1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/IR/ValueMap.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/GenericDomTree.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopSimplify.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 65 #include "llvm/Transforms/Utils/UnrollLoop.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <assert.h> 69 #include <type_traits> 70 #include <vector> 71 72 namespace llvm { 73 class DataLayout; 74 class Value; 75 } // namespace llvm 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-unroll" 80 81 // TODO: Should these be here or in LoopUnroll? 82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 85 "latch (completely or otherwise)"); 86 87 static cl::opt<bool> 88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 89 cl::desc("Allow runtime unrolled loops to be unrolled " 90 "with epilog instead of prolog.")); 91 92 static cl::opt<bool> 93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 94 cl::desc("Verify domtree after unrolling"), 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true) 97 #else 98 cl::init(false) 99 #endif 100 ); 101 102 /// Check if unrolling created a situation where we need to insert phi nodes to 103 /// preserve LCSSA form. 104 /// \param Blocks is a vector of basic blocks representing unrolled loop. 105 /// \param L is the outer loop. 106 /// It's possible that some of the blocks are in L, and some are not. In this 107 /// case, if there is a use is outside L, and definition is inside L, we need to 108 /// insert a phi-node, otherwise LCSSA will be broken. 109 /// The function is just a helper function for llvm::UnrollLoop that returns 110 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 111 static bool needToInsertPhisForLCSSA(Loop *L, 112 const std::vector<BasicBlock *> &Blocks, 113 LoopInfo *LI) { 114 for (BasicBlock *BB : Blocks) { 115 if (LI->getLoopFor(BB) == L) 116 continue; 117 for (Instruction &I : *BB) { 118 for (Use &U : I.operands()) { 119 if (const auto *Def = dyn_cast<Instruction>(U)) { 120 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 121 if (!DefLoop) 122 continue; 123 if (DefLoop->contains(L)) 124 return true; 125 } 126 } 127 } 128 } 129 return false; 130 } 131 132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 133 /// and adds a mapping from the original loop to the new loop to NewLoops. 134 /// Returns nullptr if no new loop was created and a pointer to the 135 /// original loop OriginalBB was part of otherwise. 136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 137 BasicBlock *ClonedBB, LoopInfo *LI, 138 NewLoopsMap &NewLoops) { 139 // Figure out which loop New is in. 140 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 141 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 142 143 Loop *&NewLoop = NewLoops[OldLoop]; 144 if (!NewLoop) { 145 // Found a new sub-loop. 146 assert(OriginalBB == OldLoop->getHeader() && 147 "Header should be first in RPO"); 148 149 NewLoop = LI->AllocateLoop(); 150 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 151 152 if (NewLoopParent) 153 NewLoopParent->addChildLoop(NewLoop); 154 else 155 LI->addTopLevelLoop(NewLoop); 156 157 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 158 return OldLoop; 159 } else { 160 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 161 return nullptr; 162 } 163 } 164 165 /// The function chooses which type of unroll (epilog or prolog) is more 166 /// profitabale. 167 /// Epilog unroll is more profitable when there is PHI that starts from 168 /// constant. In this case epilog will leave PHI start from constant, 169 /// but prolog will convert it to non-constant. 170 /// 171 /// loop: 172 /// PN = PHI [I, Latch], [CI, PreHeader] 173 /// I = foo(PN) 174 /// ... 175 /// 176 /// Epilog unroll case. 177 /// loop: 178 /// PN = PHI [I2, Latch], [CI, PreHeader] 179 /// I1 = foo(PN) 180 /// I2 = foo(I1) 181 /// ... 182 /// Prolog unroll case. 183 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 184 /// loop: 185 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 186 /// I1 = foo(PN) 187 /// I2 = foo(I1) 188 /// ... 189 /// 190 static bool isEpilogProfitable(Loop *L) { 191 BasicBlock *PreHeader = L->getLoopPreheader(); 192 BasicBlock *Header = L->getHeader(); 193 assert(PreHeader && Header); 194 for (const PHINode &PN : Header->phis()) { 195 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 196 return true; 197 } 198 return false; 199 } 200 201 /// Perform some cleanup and simplifications on loops after unrolling. It is 202 /// useful to simplify the IV's in the new loop, as well as do a quick 203 /// simplify/dce pass of the instructions. 204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 205 ScalarEvolution *SE, DominatorTree *DT, 206 AssumptionCache *AC, 207 const TargetTransformInfo *TTI) { 208 // Simplify any new induction variables in the partially unrolled loop. 209 if (SE && SimplifyIVs) { 210 SmallVector<WeakTrackingVH, 16> DeadInsts; 211 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 212 213 // Aggressively clean up dead instructions that simplifyLoopIVs already 214 // identified. Any remaining should be cleaned up below. 215 while (!DeadInsts.empty()) { 216 Value *V = DeadInsts.pop_back_val(); 217 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 218 RecursivelyDeleteTriviallyDeadInstructions(Inst); 219 } 220 } 221 222 // At this point, the code is well formed. Perform constprop, instsimplify, 223 // and dce. 224 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 225 SmallVector<WeakTrackingVH, 16> DeadInsts; 226 for (BasicBlock *BB : L->getBlocks()) { 227 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 228 if (Value *V = SimplifyInstruction(&Inst, {DL, nullptr, DT, AC})) 229 if (LI->replacementPreservesLCSSAForm(&Inst, V)) 230 Inst.replaceAllUsesWith(V); 231 if (isInstructionTriviallyDead(&Inst)) 232 DeadInsts.emplace_back(&Inst); 233 } 234 // We can't do recursive deletion until we're done iterating, as we might 235 // have a phi which (potentially indirectly) uses instructions later in 236 // the block we're iterating through. 237 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 238 } 239 } 240 241 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 242 /// can only fail when the loop's latch block is not terminated by a conditional 243 /// branch instruction. However, if the trip count (and multiple) are not known, 244 /// loop unrolling will mostly produce more code that is no faster. 245 /// 246 /// If Runtime is true then UnrollLoop will try to insert a prologue or 247 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop 248 /// will not runtime-unroll the loop if computing the run-time trip count will 249 /// be expensive and AllowExpensiveTripCount is false. 250 /// 251 /// The LoopInfo Analysis that is passed will be kept consistent. 252 /// 253 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 254 /// DominatorTree if they are non-null. 255 /// 256 /// If RemainderLoop is non-null, it will receive the remainder loop (if 257 /// required and not fully unrolled). 258 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 259 ScalarEvolution *SE, DominatorTree *DT, 260 AssumptionCache *AC, 261 const TargetTransformInfo *TTI, 262 OptimizationRemarkEmitter *ORE, 263 bool PreserveLCSSA, Loop **RemainderLoop) { 264 assert(DT && "DomTree is required"); 265 266 if (!L->getLoopPreheader()) { 267 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 268 return LoopUnrollResult::Unmodified; 269 } 270 271 if (!L->getLoopLatch()) { 272 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 273 return LoopUnrollResult::Unmodified; 274 } 275 276 // Loops with indirectbr cannot be cloned. 277 if (!L->isSafeToClone()) { 278 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 279 return LoopUnrollResult::Unmodified; 280 } 281 282 if (L->getHeader()->hasAddressTaken()) { 283 // The loop-rotate pass can be helpful to avoid this in many cases. 284 LLVM_DEBUG( 285 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 286 return LoopUnrollResult::Unmodified; 287 } 288 289 assert(ULO.Count > 0); 290 291 // All these values should be taken only after peeling because they might have 292 // changed. 293 BasicBlock *Preheader = L->getLoopPreheader(); 294 BasicBlock *Header = L->getHeader(); 295 BasicBlock *LatchBlock = L->getLoopLatch(); 296 SmallVector<BasicBlock *, 4> ExitBlocks; 297 L->getExitBlocks(ExitBlocks); 298 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 299 300 const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); 301 const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 302 303 // Effectively "DCE" unrolled iterations that are beyond the max tripcount 304 // and will never be executed. 305 if (MaxTripCount && ULO.Count > MaxTripCount) 306 ULO.Count = MaxTripCount; 307 308 struct ExitInfo { 309 unsigned TripCount; 310 unsigned TripMultiple; 311 unsigned BreakoutTrip; 312 bool ExitOnTrue; 313 SmallVector<BasicBlock *> ExitingBlocks; 314 }; 315 DenseMap<BasicBlock *, ExitInfo> ExitInfos; 316 SmallVector<BasicBlock *, 4> ExitingBlocks; 317 L->getExitingBlocks(ExitingBlocks); 318 for (auto *ExitingBlock : ExitingBlocks) { 319 // The folding code is not prepared to deal with non-branch instructions 320 // right now. 321 auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 322 if (!BI) 323 continue; 324 325 ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second; 326 Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 327 Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 328 if (Info.TripCount != 0) { 329 Info.BreakoutTrip = Info.TripCount % ULO.Count; 330 Info.TripMultiple = 0; 331 } else { 332 Info.BreakoutTrip = Info.TripMultiple = 333 (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple); 334 } 335 Info.ExitOnTrue = !L->contains(BI->getSuccessor(0)); 336 Info.ExitingBlocks.push_back(ExitingBlock); 337 LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName() 338 << ": TripCount=" << Info.TripCount 339 << ", TripMultiple=" << Info.TripMultiple 340 << ", BreakoutTrip=" << Info.BreakoutTrip << "\n"); 341 } 342 343 // Are we eliminating the loop control altogether? Note that we can know 344 // we're eliminating the backedge without knowing exactly which iteration 345 // of the unrolled body exits. 346 const bool CompletelyUnroll = ULO.Count == MaxTripCount; 347 348 const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero; 349 350 // There's no point in performing runtime unrolling if this unroll count 351 // results in a full unroll. 352 if (CompletelyUnroll) 353 ULO.Runtime = false; 354 355 // Go through all exits of L and see if there are any phi-nodes there. We just 356 // conservatively assume that they're inserted to preserve LCSSA form, which 357 // means that complete unrolling might break this form. We need to either fix 358 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 359 // now we just recompute LCSSA for the outer loop, but it should be possible 360 // to fix it in-place. 361 bool NeedToFixLCSSA = 362 PreserveLCSSA && CompletelyUnroll && 363 any_of(ExitBlocks, 364 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 365 366 // The current loop unroll pass can unroll loops that have 367 // (1) single latch; and 368 // (2a) latch is unconditional; or 369 // (2b) latch is conditional and is an exiting block 370 // FIXME: The implementation can be extended to work with more complicated 371 // cases, e.g. loops with multiple latches. 372 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 373 374 // A conditional branch which exits the loop, which can be optimized to an 375 // unconditional branch in the unrolled loop in some cases. 376 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 377 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 378 LLVM_DEBUG( 379 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 380 return LoopUnrollResult::Unmodified; 381 } 382 383 // Loops containing convergent instructions cannot use runtime unrolling, 384 // as the prologue/epilogue may add additional control-dependencies to 385 // convergent operations. 386 LLVM_DEBUG( 387 { 388 bool HasConvergent = false; 389 for (auto &BB : L->blocks()) 390 for (auto &I : *BB) 391 if (auto *CB = dyn_cast<CallBase>(&I)) 392 HasConvergent |= CB->isConvergent(); 393 assert((!HasConvergent || !ULO.Runtime) && 394 "Can't runtime unroll if loop contains a convergent operation."); 395 }); 396 397 bool EpilogProfitability = 398 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 399 : isEpilogProfitable(L); 400 401 if (ULO.Runtime && 402 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 403 EpilogProfitability, ULO.UnrollRemainder, 404 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 405 PreserveLCSSA, RemainderLoop)) { 406 if (ULO.Force) 407 ULO.Runtime = false; 408 else { 409 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 410 "generated when assuming runtime trip count\n"); 411 return LoopUnrollResult::Unmodified; 412 } 413 } 414 415 using namespace ore; 416 // Report the unrolling decision. 417 if (CompletelyUnroll) { 418 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 419 << " with trip count " << ULO.Count << "!\n"); 420 if (ORE) 421 ORE->emit([&]() { 422 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 423 L->getHeader()) 424 << "completely unrolled loop with " 425 << NV("UnrollCount", ULO.Count) << " iterations"; 426 }); 427 } else { 428 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 429 << ULO.Count); 430 if (ULO.Runtime) 431 LLVM_DEBUG(dbgs() << " with run-time trip count"); 432 LLVM_DEBUG(dbgs() << "!\n"); 433 434 if (ORE) 435 ORE->emit([&]() { 436 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 437 L->getHeader()); 438 Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count); 439 if (ULO.Runtime) 440 Diag << " with run-time trip count"; 441 return Diag; 442 }); 443 } 444 445 // We are going to make changes to this loop. SCEV may be keeping cached info 446 // about it, in particular about backedge taken count. The changes we make 447 // are guaranteed to invalidate this information for our loop. It is tempting 448 // to only invalidate the loop being unrolled, but it is incorrect as long as 449 // all exiting branches from all inner loops have impact on the outer loops, 450 // and if something changes inside them then any of outer loops may also 451 // change. When we forget outermost loop, we also forget all contained loops 452 // and this is what we need here. 453 if (SE) { 454 if (ULO.ForgetAllSCEV) 455 SE->forgetAllLoops(); 456 else 457 SE->forgetTopmostLoop(L); 458 } 459 460 if (!LatchIsExiting) 461 ++NumUnrolledNotLatch; 462 463 // For the first iteration of the loop, we should use the precloned values for 464 // PHI nodes. Insert associations now. 465 ValueToValueMapTy LastValueMap; 466 std::vector<PHINode*> OrigPHINode; 467 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 468 OrigPHINode.push_back(cast<PHINode>(I)); 469 } 470 471 std::vector<BasicBlock *> Headers; 472 std::vector<BasicBlock *> Latches; 473 Headers.push_back(Header); 474 Latches.push_back(LatchBlock); 475 476 // The current on-the-fly SSA update requires blocks to be processed in 477 // reverse postorder so that LastValueMap contains the correct value at each 478 // exit. 479 LoopBlocksDFS DFS(L); 480 DFS.perform(LI); 481 482 // Stash the DFS iterators before adding blocks to the loop. 483 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 484 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 485 486 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 487 488 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 489 // might break loop-simplified form for these loops (as they, e.g., would 490 // share the same exit blocks). We'll keep track of loops for which we can 491 // break this so that later we can re-simplify them. 492 SmallSetVector<Loop *, 4> LoopsToSimplify; 493 for (Loop *SubLoop : *L) 494 LoopsToSimplify.insert(SubLoop); 495 496 // When a FSDiscriminator is enabled, we don't need to add the multiply 497 // factors to the discriminators. 498 if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator) 499 for (BasicBlock *BB : L->getBlocks()) 500 for (Instruction &I : *BB) 501 if (!isa<DbgInfoIntrinsic>(&I)) 502 if (const DILocation *DIL = I.getDebugLoc()) { 503 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 504 if (NewDIL) 505 I.setDebugLoc(NewDIL.getValue()); 506 else 507 LLVM_DEBUG(dbgs() 508 << "Failed to create new discriminator: " 509 << DIL->getFilename() << " Line: " << DIL->getLine()); 510 } 511 512 // Identify what noalias metadata is inside the loop: if it is inside the 513 // loop, the associated metadata must be cloned for each iteration. 514 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 515 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 516 517 // We place the unrolled iterations immediately after the original loop 518 // latch. This is a reasonable default placement if we don't have block 519 // frequencies, and if we do, well the layout will be adjusted later. 520 auto BlockInsertPt = std::next(LatchBlock->getIterator()); 521 for (unsigned It = 1; It != ULO.Count; ++It) { 522 SmallVector<BasicBlock *, 8> NewBlocks; 523 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 524 NewLoops[L] = L; 525 526 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 527 ValueToValueMapTy VMap; 528 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 529 Header->getParent()->getBasicBlockList().insert(BlockInsertPt, New); 530 531 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 532 "Header should not be in a sub-loop"); 533 // Tell LI about New. 534 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 535 if (OldLoop) 536 LoopsToSimplify.insert(NewLoops[OldLoop]); 537 538 if (*BB == Header) 539 // Loop over all of the PHI nodes in the block, changing them to use 540 // the incoming values from the previous block. 541 for (PHINode *OrigPHI : OrigPHINode) { 542 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 543 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 544 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 545 if (It > 1 && L->contains(InValI)) 546 InVal = LastValueMap[InValI]; 547 VMap[OrigPHI] = InVal; 548 New->getInstList().erase(NewPHI); 549 } 550 551 // Update our running map of newest clones 552 LastValueMap[*BB] = New; 553 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 554 VI != VE; ++VI) 555 LastValueMap[VI->first] = VI->second; 556 557 // Add phi entries for newly created values to all exit blocks. 558 for (BasicBlock *Succ : successors(*BB)) { 559 if (L->contains(Succ)) 560 continue; 561 for (PHINode &PHI : Succ->phis()) { 562 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 563 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 564 if (It != LastValueMap.end()) 565 Incoming = It->second; 566 PHI.addIncoming(Incoming, New); 567 } 568 } 569 // Keep track of new headers and latches as we create them, so that 570 // we can insert the proper branches later. 571 if (*BB == Header) 572 Headers.push_back(New); 573 if (*BB == LatchBlock) 574 Latches.push_back(New); 575 576 // Keep track of the exiting block and its successor block contained in 577 // the loop for the current iteration. 578 auto ExitInfoIt = ExitInfos.find(*BB); 579 if (ExitInfoIt != ExitInfos.end()) 580 ExitInfoIt->second.ExitingBlocks.push_back(New); 581 582 NewBlocks.push_back(New); 583 UnrolledLoopBlocks.push_back(New); 584 585 // Update DomTree: since we just copy the loop body, and each copy has a 586 // dedicated entry block (copy of the header block), this header's copy 587 // dominates all copied blocks. That means, dominance relations in the 588 // copied body are the same as in the original body. 589 if (*BB == Header) 590 DT->addNewBlock(New, Latches[It - 1]); 591 else { 592 auto BBDomNode = DT->getNode(*BB); 593 auto BBIDom = BBDomNode->getIDom(); 594 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 595 DT->addNewBlock( 596 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 597 } 598 } 599 600 // Remap all instructions in the most recent iteration 601 remapInstructionsInBlocks(NewBlocks, LastValueMap); 602 for (BasicBlock *NewBlock : NewBlocks) 603 for (Instruction &I : *NewBlock) 604 if (auto *II = dyn_cast<AssumeInst>(&I)) 605 AC->registerAssumption(II); 606 607 { 608 // Identify what other metadata depends on the cloned version. After 609 // cloning, replace the metadata with the corrected version for both 610 // memory instructions and noalias intrinsics. 611 std::string ext = (Twine("It") + Twine(It)).str(); 612 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 613 Header->getContext(), ext); 614 } 615 } 616 617 // Loop over the PHI nodes in the original block, setting incoming values. 618 for (PHINode *PN : OrigPHINode) { 619 if (CompletelyUnroll) { 620 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 621 Header->getInstList().erase(PN); 622 } else if (ULO.Count > 1) { 623 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 624 // If this value was defined in the loop, take the value defined by the 625 // last iteration of the loop. 626 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 627 if (L->contains(InValI)) 628 InVal = LastValueMap[InVal]; 629 } 630 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 631 PN->addIncoming(InVal, Latches.back()); 632 } 633 } 634 635 // Connect latches of the unrolled iterations to the headers of the next 636 // iteration. Currently they point to the header of the same iteration. 637 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 638 unsigned j = (i + 1) % e; 639 Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]); 640 } 641 642 // Update dominators of blocks we might reach through exits. 643 // Immediate dominator of such block might change, because we add more 644 // routes which can lead to the exit: we can now reach it from the copied 645 // iterations too. 646 if (ULO.Count > 1) { 647 for (auto *BB : OriginalLoopBlocks) { 648 auto *BBDomNode = DT->getNode(BB); 649 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 650 for (auto *ChildDomNode : BBDomNode->children()) { 651 auto *ChildBB = ChildDomNode->getBlock(); 652 if (!L->contains(ChildBB)) 653 ChildrenToUpdate.push_back(ChildBB); 654 } 655 // The new idom of the block will be the nearest common dominator 656 // of all copies of the previous idom. This is equivalent to the 657 // nearest common dominator of the previous idom and the first latch, 658 // which dominates all copies of the previous idom. 659 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 660 for (auto *ChildBB : ChildrenToUpdate) 661 DT->changeImmediateDominator(ChildBB, NewIDom); 662 } 663 } 664 665 assert(!UnrollVerifyDomtree || 666 DT->verify(DominatorTree::VerificationLevel::Fast)); 667 668 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 669 670 auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { 671 auto *Term = cast<BranchInst>(Src->getTerminator()); 672 const unsigned Idx = ExitOnTrue ^ WillExit; 673 BasicBlock *Dest = Term->getSuccessor(Idx); 674 BasicBlock *DeadSucc = Term->getSuccessor(1-Idx); 675 676 // Remove predecessors from all non-Dest successors. 677 DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true); 678 679 // Replace the conditional branch with an unconditional one. 680 BranchInst::Create(Dest, Term); 681 Term->eraseFromParent(); 682 683 DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}}); 684 }; 685 686 auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j, 687 bool IsLatch) -> Optional<bool> { 688 if (CompletelyUnroll) { 689 if (PreserveOnlyFirst) { 690 if (i == 0) 691 return None; 692 return j == 0; 693 } 694 // Complete (but possibly inexact) unrolling 695 if (j == 0) 696 return true; 697 if (Info.TripCount && j != Info.TripCount) 698 return false; 699 return None; 700 } 701 702 if (ULO.Runtime) { 703 // If runtime unrolling inserts a prologue, information about non-latch 704 // exits may be stale. 705 if (IsLatch && j != 0) 706 return false; 707 return None; 708 } 709 710 if (j != Info.BreakoutTrip && 711 (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) { 712 // If we know the trip count or a multiple of it, we can safely use an 713 // unconditional branch for some iterations. 714 return false; 715 } 716 return None; 717 }; 718 719 // Fold branches for iterations where we know that they will exit or not 720 // exit. 721 for (const auto &Pair : ExitInfos) { 722 const ExitInfo &Info = Pair.second; 723 for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) { 724 // The branch destination. 725 unsigned j = (i + 1) % e; 726 bool IsLatch = Pair.first == LatchBlock; 727 Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch); 728 if (!KnownWillExit) 729 continue; 730 731 // We don't fold known-exiting branches for non-latch exits here, 732 // because this ensures that both all loop blocks and all exit blocks 733 // remain reachable in the CFG. 734 // TODO: We could fold these branches, but it would require much more 735 // sophisticated updates to LoopInfo. 736 if (*KnownWillExit && !IsLatch) 737 continue; 738 739 SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue); 740 } 741 } 742 743 // When completely unrolling, the last latch becomes unreachable. 744 if (!LatchIsExiting && CompletelyUnroll) 745 changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA, &DTU); 746 747 // Merge adjacent basic blocks, if possible. 748 for (BasicBlock *Latch : Latches) { 749 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 750 assert((Term || 751 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 752 "Need a branch as terminator, except when fully unrolling with " 753 "unconditional latch"); 754 if (Term && Term->isUnconditional()) { 755 BasicBlock *Dest = Term->getSuccessor(0); 756 BasicBlock *Fold = Dest->getUniquePredecessor(); 757 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 758 // Dest has been folded into Fold. Update our worklists accordingly. 759 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 760 llvm::erase_value(UnrolledLoopBlocks, Dest); 761 } 762 } 763 } 764 // Apply updates to the DomTree. 765 DT = &DTU.getDomTree(); 766 767 // At this point, the code is well formed. We now simplify the unrolled loop, 768 // doing constant propagation and dead code elimination as we go. 769 simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC, 770 TTI); 771 772 NumCompletelyUnrolled += CompletelyUnroll; 773 ++NumUnrolled; 774 775 Loop *OuterL = L->getParentLoop(); 776 // Update LoopInfo if the loop is completely removed. 777 if (CompletelyUnroll) 778 LI->erase(L); 779 780 // After complete unrolling most of the blocks should be contained in OuterL. 781 // However, some of them might happen to be out of OuterL (e.g. if they 782 // precede a loop exit). In this case we might need to insert PHI nodes in 783 // order to preserve LCSSA form. 784 // We don't need to check this if we already know that we need to fix LCSSA 785 // form. 786 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 787 // it should be possible to fix it in-place. 788 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 789 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 790 791 // Make sure that loop-simplify form is preserved. We want to simplify 792 // at least one layer outside of the loop that was unrolled so that any 793 // changes to the parent loop exposed by the unrolling are considered. 794 if (OuterL) { 795 // OuterL includes all loops for which we can break loop-simplify, so 796 // it's sufficient to simplify only it (it'll recursively simplify inner 797 // loops too). 798 if (NeedToFixLCSSA) { 799 // LCSSA must be performed on the outermost affected loop. The unrolled 800 // loop's last loop latch is guaranteed to be in the outermost loop 801 // after LoopInfo's been updated by LoopInfo::erase. 802 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 803 Loop *FixLCSSALoop = OuterL; 804 if (!FixLCSSALoop->contains(LatchLoop)) 805 while (FixLCSSALoop->getParentLoop() != LatchLoop) 806 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 807 808 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 809 } else if (PreserveLCSSA) { 810 assert(OuterL->isLCSSAForm(*DT) && 811 "Loops should be in LCSSA form after loop-unroll."); 812 } 813 814 // TODO: That potentially might be compile-time expensive. We should try 815 // to fix the loop-simplified form incrementally. 816 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 817 } else { 818 // Simplify loops for which we might've broken loop-simplify form. 819 for (Loop *SubLoop : LoopsToSimplify) 820 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 821 } 822 823 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 824 : LoopUnrollResult::PartiallyUnrolled; 825 } 826 827 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 828 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 829 /// such metadata node exists, then nullptr is returned. 830 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 831 // First operand should refer to the loop id itself. 832 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 833 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 834 835 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 836 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 837 if (!MD) 838 continue; 839 840 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 841 if (!S) 842 continue; 843 844 if (Name.equals(S->getString())) 845 return MD; 846 } 847 return nullptr; 848 } 849