1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities. It does not define any 10 // actual pass or policy, but provides a single function to perform loop 11 // unrolling. 12 // 13 // The process of unrolling can produce extraneous basic blocks linked with 14 // unconditional branches. This will be corrected in the future. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/ADT/ilist_iterator.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopIterator.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/IR/ValueMap.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/GenericDomTree.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopSimplify.h" 63 #include "llvm/Transforms/Utils/LoopUtils.h" 64 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 65 #include "llvm/Transforms/Utils/UnrollLoop.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <assert.h> 69 #include <type_traits> 70 #include <vector> 71 72 namespace llvm { 73 class DataLayout; 74 class Value; 75 } // namespace llvm 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-unroll" 80 81 // TODO: Should these be here or in LoopUnroll? 82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " 85 "latch (completely or otherwise)"); 86 87 static cl::opt<bool> 88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 89 cl::desc("Allow runtime unrolled loops to be unrolled " 90 "with epilog instead of prolog.")); 91 92 static cl::opt<bool> 93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, 94 cl::desc("Verify domtree after unrolling"), 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true) 97 #else 98 cl::init(false) 99 #endif 100 ); 101 102 /// Check if unrolling created a situation where we need to insert phi nodes to 103 /// preserve LCSSA form. 104 /// \param Blocks is a vector of basic blocks representing unrolled loop. 105 /// \param L is the outer loop. 106 /// It's possible that some of the blocks are in L, and some are not. In this 107 /// case, if there is a use is outside L, and definition is inside L, we need to 108 /// insert a phi-node, otherwise LCSSA will be broken. 109 /// The function is just a helper function for llvm::UnrollLoop that returns 110 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 111 static bool needToInsertPhisForLCSSA(Loop *L, 112 const std::vector<BasicBlock *> &Blocks, 113 LoopInfo *LI) { 114 for (BasicBlock *BB : Blocks) { 115 if (LI->getLoopFor(BB) == L) 116 continue; 117 for (Instruction &I : *BB) { 118 for (Use &U : I.operands()) { 119 if (const auto *Def = dyn_cast<Instruction>(U)) { 120 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 121 if (!DefLoop) 122 continue; 123 if (DefLoop->contains(L)) 124 return true; 125 } 126 } 127 } 128 } 129 return false; 130 } 131 132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 133 /// and adds a mapping from the original loop to the new loop to NewLoops. 134 /// Returns nullptr if no new loop was created and a pointer to the 135 /// original loop OriginalBB was part of otherwise. 136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 137 BasicBlock *ClonedBB, LoopInfo *LI, 138 NewLoopsMap &NewLoops) { 139 // Figure out which loop New is in. 140 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 141 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 142 143 Loop *&NewLoop = NewLoops[OldLoop]; 144 if (!NewLoop) { 145 // Found a new sub-loop. 146 assert(OriginalBB == OldLoop->getHeader() && 147 "Header should be first in RPO"); 148 149 NewLoop = LI->AllocateLoop(); 150 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 151 152 if (NewLoopParent) 153 NewLoopParent->addChildLoop(NewLoop); 154 else 155 LI->addTopLevelLoop(NewLoop); 156 157 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 158 return OldLoop; 159 } else { 160 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 161 return nullptr; 162 } 163 } 164 165 /// The function chooses which type of unroll (epilog or prolog) is more 166 /// profitabale. 167 /// Epilog unroll is more profitable when there is PHI that starts from 168 /// constant. In this case epilog will leave PHI start from constant, 169 /// but prolog will convert it to non-constant. 170 /// 171 /// loop: 172 /// PN = PHI [I, Latch], [CI, PreHeader] 173 /// I = foo(PN) 174 /// ... 175 /// 176 /// Epilog unroll case. 177 /// loop: 178 /// PN = PHI [I2, Latch], [CI, PreHeader] 179 /// I1 = foo(PN) 180 /// I2 = foo(I1) 181 /// ... 182 /// Prolog unroll case. 183 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] 184 /// loop: 185 /// PN = PHI [I2, Latch], [NewPN, PreHeader] 186 /// I1 = foo(PN) 187 /// I2 = foo(I1) 188 /// ... 189 /// 190 static bool isEpilogProfitable(Loop *L) { 191 BasicBlock *PreHeader = L->getLoopPreheader(); 192 BasicBlock *Header = L->getHeader(); 193 assert(PreHeader && Header); 194 for (const PHINode &PN : Header->phis()) { 195 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) 196 return true; 197 } 198 return false; 199 } 200 201 /// Perform some cleanup and simplifications on loops after unrolling. It is 202 /// useful to simplify the IV's in the new loop, as well as do a quick 203 /// simplify/dce pass of the instructions. 204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, 205 ScalarEvolution *SE, DominatorTree *DT, 206 AssumptionCache *AC, 207 const TargetTransformInfo *TTI) { 208 // Simplify any new induction variables in the partially unrolled loop. 209 if (SE && SimplifyIVs) { 210 SmallVector<WeakTrackingVH, 16> DeadInsts; 211 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); 212 213 // Aggressively clean up dead instructions that simplifyLoopIVs already 214 // identified. Any remaining should be cleaned up below. 215 while (!DeadInsts.empty()) { 216 Value *V = DeadInsts.pop_back_val(); 217 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 218 RecursivelyDeleteTriviallyDeadInstructions(Inst); 219 } 220 } 221 222 // At this point, the code is well formed. Perform constprop, instsimplify, 223 // and dce. 224 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 225 SmallVector<WeakTrackingVH, 16> DeadInsts; 226 for (BasicBlock *BB : L->getBlocks()) { 227 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 228 Instruction *Inst = &*I++; 229 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) 230 if (LI->replacementPreservesLCSSAForm(Inst, V)) 231 Inst->replaceAllUsesWith(V); 232 if (isInstructionTriviallyDead(Inst)) 233 DeadInsts.emplace_back(Inst); 234 } 235 // We can't do recursive deletion until we're done iterating, as we might 236 // have a phi which (potentially indirectly) uses instructions later in 237 // the block we're iterating through. 238 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 239 } 240 } 241 242 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling 243 /// can only fail when the loop's latch block is not terminated by a conditional 244 /// branch instruction. However, if the trip count (and multiple) are not known, 245 /// loop unrolling will mostly produce more code that is no faster. 246 /// 247 /// If Runtime is true then UnrollLoop will try to insert a prologue or 248 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop 249 /// will not runtime-unroll the loop if computing the run-time trip count will 250 /// be expensive and AllowExpensiveTripCount is false. 251 /// 252 /// The LoopInfo Analysis that is passed will be kept consistent. 253 /// 254 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 255 /// DominatorTree if they are non-null. 256 /// 257 /// If RemainderLoop is non-null, it will receive the remainder loop (if 258 /// required and not fully unrolled). 259 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, 260 ScalarEvolution *SE, DominatorTree *DT, 261 AssumptionCache *AC, 262 const TargetTransformInfo *TTI, 263 OptimizationRemarkEmitter *ORE, 264 bool PreserveLCSSA, Loop **RemainderLoop) { 265 assert(DT && "DomTree is required"); 266 267 if (!L->getLoopPreheader()) { 268 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 269 return LoopUnrollResult::Unmodified; 270 } 271 272 if (!L->getLoopLatch()) { 273 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 274 return LoopUnrollResult::Unmodified; 275 } 276 277 // Loops with indirectbr cannot be cloned. 278 if (!L->isSafeToClone()) { 279 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 280 return LoopUnrollResult::Unmodified; 281 } 282 283 if (L->getHeader()->hasAddressTaken()) { 284 // The loop-rotate pass can be helpful to avoid this in many cases. 285 LLVM_DEBUG( 286 dbgs() << " Won't unroll loop: address of header block is taken.\n"); 287 return LoopUnrollResult::Unmodified; 288 } 289 290 assert(ULO.Count > 0); 291 292 // All these values should be taken only after peeling because they might have 293 // changed. 294 BasicBlock *Preheader = L->getLoopPreheader(); 295 BasicBlock *Header = L->getHeader(); 296 BasicBlock *LatchBlock = L->getLoopLatch(); 297 SmallVector<BasicBlock *, 4> ExitBlocks; 298 L->getExitBlocks(ExitBlocks); 299 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 300 301 const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); 302 const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 303 304 // Effectively "DCE" unrolled iterations that are beyond the max tripcount 305 // and will never be executed. 306 if (MaxTripCount && ULO.Count > MaxTripCount) 307 ULO.Count = MaxTripCount; 308 309 struct ExitInfo { 310 unsigned TripCount; 311 unsigned TripMultiple; 312 unsigned BreakoutTrip; 313 bool ExitOnTrue; 314 SmallVector<BasicBlock *> ExitingBlocks; 315 }; 316 DenseMap<BasicBlock *, ExitInfo> ExitInfos; 317 SmallVector<BasicBlock *, 4> ExitingBlocks; 318 L->getExitingBlocks(ExitingBlocks); 319 for (auto *ExitingBlock : ExitingBlocks) { 320 // The folding code is not prepared to deal with non-branch instructions 321 // right now. 322 auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 323 if (!BI) 324 continue; 325 326 ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second; 327 Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 328 Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 329 if (Info.TripCount != 0) { 330 Info.BreakoutTrip = Info.TripCount % ULO.Count; 331 Info.TripMultiple = 0; 332 } else { 333 Info.BreakoutTrip = Info.TripMultiple = 334 (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple); 335 } 336 Info.ExitOnTrue = !L->contains(BI->getSuccessor(0)); 337 Info.ExitingBlocks.push_back(ExitingBlock); 338 LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName() 339 << ": TripCount=" << Info.TripCount 340 << ", TripMultiple=" << Info.TripMultiple 341 << ", BreakoutTrip=" << Info.BreakoutTrip << "\n"); 342 } 343 344 // Are we eliminating the loop control altogether? Note that we can know 345 // we're eliminating the backedge without knowing exactly which iteration 346 // of the unrolled body exits. 347 const bool CompletelyUnroll = ULO.Count == MaxTripCount; 348 349 const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero; 350 351 // There's no point in performing runtime unrolling if this unroll count 352 // results in a full unroll. 353 if (CompletelyUnroll) 354 ULO.Runtime = false; 355 356 // Go through all exits of L and see if there are any phi-nodes there. We just 357 // conservatively assume that they're inserted to preserve LCSSA form, which 358 // means that complete unrolling might break this form. We need to either fix 359 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 360 // now we just recompute LCSSA for the outer loop, but it should be possible 361 // to fix it in-place. 362 bool NeedToFixLCSSA = 363 PreserveLCSSA && CompletelyUnroll && 364 any_of(ExitBlocks, 365 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 366 367 // The current loop unroll pass can unroll loops that have 368 // (1) single latch; and 369 // (2a) latch is unconditional; or 370 // (2b) latch is conditional and is an exiting block 371 // FIXME: The implementation can be extended to work with more complicated 372 // cases, e.g. loops with multiple latches. 373 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 374 375 // A conditional branch which exits the loop, which can be optimized to an 376 // unconditional branch in the unrolled loop in some cases. 377 bool LatchIsExiting = L->isLoopExiting(LatchBlock); 378 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 379 LLVM_DEBUG( 380 dbgs() << "Can't unroll; a conditional latch must exit the loop"); 381 return LoopUnrollResult::Unmodified; 382 } 383 384 // Loops containing convergent instructions cannot use runtime unrolling, 385 // as the prologue/epilogue may add additional control-dependencies to 386 // convergent operations. 387 LLVM_DEBUG( 388 { 389 bool HasConvergent = false; 390 for (auto &BB : L->blocks()) 391 for (auto &I : *BB) 392 if (auto *CB = dyn_cast<CallBase>(&I)) 393 HasConvergent |= CB->isConvergent(); 394 assert((!HasConvergent || !ULO.Runtime) && 395 "Can't runtime unroll if loop contains a convergent operation."); 396 }); 397 398 bool EpilogProfitability = 399 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog 400 : isEpilogProfitable(L); 401 402 if (ULO.Runtime && 403 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, 404 EpilogProfitability, ULO.UnrollRemainder, 405 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, 406 PreserveLCSSA, RemainderLoop)) { 407 if (ULO.Force) 408 ULO.Runtime = false; 409 else { 410 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " 411 "generated when assuming runtime trip count\n"); 412 return LoopUnrollResult::Unmodified; 413 } 414 } 415 416 using namespace ore; 417 // Report the unrolling decision. 418 if (CompletelyUnroll) { 419 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 420 << " with trip count " << ULO.Count << "!\n"); 421 if (ORE) 422 ORE->emit([&]() { 423 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 424 L->getHeader()) 425 << "completely unrolled loop with " 426 << NV("UnrollCount", ULO.Count) << " iterations"; 427 }); 428 } else { 429 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " 430 << ULO.Count); 431 if (ULO.Runtime) 432 LLVM_DEBUG(dbgs() << " with run-time trip count"); 433 LLVM_DEBUG(dbgs() << "!\n"); 434 435 if (ORE) 436 ORE->emit([&]() { 437 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 438 L->getHeader()); 439 Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count); 440 if (ULO.Runtime) 441 Diag << " with run-time trip count"; 442 return Diag; 443 }); 444 } 445 446 // We are going to make changes to this loop. SCEV may be keeping cached info 447 // about it, in particular about backedge taken count. The changes we make 448 // are guaranteed to invalidate this information for our loop. It is tempting 449 // to only invalidate the loop being unrolled, but it is incorrect as long as 450 // all exiting branches from all inner loops have impact on the outer loops, 451 // and if something changes inside them then any of outer loops may also 452 // change. When we forget outermost loop, we also forget all contained loops 453 // and this is what we need here. 454 if (SE) { 455 if (ULO.ForgetAllSCEV) 456 SE->forgetAllLoops(); 457 else 458 SE->forgetTopmostLoop(L); 459 } 460 461 if (!LatchIsExiting) 462 ++NumUnrolledNotLatch; 463 464 // For the first iteration of the loop, we should use the precloned values for 465 // PHI nodes. Insert associations now. 466 ValueToValueMapTy LastValueMap; 467 std::vector<PHINode*> OrigPHINode; 468 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 469 OrigPHINode.push_back(cast<PHINode>(I)); 470 } 471 472 std::vector<BasicBlock *> Headers; 473 std::vector<BasicBlock *> Latches; 474 Headers.push_back(Header); 475 Latches.push_back(LatchBlock); 476 477 // The current on-the-fly SSA update requires blocks to be processed in 478 // reverse postorder so that LastValueMap contains the correct value at each 479 // exit. 480 LoopBlocksDFS DFS(L); 481 DFS.perform(LI); 482 483 // Stash the DFS iterators before adding blocks to the loop. 484 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 485 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 486 487 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 488 489 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 490 // might break loop-simplified form for these loops (as they, e.g., would 491 // share the same exit blocks). We'll keep track of loops for which we can 492 // break this so that later we can re-simplify them. 493 SmallSetVector<Loop *, 4> LoopsToSimplify; 494 for (Loop *SubLoop : *L) 495 LoopsToSimplify.insert(SubLoop); 496 497 // When a FSDiscriminator is enabled, we don't need to add the multiply 498 // factors to the discriminators. 499 if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator) 500 for (BasicBlock *BB : L->getBlocks()) 501 for (Instruction &I : *BB) 502 if (!isa<DbgInfoIntrinsic>(&I)) 503 if (const DILocation *DIL = I.getDebugLoc()) { 504 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); 505 if (NewDIL) 506 I.setDebugLoc(NewDIL.getValue()); 507 else 508 LLVM_DEBUG(dbgs() 509 << "Failed to create new discriminator: " 510 << DIL->getFilename() << " Line: " << DIL->getLine()); 511 } 512 513 // Identify what noalias metadata is inside the loop: if it is inside the 514 // loop, the associated metadata must be cloned for each iteration. 515 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 516 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 517 518 for (unsigned It = 1; It != ULO.Count; ++It) { 519 SmallVector<BasicBlock *, 8> NewBlocks; 520 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 521 NewLoops[L] = L; 522 523 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 524 ValueToValueMapTy VMap; 525 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 526 Header->getParent()->getBasicBlockList().push_back(New); 527 528 assert((*BB != Header || LI->getLoopFor(*BB) == L) && 529 "Header should not be in a sub-loop"); 530 // Tell LI about New. 531 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 532 if (OldLoop) 533 LoopsToSimplify.insert(NewLoops[OldLoop]); 534 535 if (*BB == Header) 536 // Loop over all of the PHI nodes in the block, changing them to use 537 // the incoming values from the previous block. 538 for (PHINode *OrigPHI : OrigPHINode) { 539 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 540 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 541 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 542 if (It > 1 && L->contains(InValI)) 543 InVal = LastValueMap[InValI]; 544 VMap[OrigPHI] = InVal; 545 New->getInstList().erase(NewPHI); 546 } 547 548 // Update our running map of newest clones 549 LastValueMap[*BB] = New; 550 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 551 VI != VE; ++VI) 552 LastValueMap[VI->first] = VI->second; 553 554 // Add phi entries for newly created values to all exit blocks. 555 for (BasicBlock *Succ : successors(*BB)) { 556 if (L->contains(Succ)) 557 continue; 558 for (PHINode &PHI : Succ->phis()) { 559 Value *Incoming = PHI.getIncomingValueForBlock(*BB); 560 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 561 if (It != LastValueMap.end()) 562 Incoming = It->second; 563 PHI.addIncoming(Incoming, New); 564 } 565 } 566 // Keep track of new headers and latches as we create them, so that 567 // we can insert the proper branches later. 568 if (*BB == Header) 569 Headers.push_back(New); 570 if (*BB == LatchBlock) 571 Latches.push_back(New); 572 573 // Keep track of the exiting block and its successor block contained in 574 // the loop for the current iteration. 575 auto ExitInfoIt = ExitInfos.find(*BB); 576 if (ExitInfoIt != ExitInfos.end()) 577 ExitInfoIt->second.ExitingBlocks.push_back(New); 578 579 NewBlocks.push_back(New); 580 UnrolledLoopBlocks.push_back(New); 581 582 // Update DomTree: since we just copy the loop body, and each copy has a 583 // dedicated entry block (copy of the header block), this header's copy 584 // dominates all copied blocks. That means, dominance relations in the 585 // copied body are the same as in the original body. 586 if (*BB == Header) 587 DT->addNewBlock(New, Latches[It - 1]); 588 else { 589 auto BBDomNode = DT->getNode(*BB); 590 auto BBIDom = BBDomNode->getIDom(); 591 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 592 DT->addNewBlock( 593 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 594 } 595 } 596 597 // Remap all instructions in the most recent iteration 598 remapInstructionsInBlocks(NewBlocks, LastValueMap); 599 for (BasicBlock *NewBlock : NewBlocks) 600 for (Instruction &I : *NewBlock) 601 if (auto *II = dyn_cast<AssumeInst>(&I)) 602 AC->registerAssumption(II); 603 604 { 605 // Identify what other metadata depends on the cloned version. After 606 // cloning, replace the metadata with the corrected version for both 607 // memory instructions and noalias intrinsics. 608 std::string ext = (Twine("It") + Twine(It)).str(); 609 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 610 Header->getContext(), ext); 611 } 612 } 613 614 // Loop over the PHI nodes in the original block, setting incoming values. 615 for (PHINode *PN : OrigPHINode) { 616 if (CompletelyUnroll) { 617 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 618 Header->getInstList().erase(PN); 619 } else if (ULO.Count > 1) { 620 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 621 // If this value was defined in the loop, take the value defined by the 622 // last iteration of the loop. 623 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 624 if (L->contains(InValI)) 625 InVal = LastValueMap[InVal]; 626 } 627 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 628 PN->addIncoming(InVal, Latches.back()); 629 } 630 } 631 632 // Connect latches of the unrolled iterations to the headers of the next 633 // iteration. Currently they point to the header of the same iteration. 634 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 635 unsigned j = (i + 1) % e; 636 Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]); 637 } 638 639 // Update dominators of blocks we might reach through exits. 640 // Immediate dominator of such block might change, because we add more 641 // routes which can lead to the exit: we can now reach it from the copied 642 // iterations too. 643 if (ULO.Count > 1) { 644 for (auto *BB : OriginalLoopBlocks) { 645 auto *BBDomNode = DT->getNode(BB); 646 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 647 for (auto *ChildDomNode : BBDomNode->children()) { 648 auto *ChildBB = ChildDomNode->getBlock(); 649 if (!L->contains(ChildBB)) 650 ChildrenToUpdate.push_back(ChildBB); 651 } 652 // The new idom of the block will be the nearest common dominator 653 // of all copies of the previous idom. This is equivalent to the 654 // nearest common dominator of the previous idom and the first latch, 655 // which dominates all copies of the previous idom. 656 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); 657 for (auto *ChildBB : ChildrenToUpdate) 658 DT->changeImmediateDominator(ChildBB, NewIDom); 659 } 660 } 661 662 assert(!UnrollVerifyDomtree || 663 DT->verify(DominatorTree::VerificationLevel::Fast)); 664 665 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 666 667 auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { 668 auto *Term = cast<BranchInst>(Src->getTerminator()); 669 const unsigned Idx = ExitOnTrue ^ WillExit; 670 BasicBlock *Dest = Term->getSuccessor(Idx); 671 BasicBlock *DeadSucc = Term->getSuccessor(1-Idx); 672 673 // Remove predecessors from all non-Dest successors. 674 DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true); 675 676 // Replace the conditional branch with an unconditional one. 677 BranchInst::Create(Dest, Term); 678 Term->eraseFromParent(); 679 680 DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}}); 681 }; 682 683 auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j, 684 bool IsLatch) -> Optional<bool> { 685 if (CompletelyUnroll) { 686 if (PreserveOnlyFirst) { 687 if (i == 0) 688 return None; 689 return j == 0; 690 } 691 // Complete (but possibly inexact) unrolling 692 if (j == 0) 693 return true; 694 if (Info.TripCount && j != Info.TripCount) 695 return false; 696 return None; 697 } 698 699 if (ULO.Runtime) { 700 // If runtime unrolling inserts a prologue, information about non-latch 701 // exits may be stale. 702 if (IsLatch && j != 0) 703 return false; 704 return None; 705 } 706 707 if (j != Info.BreakoutTrip && 708 (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) { 709 // If we know the trip count or a multiple of it, we can safely use an 710 // unconditional branch for some iterations. 711 return false; 712 } 713 return None; 714 }; 715 716 // Fold branches for iterations where we know that they will exit or not 717 // exit. 718 for (const auto &Pair : ExitInfos) { 719 const ExitInfo &Info = Pair.second; 720 for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) { 721 // The branch destination. 722 unsigned j = (i + 1) % e; 723 bool IsLatch = Pair.first == LatchBlock; 724 Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch); 725 if (!KnownWillExit) 726 continue; 727 728 // We don't fold known-exiting branches for non-latch exits here, 729 // because this ensures that both all loop blocks and all exit blocks 730 // remain reachable in the CFG. 731 // TODO: We could fold these branches, but it would require much more 732 // sophisticated updates to LoopInfo. 733 if (*KnownWillExit && !IsLatch) 734 continue; 735 736 SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue); 737 } 738 } 739 740 // When completely unrolling, the last latch becomes unreachable. 741 if (!LatchIsExiting && CompletelyUnroll) 742 changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA, &DTU); 743 744 // Merge adjacent basic blocks, if possible. 745 for (BasicBlock *Latch : Latches) { 746 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); 747 assert((Term || 748 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && 749 "Need a branch as terminator, except when fully unrolling with " 750 "unconditional latch"); 751 if (Term && Term->isUnconditional()) { 752 BasicBlock *Dest = Term->getSuccessor(0); 753 BasicBlock *Fold = Dest->getUniquePredecessor(); 754 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { 755 // Dest has been folded into Fold. Update our worklists accordingly. 756 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 757 llvm::erase_value(UnrolledLoopBlocks, Dest); 758 } 759 } 760 } 761 // Apply updates to the DomTree. 762 DT = &DTU.getDomTree(); 763 764 // At this point, the code is well formed. We now simplify the unrolled loop, 765 // doing constant propagation and dead code elimination as we go. 766 simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC, 767 TTI); 768 769 NumCompletelyUnrolled += CompletelyUnroll; 770 ++NumUnrolled; 771 772 Loop *OuterL = L->getParentLoop(); 773 // Update LoopInfo if the loop is completely removed. 774 if (CompletelyUnroll) 775 LI->erase(L); 776 777 // After complete unrolling most of the blocks should be contained in OuterL. 778 // However, some of them might happen to be out of OuterL (e.g. if they 779 // precede a loop exit). In this case we might need to insert PHI nodes in 780 // order to preserve LCSSA form. 781 // We don't need to check this if we already know that we need to fix LCSSA 782 // form. 783 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 784 // it should be possible to fix it in-place. 785 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 786 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 787 788 // Make sure that loop-simplify form is preserved. We want to simplify 789 // at least one layer outside of the loop that was unrolled so that any 790 // changes to the parent loop exposed by the unrolling are considered. 791 if (OuterL) { 792 // OuterL includes all loops for which we can break loop-simplify, so 793 // it's sufficient to simplify only it (it'll recursively simplify inner 794 // loops too). 795 if (NeedToFixLCSSA) { 796 // LCSSA must be performed on the outermost affected loop. The unrolled 797 // loop's last loop latch is guaranteed to be in the outermost loop 798 // after LoopInfo's been updated by LoopInfo::erase. 799 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 800 Loop *FixLCSSALoop = OuterL; 801 if (!FixLCSSALoop->contains(LatchLoop)) 802 while (FixLCSSALoop->getParentLoop() != LatchLoop) 803 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 804 805 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); 806 } else if (PreserveLCSSA) { 807 assert(OuterL->isLCSSAForm(*DT) && 808 "Loops should be in LCSSA form after loop-unroll."); 809 } 810 811 // TODO: That potentially might be compile-time expensive. We should try 812 // to fix the loop-simplified form incrementally. 813 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); 814 } else { 815 // Simplify loops for which we might've broken loop-simplify form. 816 for (Loop *SubLoop : LoopsToSimplify) 817 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); 818 } 819 820 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled 821 : LoopUnrollResult::PartiallyUnrolled; 822 } 823 824 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 825 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 826 /// such metadata node exists, then nullptr is returned. 827 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 828 // First operand should refer to the loop id itself. 829 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 830 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 831 832 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 833 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 834 if (!MD) 835 continue; 836 837 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 838 if (!S) 839 continue; 840 841 if (Name.equals(S->getString())) 842 return MD; 843 } 844 return nullptr; 845 } 846