xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp (revision 77013d11e6483b970af25e13c9b892075742f7e5)
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopPeel.h"
63 #include "llvm/Transforms/Utils/LoopSimplify.h"
64 #include "llvm/Transforms/Utils/LoopUtils.h"
65 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
66 #include "llvm/Transforms/Utils/UnrollLoop.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <assert.h>
70 #include <type_traits>
71 #include <vector>
72 
73 namespace llvm {
74 class DataLayout;
75 class Value;
76 } // namespace llvm
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "loop-unroll"
81 
82 // TODO: Should these be here or in LoopUnroll?
83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
86                                "latch (completely or otherwise)");
87 
88 static cl::opt<bool>
89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
90                     cl::desc("Allow runtime unrolled loops to be unrolled "
91                              "with epilog instead of prolog."));
92 
93 static cl::opt<bool>
94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
95                     cl::desc("Verify domtree after unrolling"),
96 #ifdef EXPENSIVE_CHECKS
97     cl::init(true)
98 #else
99     cl::init(false)
100 #endif
101                     );
102 
103 /// Check if unrolling created a situation where we need to insert phi nodes to
104 /// preserve LCSSA form.
105 /// \param Blocks is a vector of basic blocks representing unrolled loop.
106 /// \param L is the outer loop.
107 /// It's possible that some of the blocks are in L, and some are not. In this
108 /// case, if there is a use is outside L, and definition is inside L, we need to
109 /// insert a phi-node, otherwise LCSSA will be broken.
110 /// The function is just a helper function for llvm::UnrollLoop that returns
111 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
112 static bool needToInsertPhisForLCSSA(Loop *L,
113                                      const std::vector<BasicBlock *> &Blocks,
114                                      LoopInfo *LI) {
115   for (BasicBlock *BB : Blocks) {
116     if (LI->getLoopFor(BB) == L)
117       continue;
118     for (Instruction &I : *BB) {
119       for (Use &U : I.operands()) {
120         if (const auto *Def = dyn_cast<Instruction>(U)) {
121           Loop *DefLoop = LI->getLoopFor(Def->getParent());
122           if (!DefLoop)
123             continue;
124           if (DefLoop->contains(L))
125             return true;
126         }
127       }
128     }
129   }
130   return false;
131 }
132 
133 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
134 /// and adds a mapping from the original loop to the new loop to NewLoops.
135 /// Returns nullptr if no new loop was created and a pointer to the
136 /// original loop OriginalBB was part of otherwise.
137 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
138                                            BasicBlock *ClonedBB, LoopInfo *LI,
139                                            NewLoopsMap &NewLoops) {
140   // Figure out which loop New is in.
141   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
142   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
143 
144   Loop *&NewLoop = NewLoops[OldLoop];
145   if (!NewLoop) {
146     // Found a new sub-loop.
147     assert(OriginalBB == OldLoop->getHeader() &&
148            "Header should be first in RPO");
149 
150     NewLoop = LI->AllocateLoop();
151     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
152 
153     if (NewLoopParent)
154       NewLoopParent->addChildLoop(NewLoop);
155     else
156       LI->addTopLevelLoop(NewLoop);
157 
158     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
159     return OldLoop;
160   } else {
161     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
162     return nullptr;
163   }
164 }
165 
166 /// The function chooses which type of unroll (epilog or prolog) is more
167 /// profitabale.
168 /// Epilog unroll is more profitable when there is PHI that starts from
169 /// constant.  In this case epilog will leave PHI start from constant,
170 /// but prolog will convert it to non-constant.
171 ///
172 /// loop:
173 ///   PN = PHI [I, Latch], [CI, PreHeader]
174 ///   I = foo(PN)
175 ///   ...
176 ///
177 /// Epilog unroll case.
178 /// loop:
179 ///   PN = PHI [I2, Latch], [CI, PreHeader]
180 ///   I1 = foo(PN)
181 ///   I2 = foo(I1)
182 ///   ...
183 /// Prolog unroll case.
184 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
185 /// loop:
186 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
187 ///   I1 = foo(PN)
188 ///   I2 = foo(I1)
189 ///   ...
190 ///
191 static bool isEpilogProfitable(Loop *L) {
192   BasicBlock *PreHeader = L->getLoopPreheader();
193   BasicBlock *Header = L->getHeader();
194   assert(PreHeader && Header);
195   for (const PHINode &PN : Header->phis()) {
196     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
197       return true;
198   }
199   return false;
200 }
201 
202 /// Perform some cleanup and simplifications on loops after unrolling. It is
203 /// useful to simplify the IV's in the new loop, as well as do a quick
204 /// simplify/dce pass of the instructions.
205 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
206                                    ScalarEvolution *SE, DominatorTree *DT,
207                                    AssumptionCache *AC,
208                                    const TargetTransformInfo *TTI) {
209   // Simplify any new induction variables in the partially unrolled loop.
210   if (SE && SimplifyIVs) {
211     SmallVector<WeakTrackingVH, 16> DeadInsts;
212     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
213 
214     // Aggressively clean up dead instructions that simplifyLoopIVs already
215     // identified. Any remaining should be cleaned up below.
216     while (!DeadInsts.empty()) {
217       Value *V = DeadInsts.pop_back_val();
218       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
219         RecursivelyDeleteTriviallyDeadInstructions(Inst);
220     }
221   }
222 
223   // At this point, the code is well formed.  We now do a quick sweep over the
224   // inserted code, doing constant propagation and dead code elimination as we
225   // go.
226   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
227   for (BasicBlock *BB : L->getBlocks()) {
228     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
229       Instruction *Inst = &*I++;
230 
231       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
232         if (LI->replacementPreservesLCSSAForm(Inst, V))
233           Inst->replaceAllUsesWith(V);
234       if (isInstructionTriviallyDead(Inst))
235         BB->getInstList().erase(Inst);
236     }
237   }
238 
239   // TODO: after peeling or unrolling, previously loop variant conditions are
240   // likely to fold to constants, eagerly propagating those here will require
241   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
242   // appropriate.
243 }
244 
245 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
246 /// can only fail when the loop's latch block is not terminated by a conditional
247 /// branch instruction. However, if the trip count (and multiple) are not known,
248 /// loop unrolling will mostly produce more code that is no faster.
249 ///
250 /// TripCount is the upper bound of the iteration on which control exits
251 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
252 /// via an early branch in other loop block or via LatchBlock terminator. This
253 /// is relaxed from the general definition of trip count which is the number of
254 /// times the loop header executes. Note that UnrollLoop assumes that the loop
255 /// counter test is in LatchBlock in order to remove unnecesssary instances of
256 /// the test.  If control can exit the loop from the LatchBlock's terminator
257 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
258 ///
259 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
260 /// needs to be preserved.  It is needed when we use trip count upper bound to
261 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
262 /// conditional branch needs to be preserved.
263 ///
264 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
265 /// execute without exiting the loop.
266 ///
267 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
268 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
269 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
270 /// iterations before branching into the unrolled loop.  UnrollLoop will not
271 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
272 /// AllowExpensiveTripCount is false.
273 ///
274 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
275 /// number of iterations we want to peel off.
276 ///
277 /// The LoopInfo Analysis that is passed will be kept consistent.
278 ///
279 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
280 /// DominatorTree if they are non-null.
281 ///
282 /// If RemainderLoop is non-null, it will receive the remainder loop (if
283 /// required and not fully unrolled).
284 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
285                                   ScalarEvolution *SE, DominatorTree *DT,
286                                   AssumptionCache *AC,
287                                   const TargetTransformInfo *TTI,
288                                   OptimizationRemarkEmitter *ORE,
289                                   bool PreserveLCSSA, Loop **RemainderLoop) {
290 
291   if (!L->getLoopPreheader()) {
292     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
293     return LoopUnrollResult::Unmodified;
294   }
295 
296   if (!L->getLoopLatch()) {
297     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
298     return LoopUnrollResult::Unmodified;
299   }
300 
301   // Loops with indirectbr cannot be cloned.
302   if (!L->isSafeToClone()) {
303     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
304     return LoopUnrollResult::Unmodified;
305   }
306 
307   if (L->getHeader()->hasAddressTaken()) {
308     // The loop-rotate pass can be helpful to avoid this in many cases.
309     LLVM_DEBUG(
310         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
311     return LoopUnrollResult::Unmodified;
312   }
313 
314   if (ULO.TripCount != 0)
315     LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
316   if (ULO.TripMultiple != 1)
317     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
318 
319   // Effectively "DCE" unrolled iterations that are beyond the tripcount
320   // and will never be executed.
321   if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
322     ULO.Count = ULO.TripCount;
323 
324   // Don't enter the unroll code if there is nothing to do.
325   if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
326     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
327     return LoopUnrollResult::Unmodified;
328   }
329 
330   assert(ULO.Count > 0);
331   assert(ULO.TripMultiple > 0);
332   assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
333 
334   // Are we eliminating the loop control altogether?
335   bool CompletelyUnroll = ULO.Count == ULO.TripCount;
336 
337   // We assume a run-time trip count if the compiler cannot
338   // figure out the loop trip count and the unroll-runtime
339   // flag is specified.
340   bool RuntimeTripCount =
341       (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
342 
343   assert((!RuntimeTripCount || !ULO.PeelCount) &&
344          "Did not expect runtime trip-count unrolling "
345          "and peeling for the same loop");
346 
347   bool Peeled = false;
348   if (ULO.PeelCount) {
349     Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
350 
351     // Successful peeling may result in a change in the loop preheader/trip
352     // counts. If we later unroll the loop, we want these to be updated.
353     if (Peeled) {
354       // According to our guards and profitability checks the only
355       // meaningful exit should be latch block. Other exits go to deopt,
356       // so we do not worry about them.
357       BasicBlock *ExitingBlock = L->getLoopLatch();
358       assert(ExitingBlock && "Loop without exiting block?");
359       assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
360       ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
361       ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
362     }
363   }
364 
365   // All these values should be taken only after peeling because they might have
366   // changed.
367   BasicBlock *Preheader = L->getLoopPreheader();
368   BasicBlock *Header = L->getHeader();
369   BasicBlock *LatchBlock = L->getLoopLatch();
370   SmallVector<BasicBlock *, 4> ExitBlocks;
371   L->getExitBlocks(ExitBlocks);
372   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
373 
374   // Go through all exits of L and see if there are any phi-nodes there. We just
375   // conservatively assume that they're inserted to preserve LCSSA form, which
376   // means that complete unrolling might break this form. We need to either fix
377   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
378   // now we just recompute LCSSA for the outer loop, but it should be possible
379   // to fix it in-place.
380   bool NeedToFixLCSSA =
381       PreserveLCSSA && CompletelyUnroll &&
382       any_of(ExitBlocks,
383              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
384 
385   // The current loop unroll pass can unroll loops that have
386   // (1) single latch; and
387   // (2a) latch is unconditional; or
388   // (2b) latch is conditional and is an exiting block
389   // FIXME: The implementation can be extended to work with more complicated
390   // cases, e.g. loops with multiple latches.
391   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
392 
393   // A conditional branch which exits the loop, which can be optimized to an
394   // unconditional branch in the unrolled loop in some cases.
395   BranchInst *ExitingBI = nullptr;
396   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
397   if (LatchIsExiting)
398     ExitingBI = LatchBI;
399   else if (BasicBlock *ExitingBlock = L->getExitingBlock())
400     ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
401   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
402     // If the peeling guard is changed this assert may be relaxed or even
403     // deleted.
404     assert(!Peeled && "Peeling guard changed!");
405     LLVM_DEBUG(
406         dbgs() << "Can't unroll; a conditional latch must exit the loop");
407     return LoopUnrollResult::Unmodified;
408   }
409   LLVM_DEBUG({
410     if (ExitingBI)
411       dbgs() << "  Exiting Block = " << ExitingBI->getParent()->getName()
412              << "\n";
413     else
414       dbgs() << "  No single exiting block\n";
415   });
416 
417   // Loops containing convergent instructions must have a count that divides
418   // their TripMultiple.
419   LLVM_DEBUG(
420       {
421         bool HasConvergent = false;
422         for (auto &BB : L->blocks())
423           for (auto &I : *BB)
424             if (auto *CB = dyn_cast<CallBase>(&I))
425               HasConvergent |= CB->isConvergent();
426         assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
427                "Unroll count must divide trip multiple if loop contains a "
428                "convergent operation.");
429       });
430 
431   bool EpilogProfitability =
432       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
433                                               : isEpilogProfitable(L);
434 
435   if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
436       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
437                                   EpilogProfitability, ULO.UnrollRemainder,
438                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
439                                   PreserveLCSSA, RemainderLoop)) {
440     if (ULO.Force)
441       RuntimeTripCount = false;
442     else {
443       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
444                            "generated when assuming runtime trip count\n");
445       return LoopUnrollResult::Unmodified;
446     }
447   }
448 
449   // If we know the trip count, we know the multiple...
450   unsigned BreakoutTrip = 0;
451   if (ULO.TripCount != 0) {
452     BreakoutTrip = ULO.TripCount % ULO.Count;
453     ULO.TripMultiple = 0;
454   } else {
455     // Figure out what multiple to use.
456     BreakoutTrip = ULO.TripMultiple =
457         (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
458   }
459 
460   using namespace ore;
461   // Report the unrolling decision.
462   if (CompletelyUnroll) {
463     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
464                       << " with trip count " << ULO.TripCount << "!\n");
465     if (ORE)
466       ORE->emit([&]() {
467         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
468                                   L->getHeader())
469                << "completely unrolled loop with "
470                << NV("UnrollCount", ULO.TripCount) << " iterations";
471       });
472   } else if (ULO.PeelCount) {
473     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
474                       << " with iteration count " << ULO.PeelCount << "!\n");
475     if (ORE)
476       ORE->emit([&]() {
477         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
478                                   L->getHeader())
479                << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
480                << " iterations";
481       });
482   } else {
483     auto DiagBuilder = [&]() {
484       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
485                               L->getHeader());
486       return Diag << "unrolled loop by a factor of "
487                   << NV("UnrollCount", ULO.Count);
488     };
489 
490     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
491                       << ULO.Count);
492     if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
493       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
494       if (ORE)
495         ORE->emit([&]() {
496           return DiagBuilder() << " with a breakout at trip "
497                                << NV("BreakoutTrip", BreakoutTrip);
498         });
499     } else if (ULO.TripMultiple != 1) {
500       LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
501       if (ORE)
502         ORE->emit([&]() {
503           return DiagBuilder()
504                  << " with " << NV("TripMultiple", ULO.TripMultiple)
505                  << " trips per branch";
506         });
507     } else if (RuntimeTripCount) {
508       LLVM_DEBUG(dbgs() << " with run-time trip count");
509       if (ORE)
510         ORE->emit(
511             [&]() { return DiagBuilder() << " with run-time trip count"; });
512     }
513     LLVM_DEBUG(dbgs() << "!\n");
514   }
515 
516   // We are going to make changes to this loop. SCEV may be keeping cached info
517   // about it, in particular about backedge taken count. The changes we make
518   // are guaranteed to invalidate this information for our loop. It is tempting
519   // to only invalidate the loop being unrolled, but it is incorrect as long as
520   // all exiting branches from all inner loops have impact on the outer loops,
521   // and if something changes inside them then any of outer loops may also
522   // change. When we forget outermost loop, we also forget all contained loops
523   // and this is what we need here.
524   if (SE) {
525     if (ULO.ForgetAllSCEV)
526       SE->forgetAllLoops();
527     else
528       SE->forgetTopmostLoop(L);
529   }
530 
531   if (!LatchIsExiting)
532     ++NumUnrolledNotLatch;
533   Optional<bool> ContinueOnTrue = None;
534   BasicBlock *LoopExit = nullptr;
535   if (ExitingBI) {
536     ContinueOnTrue = L->contains(ExitingBI->getSuccessor(0));
537     LoopExit = ExitingBI->getSuccessor(*ContinueOnTrue);
538   }
539 
540   // For the first iteration of the loop, we should use the precloned values for
541   // PHI nodes.  Insert associations now.
542   ValueToValueMapTy LastValueMap;
543   std::vector<PHINode*> OrigPHINode;
544   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
545     OrigPHINode.push_back(cast<PHINode>(I));
546   }
547 
548   std::vector<BasicBlock *> Headers;
549   std::vector<BasicBlock *> ExitingBlocks;
550   std::vector<BasicBlock *> ExitingSucc;
551   std::vector<BasicBlock *> Latches;
552   Headers.push_back(Header);
553   Latches.push_back(LatchBlock);
554   if (ExitingBI) {
555     ExitingBlocks.push_back(ExitingBI->getParent());
556     ExitingSucc.push_back(ExitingBI->getSuccessor(!(*ContinueOnTrue)));
557   }
558 
559   // The current on-the-fly SSA update requires blocks to be processed in
560   // reverse postorder so that LastValueMap contains the correct value at each
561   // exit.
562   LoopBlocksDFS DFS(L);
563   DFS.perform(LI);
564 
565   // Stash the DFS iterators before adding blocks to the loop.
566   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
567   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
568 
569   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
570 
571   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
572   // might break loop-simplified form for these loops (as they, e.g., would
573   // share the same exit blocks). We'll keep track of loops for which we can
574   // break this so that later we can re-simplify them.
575   SmallSetVector<Loop *, 4> LoopsToSimplify;
576   for (Loop *SubLoop : *L)
577     LoopsToSimplify.insert(SubLoop);
578 
579   if (Header->getParent()->isDebugInfoForProfiling())
580     for (BasicBlock *BB : L->getBlocks())
581       for (Instruction &I : *BB)
582         if (!isa<DbgInfoIntrinsic>(&I))
583           if (const DILocation *DIL = I.getDebugLoc()) {
584             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
585             if (NewDIL)
586               I.setDebugLoc(NewDIL.getValue());
587             else
588               LLVM_DEBUG(dbgs()
589                          << "Failed to create new discriminator: "
590                          << DIL->getFilename() << " Line: " << DIL->getLine());
591           }
592 
593   // Identify what noalias metadata is inside the loop: if it is inside the
594   // loop, the associated metadata must be cloned for each iteration.
595   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
596   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
597 
598   for (unsigned It = 1; It != ULO.Count; ++It) {
599     SmallVector<BasicBlock *, 8> NewBlocks;
600     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
601     NewLoops[L] = L;
602 
603     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
604       ValueToValueMapTy VMap;
605       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
606       Header->getParent()->getBasicBlockList().push_back(New);
607 
608       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
609              "Header should not be in a sub-loop");
610       // Tell LI about New.
611       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
612       if (OldLoop)
613         LoopsToSimplify.insert(NewLoops[OldLoop]);
614 
615       if (*BB == Header)
616         // Loop over all of the PHI nodes in the block, changing them to use
617         // the incoming values from the previous block.
618         for (PHINode *OrigPHI : OrigPHINode) {
619           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
620           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
621           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
622             if (It > 1 && L->contains(InValI))
623               InVal = LastValueMap[InValI];
624           VMap[OrigPHI] = InVal;
625           New->getInstList().erase(NewPHI);
626         }
627 
628       // Update our running map of newest clones
629       LastValueMap[*BB] = New;
630       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
631            VI != VE; ++VI)
632         LastValueMap[VI->first] = VI->second;
633 
634       // Add phi entries for newly created values to all exit blocks.
635       for (BasicBlock *Succ : successors(*BB)) {
636         if (L->contains(Succ))
637           continue;
638         for (PHINode &PHI : Succ->phis()) {
639           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
640           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
641           if (It != LastValueMap.end())
642             Incoming = It->second;
643           PHI.addIncoming(Incoming, New);
644         }
645       }
646       // Keep track of new headers and latches as we create them, so that
647       // we can insert the proper branches later.
648       if (*BB == Header)
649         Headers.push_back(New);
650       if (*BB == LatchBlock)
651         Latches.push_back(New);
652 
653       // Keep track of the exiting block and its successor block contained in
654       // the loop for the current iteration.
655       if (ExitingBI) {
656         if (*BB == ExitingBlocks[0])
657           ExitingBlocks.push_back(New);
658         if (*BB == ExitingSucc[0])
659           ExitingSucc.push_back(New);
660       }
661 
662       NewBlocks.push_back(New);
663       UnrolledLoopBlocks.push_back(New);
664 
665       // Update DomTree: since we just copy the loop body, and each copy has a
666       // dedicated entry block (copy of the header block), this header's copy
667       // dominates all copied blocks. That means, dominance relations in the
668       // copied body are the same as in the original body.
669       if (DT) {
670         if (*BB == Header)
671           DT->addNewBlock(New, Latches[It - 1]);
672         else {
673           auto BBDomNode = DT->getNode(*BB);
674           auto BBIDom = BBDomNode->getIDom();
675           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
676           DT->addNewBlock(
677               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
678         }
679       }
680     }
681 
682     // Remap all instructions in the most recent iteration
683     remapInstructionsInBlocks(NewBlocks, LastValueMap);
684     for (BasicBlock *NewBlock : NewBlocks) {
685       for (Instruction &I : *NewBlock) {
686         if (auto *II = dyn_cast<IntrinsicInst>(&I))
687           if (II->getIntrinsicID() == Intrinsic::assume)
688             AC->registerAssumption(II);
689       }
690     }
691 
692     {
693       // Identify what other metadata depends on the cloned version. After
694       // cloning, replace the metadata with the corrected version for both
695       // memory instructions and noalias intrinsics.
696       std::string ext = (Twine("It") + Twine(It)).str();
697       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
698                                  Header->getContext(), ext);
699     }
700   }
701 
702   // Loop over the PHI nodes in the original block, setting incoming values.
703   for (PHINode *PN : OrigPHINode) {
704     if (CompletelyUnroll) {
705       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
706       Header->getInstList().erase(PN);
707     } else if (ULO.Count > 1) {
708       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
709       // If this value was defined in the loop, take the value defined by the
710       // last iteration of the loop.
711       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
712         if (L->contains(InValI))
713           InVal = LastValueMap[InVal];
714       }
715       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
716       PN->addIncoming(InVal, Latches.back());
717     }
718   }
719 
720   auto setDest = [](BasicBlock *Src, BasicBlock *Dest, BasicBlock *BlockInLoop,
721                     bool NeedConditional, Optional<bool> ContinueOnTrue,
722                     bool IsDestLoopExit) {
723     auto *Term = cast<BranchInst>(Src->getTerminator());
724     if (NeedConditional) {
725       // Update the conditional branch's successor for the following
726       // iteration.
727       assert(ContinueOnTrue.hasValue() &&
728              "Expecting valid ContinueOnTrue when NeedConditional is true");
729       Term->setSuccessor(!(*ContinueOnTrue), Dest);
730     } else {
731       // Remove phi operands at this loop exit
732       if (!IsDestLoopExit) {
733         BasicBlock *BB = Src;
734         for (BasicBlock *Succ : successors(BB)) {
735           // Preserve the incoming value from BB if we are jumping to the block
736           // in the current loop.
737           if (Succ == BlockInLoop)
738             continue;
739           for (PHINode &Phi : Succ->phis())
740             Phi.removeIncomingValue(BB, false);
741         }
742       }
743       // Replace the conditional branch with an unconditional one.
744       BranchInst::Create(Dest, Term);
745       Term->eraseFromParent();
746     }
747   };
748 
749   // Connect latches of the unrolled iterations to the headers of the next
750   // iteration. If the latch is also the exiting block, the conditional branch
751   // may have to be preserved.
752   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
753     // The branch destination.
754     unsigned j = (i + 1) % e;
755     BasicBlock *Dest = Headers[j];
756     bool NeedConditional = LatchIsExiting;
757 
758     if (LatchIsExiting) {
759       if (RuntimeTripCount && j != 0)
760         NeedConditional = false;
761 
762       // For a complete unroll, make the last iteration end with a branch
763       // to the exit block.
764       if (CompletelyUnroll) {
765         if (j == 0)
766           Dest = LoopExit;
767         // If using trip count upper bound to completely unroll, we need to
768         // keep the conditional branch except the last one because the loop
769         // may exit after any iteration.
770         assert(NeedConditional &&
771                "NeedCondition cannot be modified by both complete "
772                "unrolling and runtime unrolling");
773         NeedConditional =
774             (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
775       } else if (j != BreakoutTrip &&
776                  (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
777         // If we know the trip count or a multiple of it, we can safely use an
778         // unconditional branch for some iterations.
779         NeedConditional = false;
780       }
781     }
782 
783     setDest(Latches[i], Dest, Headers[i], NeedConditional, ContinueOnTrue,
784             Dest == LoopExit);
785   }
786 
787   if (!LatchIsExiting) {
788     // If the latch is not exiting, we may be able to simplify the conditional
789     // branches in the unrolled exiting blocks.
790     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
791       // The branch destination.
792       unsigned j = (i + 1) % e;
793       bool NeedConditional = true;
794 
795       if (RuntimeTripCount && j != 0)
796         NeedConditional = false;
797 
798       if (CompletelyUnroll)
799         // We cannot drop the conditional branch for the last condition, as we
800         // may have to execute the loop body depending on the condition.
801         NeedConditional = j == 0 || ULO.PreserveCondBr;
802       else if (j != BreakoutTrip &&
803                (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
804         // If we know the trip count or a multiple of it, we can safely use an
805         // unconditional branch for some iterations.
806         NeedConditional = false;
807 
808       // Conditional branches from non-latch exiting block have successors
809       // either in the same loop iteration or outside the loop. The branches are
810       // already correct.
811       if (NeedConditional)
812         continue;
813       setDest(ExitingBlocks[i], ExitingSucc[i], ExitingSucc[i], NeedConditional,
814               None, false);
815     }
816 
817     // When completely unrolling, the last latch becomes unreachable.
818     if (CompletelyUnroll) {
819       BranchInst *Term = cast<BranchInst>(Latches.back()->getTerminator());
820       new UnreachableInst(Term->getContext(), Term);
821       Term->eraseFromParent();
822     }
823   }
824 
825   // Update dominators of blocks we might reach through exits.
826   // Immediate dominator of such block might change, because we add more
827   // routes which can lead to the exit: we can now reach it from the copied
828   // iterations too.
829   if (DT && ULO.Count > 1) {
830     for (auto *BB : OriginalLoopBlocks) {
831       auto *BBDomNode = DT->getNode(BB);
832       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
833       for (auto *ChildDomNode : BBDomNode->children()) {
834         auto *ChildBB = ChildDomNode->getBlock();
835         if (!L->contains(ChildBB))
836           ChildrenToUpdate.push_back(ChildBB);
837       }
838       BasicBlock *NewIDom;
839       if (ExitingBI && BB == ExitingBlocks[0]) {
840         // The latch is special because we emit unconditional branches in
841         // some cases where the original loop contained a conditional branch.
842         // Since the latch is always at the bottom of the loop, if the latch
843         // dominated an exit before unrolling, the new dominator of that exit
844         // must also be a latch.  Specifically, the dominator is the first
845         // latch which ends in a conditional branch, or the last latch if
846         // there is no such latch.
847         // For loops exiting from non latch exiting block, we limit the
848         // branch simplification to single exiting block loops.
849         NewIDom = ExitingBlocks.back();
850         for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
851           Instruction *Term = ExitingBlocks[i]->getTerminator();
852           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
853             NewIDom =
854                 DT->findNearestCommonDominator(ExitingBlocks[i], Latches[i]);
855             break;
856           }
857         }
858       } else {
859         // The new idom of the block will be the nearest common dominator
860         // of all copies of the previous idom. This is equivalent to the
861         // nearest common dominator of the previous idom and the first latch,
862         // which dominates all copies of the previous idom.
863         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
864       }
865       for (auto *ChildBB : ChildrenToUpdate)
866         DT->changeImmediateDominator(ChildBB, NewIDom);
867     }
868   }
869 
870   assert(!DT || !UnrollVerifyDomtree ||
871          DT->verify(DominatorTree::VerificationLevel::Fast));
872 
873   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
874   // Merge adjacent basic blocks, if possible.
875   for (BasicBlock *Latch : Latches) {
876     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
877     assert((Term ||
878             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
879            "Need a branch as terminator, except when fully unrolling with "
880            "unconditional latch");
881     if (Term && Term->isUnconditional()) {
882       BasicBlock *Dest = Term->getSuccessor(0);
883       BasicBlock *Fold = Dest->getUniquePredecessor();
884       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
885         // Dest has been folded into Fold. Update our worklists accordingly.
886         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
887         llvm::erase_value(UnrolledLoopBlocks, Dest);
888       }
889     }
890   }
891   // Apply updates to the DomTree.
892   DT = &DTU.getDomTree();
893 
894   // At this point, the code is well formed.  We now simplify the unrolled loop,
895   // doing constant propagation and dead code elimination as we go.
896   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
897                           SE, DT, AC, TTI);
898 
899   NumCompletelyUnrolled += CompletelyUnroll;
900   ++NumUnrolled;
901 
902   Loop *OuterL = L->getParentLoop();
903   // Update LoopInfo if the loop is completely removed.
904   if (CompletelyUnroll)
905     LI->erase(L);
906 
907   // After complete unrolling most of the blocks should be contained in OuterL.
908   // However, some of them might happen to be out of OuterL (e.g. if they
909   // precede a loop exit). In this case we might need to insert PHI nodes in
910   // order to preserve LCSSA form.
911   // We don't need to check this if we already know that we need to fix LCSSA
912   // form.
913   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
914   // it should be possible to fix it in-place.
915   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
916     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
917 
918   // If we have a pass and a DominatorTree we should re-simplify impacted loops
919   // to ensure subsequent analyses can rely on this form. We want to simplify
920   // at least one layer outside of the loop that was unrolled so that any
921   // changes to the parent loop exposed by the unrolling are considered.
922   if (DT) {
923     if (OuterL) {
924       // OuterL includes all loops for which we can break loop-simplify, so
925       // it's sufficient to simplify only it (it'll recursively simplify inner
926       // loops too).
927       if (NeedToFixLCSSA) {
928         // LCSSA must be performed on the outermost affected loop. The unrolled
929         // loop's last loop latch is guaranteed to be in the outermost loop
930         // after LoopInfo's been updated by LoopInfo::erase.
931         Loop *LatchLoop = LI->getLoopFor(Latches.back());
932         Loop *FixLCSSALoop = OuterL;
933         if (!FixLCSSALoop->contains(LatchLoop))
934           while (FixLCSSALoop->getParentLoop() != LatchLoop)
935             FixLCSSALoop = FixLCSSALoop->getParentLoop();
936 
937         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
938       } else if (PreserveLCSSA) {
939         assert(OuterL->isLCSSAForm(*DT) &&
940                "Loops should be in LCSSA form after loop-unroll.");
941       }
942 
943       // TODO: That potentially might be compile-time expensive. We should try
944       // to fix the loop-simplified form incrementally.
945       simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
946     } else {
947       // Simplify loops for which we might've broken loop-simplify form.
948       for (Loop *SubLoop : LoopsToSimplify)
949         simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
950     }
951   }
952 
953   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
954                           : LoopUnrollResult::PartiallyUnrolled;
955 }
956 
957 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
958 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
959 /// such metadata node exists, then nullptr is returned.
960 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
961   // First operand should refer to the loop id itself.
962   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
963   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
964 
965   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
966     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
967     if (!MD)
968       continue;
969 
970     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
971     if (!S)
972       continue;
973 
974     if (Name.equals(S->getString()))
975       return MD;
976   }
977   return nullptr;
978 }
979