBlock *, 8> NewBlocks; 719 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 720 NewLoops[L] = L; 721 722 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 723 ValueToValueMapTy VMap; 724 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 725 Header->getParent()->insert(BlockInsertPt, New); 726 727 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 728 "Header should not be in a sub-loop"); 729 // Tell LI about New. 730 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 731 if (OldLoop) 732 LoopsToSimplify.insert(NewLoops[OldLoop]); 733 734 if (*BB == Header) { 735 // Loop over all of the PHI nodes in the block, changing them to use 736 // the incoming values from the previous block. 737 for (PHINode *OrigPHI : OrigPHINode) { 738 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 739 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 740 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 741 if (It > 1 && L->contains(InValI)) 742 InVal = LastValueMap[InValI]; 743 VMap[OrigPHI] = InVal; 744 NewPHI->eraseFromParent(); 745 } 746 747 // Eliminate copies of the loop heart intrinsic, if any. 748 if (ULO.Heart) { 749 auto it = VMap.find(ULO.Heart); 750 assert(it != VMap.end()); 751 Instruction *heartCopy = cast<Instruction>(it->second); 752 heartCopy->eraseFromParent(); 753 VMap.erase(it); 754 } 755 } 756 757 // Update our running map of newest clones 758 LastValueMap[*BB] = New; 759 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 760 VI != VE; ++VI) 761 LastValueMap[VI->first] = VI->second; 762 763 // Add phi entries for newly created values to all exit blocks. 764 for (BasicBlock *Succ : successors(*BB)) { 765 if (L->contains(Succ)) 766 continue; 767 for (PHINode &PHI : Succ->phis()) { 768 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 769 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 770 if (It != LastValueMap.end()) 771 Incoming = It->second; 772 PHI.addIncoming(Incoming, New); 773 SE->forgetValue(&PHI); 774 } 775 } 776 // Keep track of new headers and latches as we create them, so that 777 // we can insert the proper branches later. 778 if (*BB == Header) 779 Headers.push_back(New); 780 if (*BB == LatchBlock) 781 Latches.push_back(New); 782 783 // Keep track of the exiting block and its successor block contained in 784 // the loop for the current iteration. 785 auto ExitInfoIt = ExitInfos.find(*BB); 786 if (ExitInfoIt != ExitInfos.end()) 787 ExitInfoIt->second.ExitingBlocks.push_back(New); 788 789 NewBlocks.push_back(New); 790 UnrolledLoopBlocks.push_back(New); 791 792 // Update DomTree: since we just copy the loop body, and each copy has a 793 // dedicated entry block (copy of the header block), this header's copy 794 // dominates all copied blocks. That means, dominance relations in the 795 // copied body are the same as in the original body. 796 if (*BB == Header) 797 DT->addNewBlock(New, Latches[It - 1]); 798 else { 799 auto BBDomNode = DT->getNode(*BB); 800 auto BBIDom = BBDomNode->getIDom(); 801 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 802 DT->addNewBlock( 803 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 804 } 805 } 806 807 // Remap all instructions in the most recent iteration 808 remapInstructionsInBlocks(NewBlocks, LastValueMap); 809 for (BasicBlock *NewBlock : NewBlocks) 810 for (Instruction &I : *NewBlock) 811 if (auto *II = dyn_cast<AssumeInst>(&I)) 812 AC->registerAssumption(II); 813 814 { 815 // Identify what other metadata depends on the cloned version. After 816 // cloning, replace the metadata with the corrected version for both 817 // memory instructions and noalias intrinsics. 818 std::string ext = (Twine("It") + Twine(It)).str(); 819 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 820 Header->getContext(), ext); 821 } 822 } 823 824 // Loop over the PHI nodes in the original block, setting incoming values. 825 for (PHINode *PN : OrigPHINode) { 826 if (CompletelyUnroll) { 827 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 828 PN->eraseFromParent(); 829 } else if (ULO.Count > 1) { 830 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 831 // If this value was defined in the loop, take the value defined by the 832 // last iteration of the loop. 833 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 834 if (L->contains(InValI)) 835 InVal = LastValueMap[InVal]; 836 } 837 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 838 PN->addIncoming(InVal, Latches.back()); 839 } 840 } 841 842 // Connect latches of the unrolled iterations to the headers of the next 843 // iteration. Currently they point to the header of the same iteration. 844 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 845 unsigned j = (i + 1) % e; 846 Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]); 847 } 848 849 // Update dominators of blocks we might reach through exits. 850 // Immediate dominator of such block might change, because we add more 851 // routes which can lead to the exit: we can now reach it from the copied 852 // iterations too. 853 if (ULO.Count > 1) { 854 for (auto *BB : OriginalLoopBlocks) { 855 auto *BBDomNode = DT->getNode(BB); 856 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 857 for (auto *ChildDomNode : BBDomNode->children()) { 858 auto *ChildBB = ChildDomNode->getBlock(); 859 if (!L->contains(ChildBB)) 860 ChildrenToUpdate.push_back(ChildBB); 861 } 862 // The new idom of the block will be the nearest common dominator 863 // of all copies of the previous idom. This is equivalent to the 864 // nearest common dominator of the previous idom and the first latch, 865 // which dominates all copies of the previous idom. 866 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 867 for (auto *ChildBB : ChildrenToUpdate) 868 DT->changeImmediateDominator(ChildBB, NewIDom); 869 } 870 } 871 872 assert(!UnrollVerifyDomtree || 873 DT->verify(DominatorTree::VerificationLevel::Fast)); 874 875 SmallVector<DominatorTree::UpdateType> DTUpdates; 876 auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { 877 auto *Term = cast<BranchInst>(Src->getTerminator()); 878 const unsigned Idx = ExitOnTrue ^ WillExit; 879 BasicBlock *Dest = Term->getSuccessor(Idx); 880 BasicBlock *DeadSucc = Term->getSuccessor(1-Idx); 881 882 // Remove predecessors from all non-Dest successors. 883 DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true); 884 885 // Replace the conditional branch with an unconditional one. 886 BranchInst::Create(Dest, Term->getIterator()); 887 Term->eraseFromParent(); 888 889 DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc); 890 }; 891 892 auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j, 893 bool IsLatch) -> std::optional<bool> { 894 if (CompletelyUnroll) { 895 if (PreserveOnlyFirst) { 896 if (i == 0) 897 return std::nullopt; 898 return j == 0; 899 } 900 // Complete (but possibly inexact) unrolling 901 if (j == 0) 902 return true; 903 if (Info.TripCount && j != Info.TripCount) 904 return false; 905 return std::nullopt; 906 } 907 908 if (ULO.Runtime) { 909 // If runtime unrolling inserts a prologue, information about non-latch 910 // exits may be stale. 911 if (IsLatch && j != 0) 912 return false; 913 return std::nullopt; 914 } 915 916 if (j != Info.BreakoutTrip && 917 (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) { 918 // If we know the trip count or a multiple of it, we can safely use an 919 // unconditional branch for some iterations. 920 return false; 921 } 922 return std::nullopt; 923 }; 924 925 // Fold branches for iterations where we know that they will exit or not 926 // exit. 927 for (auto &Pair : ExitInfos) { 928 ExitInfo &Info = Pair.second; 929 for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) { 930 // The branch destination. 931 unsigned j = (i + 1) % e; 932 bool IsLatch = Pair.first == LatchBlock; 933 std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch); 934 if (!KnownWillExit) { 935 if (!Info.FirstExitingBlock) 936 Info.FirstExitingBlock = Info.ExitingBlocks[i]; 937 continue; 938 } 939 940 // We don't fold known-exiting branches for non-latch exits here, 941 // because this ensures that both all loop blocks and all exit blocks 942 // remain reachable in the CFG. 943 // TODO: We could fold these branches, but it would require much more 944 // sophisticated updates to LoopInfo. 945 if (*KnownWillExit && !IsLatch) { 946 if (!Info.FirstExitingBlock) 947 Info.FirstExitingBlock = Info.ExitingBlocks[i]; 948 continue; 949 } 950 951 SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue); 952 } 953 } 954 955 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 956 DomTreeUpdater *DTUToUse = &DTU; 957 if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) { 958 // Manually update the DT if there's a single exiting node. In that case 959 // there's a single exit node and it is sufficient to update the nodes 960 // immediately dominated by the original exiting block. They will become 961 // dominated by the first exiting block that leaves the loop after 962 // unrolling. Note that the CFG inside the loop does not change, so there's 963 // no need to update the DT inside the unrolled loop. 964 DTUToUse = nullptr; 965 auto &[OriginalExit, Info] = *ExitInfos.begin(); 966 if (!Info.FirstExitingBlock) 967 Info.FirstExitingBlock = Info.ExitingBlocks.back(); 968 for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) { 969 if (L->contains(C->getBlock())) 970 continue; 971 C->setIDom(DT->getNode(Info.FirstExitingBlock)); 972 } 973 } else { 974 DTU.applyUpdates(DTUpdates); 975 } 976 977 // When completely unrolling, the last latch becomes unreachable. 978 if (!LatchIsExiting && CompletelyUnroll) { 979 // There is no need to update the DT here, because there must be a unique 980 // latch. Hence if the latch is not exiting it must directly branch back to 981 // the original loop header and does not dominate any nodes. 982 assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?"); 983 changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA); 984 } 985 986 // Merge adjacent basic blocks, if possible. 987 for (BasicBlock *Latch : Latches) { 988 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 989 assert((Term || 990 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 991 "Need a branch as terminator, except when fully unrolling with " 992 "unconditional latch"); 993 if (Term && Term->isUnconditional()) { 994 BasicBlock *Dest = Term->getSuccessor(0); 995 BasicBlock *Fold = Dest->getUniquePredecessor(); 996 if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI, 997 /*MSSAU=*/nullptr, /*MemDep=*/nullptr, 998 /*PredecessorWithTwoSuccessors=*/false, 999 DTUToUse ? nullptr : DT)) { 1000 // Dest has been folded into Fold. Update our worklists accordingly. 1001 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 1002 llvm::erase(UnrolledLoopBlocks, Dest); 1003 } 1004 } 1005 } 1006 1007 if (DTUToUse) { 1008 // Apply updates to the DomTree. 1009 DT = &DTU.getDomTree(); 1010 } 1011 assert(!UnrollVerifyDomtree || 1012 DT->verify(DominatorTree::VerificationLevel::Fast)); 1013 1014 // At this point, the code is well formed. We now simplify the unrolled loop, 1015 // doing constant propagation and dead code elimination as we go. 1016 simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC, 1017 TTI, AA); 1018 1019 NumCompletelyUnrolled += CompletelyUnroll; 1020 ++NumUnrolled; 1021 1022 Loop *OuterL = L->getParentLoop(); 1023 // Update LoopInfo if the loop is completely removed. 1024 if (CompletelyUnroll) { 1025 LI->erase(L); 1026 // We shouldn't try to use `L` anymore. 1027 L = nullptr; 1028 } else if (OriginalTripCount) { 1029 // Update the trip count. Note that the remainder has already logic 1030 // computing it in `UnrollRuntimeLoopRemainder`. 1031 setLoopEstimatedTripCount(L, *OriginalTripCount / ULO.Count, 1032 EstimatedLoopInvocationWeight); 1033 } 1034 1035 // LoopInfo should not be valid, confirm that. 1036 if (UnrollVerifyLoopInfo) 1037 LI->verify(*DT); 1038 1039 // After complete unrolling most of the blocks should be contained in OuterL. 1040 // However, some of them might happen to be out of OuterL (e.g. if they 1041 // precede a loop exit). In this case we might need to insert PHI nodes in 1042 // order to preserve LCSSA form. 1043 // We don't need to check this if we already know that we need to fix LCSSA 1044 // form. 1045 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 1046 // it should be possible to fix it in-place. 1047 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 1048 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 1049 1050 // Make sure that loop-simplify form is preserved. We want to simplify 1051 // at least one layer outside of the loop that was unrolled so that any 1052 // changes to the parent loop exposed by the unrolling are considered. 1053 if (OuterL) { 1054 // OuterL includes all loops for which we can break loop-simplify, so 1055 // it's sufficient to simplify only it (it'll recursively simplify inner 1056 // loops too). 1057 if (NeedToFixLCSSA) { 1058 // LCSSA must be performed on the outermost affected loop. The unrolled 1059 // loop's last loop latch is guaranteed to be in the outermost loop 1060 // after LoopInfo's been updated by LoopInfo::erase. 1061 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 1062 Loop *FixLCSSALoop = OuterL; 1063 if (!FixLCSSALoop->contains(LatchLoop)) 1064 while (FixLCSSALoop->getParentLoop() != LatchLoop) 1065 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 1066 1067 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 1068 } else if (PreserveLCSSA) { 1069 assert(OuterL->isLCSSAForm(*DT) && 1070 "Loops should be in LCSSA form after loop-unroll."); 1071 } 1072 1073 // TODO: That potentially might be compile-time expensive. We should try 1074 // to fix the loop-simplified form incrementally. 1075 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 1076 } else { 1077 // Simplify loops for which we might've broken loop-simplify form. 1078 for (Loop *SubLoop : LoopsToSimplify) 1079 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 1080 } 1081 1082 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 1083 : LoopUnrollResult::PartiallyUnrolled; 1084 } 1085 1086 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 1087 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 1088 /// such metadata node exists, then nullptr is returned. 1089 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 1090 // First operand should refer to the loop id itself. 1091 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1092 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1093 1094 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 1095 MDNode *MD = dyn_cast<MDNode>(MDO); 1096 if (!MD) 1097 continue; 1098 1099 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1100 if (!S) 1101 continue; 1102 1103 if (Name == S->getString()) 1104 return MD; 1105 } 1106 return nullptr; 1107 } 1108