xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp (revision 03a88e3de9c68182d21df94b1c8c7ced930dbd1f)
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopSimplify.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
65 #include "llvm/Transforms/Utils/UnrollLoop.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <assert.h>
69 #include <type_traits>
70 #include <vector>
71 
72 namespace llvm {
73 class DataLayout;
74 class Value;
75 } // namespace llvm
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-unroll"
80 
81 // TODO: Should these be here or in LoopUnroll?
82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
85                                "latch (completely or otherwise)");
86 
87 static cl::opt<bool>
88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
89                     cl::desc("Allow runtime unrolled loops to be unrolled "
90                              "with epilog instead of prolog."));
91 
92 static cl::opt<bool>
93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
94                     cl::desc("Verify domtree after unrolling"),
95 #ifdef EXPENSIVE_CHECKS
96     cl::init(true)
97 #else
98     cl::init(false)
99 #endif
100                     );
101 
102 /// Check if unrolling created a situation where we need to insert phi nodes to
103 /// preserve LCSSA form.
104 /// \param Blocks is a vector of basic blocks representing unrolled loop.
105 /// \param L is the outer loop.
106 /// It's possible that some of the blocks are in L, and some are not. In this
107 /// case, if there is a use is outside L, and definition is inside L, we need to
108 /// insert a phi-node, otherwise LCSSA will be broken.
109 /// The function is just a helper function for llvm::UnrollLoop that returns
110 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
111 static bool needToInsertPhisForLCSSA(Loop *L,
112                                      const std::vector<BasicBlock *> &Blocks,
113                                      LoopInfo *LI) {
114   for (BasicBlock *BB : Blocks) {
115     if (LI->getLoopFor(BB) == L)
116       continue;
117     for (Instruction &I : *BB) {
118       for (Use &U : I.operands()) {
119         if (const auto *Def = dyn_cast<Instruction>(U)) {
120           Loop *DefLoop = LI->getLoopFor(Def->getParent());
121           if (!DefLoop)
122             continue;
123           if (DefLoop->contains(L))
124             return true;
125         }
126       }
127     }
128   }
129   return false;
130 }
131 
132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
133 /// and adds a mapping from the original loop to the new loop to NewLoops.
134 /// Returns nullptr if no new loop was created and a pointer to the
135 /// original loop OriginalBB was part of otherwise.
136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
137                                            BasicBlock *ClonedBB, LoopInfo *LI,
138                                            NewLoopsMap &NewLoops) {
139   // Figure out which loop New is in.
140   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
141   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
142 
143   Loop *&NewLoop = NewLoops[OldLoop];
144   if (!NewLoop) {
145     // Found a new sub-loop.
146     assert(OriginalBB == OldLoop->getHeader() &&
147            "Header should be first in RPO");
148 
149     NewLoop = LI->AllocateLoop();
150     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
151 
152     if (NewLoopParent)
153       NewLoopParent->addChildLoop(NewLoop);
154     else
155       LI->addTopLevelLoop(NewLoop);
156 
157     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
158     return OldLoop;
159   } else {
160     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
161     return nullptr;
162   }
163 }
164 
165 /// The function chooses which type of unroll (epilog or prolog) is more
166 /// profitabale.
167 /// Epilog unroll is more profitable when there is PHI that starts from
168 /// constant.  In this case epilog will leave PHI start from constant,
169 /// but prolog will convert it to non-constant.
170 ///
171 /// loop:
172 ///   PN = PHI [I, Latch], [CI, PreHeader]
173 ///   I = foo(PN)
174 ///   ...
175 ///
176 /// Epilog unroll case.
177 /// loop:
178 ///   PN = PHI [I2, Latch], [CI, PreHeader]
179 ///   I1 = foo(PN)
180 ///   I2 = foo(I1)
181 ///   ...
182 /// Prolog unroll case.
183 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
184 /// loop:
185 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
186 ///   I1 = foo(PN)
187 ///   I2 = foo(I1)
188 ///   ...
189 ///
190 static bool isEpilogProfitable(Loop *L) {
191   BasicBlock *PreHeader = L->getLoopPreheader();
192   BasicBlock *Header = L->getHeader();
193   assert(PreHeader && Header);
194   for (const PHINode &PN : Header->phis()) {
195     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
196       return true;
197   }
198   return false;
199 }
200 
201 /// Perform some cleanup and simplifications on loops after unrolling. It is
202 /// useful to simplify the IV's in the new loop, as well as do a quick
203 /// simplify/dce pass of the instructions.
204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
205                                    ScalarEvolution *SE, DominatorTree *DT,
206                                    AssumptionCache *AC,
207                                    const TargetTransformInfo *TTI) {
208   // Simplify any new induction variables in the partially unrolled loop.
209   if (SE && SimplifyIVs) {
210     SmallVector<WeakTrackingVH, 16> DeadInsts;
211     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
212 
213     // Aggressively clean up dead instructions that simplifyLoopIVs already
214     // identified. Any remaining should be cleaned up below.
215     while (!DeadInsts.empty()) {
216       Value *V = DeadInsts.pop_back_val();
217       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
218         RecursivelyDeleteTriviallyDeadInstructions(Inst);
219     }
220   }
221 
222   // At this point, the code is well formed.  Perform constprop, instsimplify,
223   // and dce.
224   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
225   SmallVector<WeakTrackingVH, 16> DeadInsts;
226   for (BasicBlock *BB : L->getBlocks()) {
227     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
228       Instruction *Inst = &*I++;
229       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
230         if (LI->replacementPreservesLCSSAForm(Inst, V))
231           Inst->replaceAllUsesWith(V);
232       if (isInstructionTriviallyDead(Inst))
233         DeadInsts.emplace_back(Inst);
234     }
235     // We can't do recursive deletion until we're done iterating, as we might
236     // have a phi which (potentially indirectly) uses instructions later in
237     // the block we're iterating through.
238     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
239   }
240 }
241 
242 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
243 /// can only fail when the loop's latch block is not terminated by a conditional
244 /// branch instruction. However, if the trip count (and multiple) are not known,
245 /// loop unrolling will mostly produce more code that is no faster.
246 ///
247 /// If Runtime is true then UnrollLoop will try to insert a prologue or
248 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
249 /// will not runtime-unroll the loop if computing the run-time trip count will
250 /// be expensive and AllowExpensiveTripCount is false.
251 ///
252 /// The LoopInfo Analysis that is passed will be kept consistent.
253 ///
254 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
255 /// DominatorTree if they are non-null.
256 ///
257 /// If RemainderLoop is non-null, it will receive the remainder loop (if
258 /// required and not fully unrolled).
259 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
260                                   ScalarEvolution *SE, DominatorTree *DT,
261                                   AssumptionCache *AC,
262                                   const TargetTransformInfo *TTI,
263                                   OptimizationRemarkEmitter *ORE,
264                                   bool PreserveLCSSA, Loop **RemainderLoop) {
265   assert(DT && "DomTree is required");
266 
267   if (!L->getLoopPreheader()) {
268     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
269     return LoopUnrollResult::Unmodified;
270   }
271 
272   if (!L->getLoopLatch()) {
273     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
274     return LoopUnrollResult::Unmodified;
275   }
276 
277   // Loops with indirectbr cannot be cloned.
278   if (!L->isSafeToClone()) {
279     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
280     return LoopUnrollResult::Unmodified;
281   }
282 
283   if (L->getHeader()->hasAddressTaken()) {
284     // The loop-rotate pass can be helpful to avoid this in many cases.
285     LLVM_DEBUG(
286         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
287     return LoopUnrollResult::Unmodified;
288   }
289 
290   assert(ULO.Count > 0);
291 
292   // All these values should be taken only after peeling because they might have
293   // changed.
294   BasicBlock *Preheader = L->getLoopPreheader();
295   BasicBlock *Header = L->getHeader();
296   BasicBlock *LatchBlock = L->getLoopLatch();
297   SmallVector<BasicBlock *, 4> ExitBlocks;
298   L->getExitBlocks(ExitBlocks);
299   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
300 
301   const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
302   const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
303 
304   // Effectively "DCE" unrolled iterations that are beyond the max tripcount
305   // and will never be executed.
306   if (MaxTripCount && ULO.Count > MaxTripCount)
307     ULO.Count = MaxTripCount;
308 
309   struct ExitInfo {
310     unsigned TripCount;
311     unsigned TripMultiple;
312     unsigned BreakoutTrip;
313     bool ExitOnTrue;
314     SmallVector<BasicBlock *> ExitingBlocks;
315   };
316   DenseMap<BasicBlock *, ExitInfo> ExitInfos;
317   SmallVector<BasicBlock *, 4> ExitingBlocks;
318   L->getExitingBlocks(ExitingBlocks);
319   for (auto *ExitingBlock : ExitingBlocks) {
320     // The folding code is not prepared to deal with non-branch instructions
321     // right now.
322     auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
323     if (!BI)
324       continue;
325 
326     ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
327     Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
328     Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
329     if (Info.TripCount != 0) {
330       Info.BreakoutTrip = Info.TripCount % ULO.Count;
331       Info.TripMultiple = 0;
332     } else {
333       Info.BreakoutTrip = Info.TripMultiple =
334           (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple);
335     }
336     Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
337     Info.ExitingBlocks.push_back(ExitingBlock);
338     LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
339                       << ": TripCount=" << Info.TripCount
340                       << ", TripMultiple=" << Info.TripMultiple
341                       << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
342   }
343 
344   // Are we eliminating the loop control altogether?  Note that we can know
345   // we're eliminating the backedge without knowing exactly which iteration
346   // of the unrolled body exits.
347   const bool CompletelyUnroll = ULO.Count == MaxTripCount;
348 
349   const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
350 
351   // There's no point in performing runtime unrolling if this unroll count
352   // results in a full unroll.
353   if (CompletelyUnroll)
354     ULO.Runtime = false;
355 
356   // Go through all exits of L and see if there are any phi-nodes there. We just
357   // conservatively assume that they're inserted to preserve LCSSA form, which
358   // means that complete unrolling might break this form. We need to either fix
359   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
360   // now we just recompute LCSSA for the outer loop, but it should be possible
361   // to fix it in-place.
362   bool NeedToFixLCSSA =
363       PreserveLCSSA && CompletelyUnroll &&
364       any_of(ExitBlocks,
365              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
366 
367   // The current loop unroll pass can unroll loops that have
368   // (1) single latch; and
369   // (2a) latch is unconditional; or
370   // (2b) latch is conditional and is an exiting block
371   // FIXME: The implementation can be extended to work with more complicated
372   // cases, e.g. loops with multiple latches.
373   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
374 
375   // A conditional branch which exits the loop, which can be optimized to an
376   // unconditional branch in the unrolled loop in some cases.
377   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
378   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
379     LLVM_DEBUG(
380         dbgs() << "Can't unroll; a conditional latch must exit the loop");
381     return LoopUnrollResult::Unmodified;
382   }
383 
384   // Loops containing convergent instructions cannot use runtime unrolling,
385   // as the prologue/epilogue may add additional control-dependencies to
386   // convergent operations.
387   LLVM_DEBUG(
388       {
389         bool HasConvergent = false;
390         for (auto &BB : L->blocks())
391           for (auto &I : *BB)
392             if (auto *CB = dyn_cast<CallBase>(&I))
393               HasConvergent |= CB->isConvergent();
394         assert((!HasConvergent || !ULO.Runtime) &&
395                "Can't runtime unroll if loop contains a convergent operation.");
396       });
397 
398   bool EpilogProfitability =
399       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
400                                               : isEpilogProfitable(L);
401 
402   if (ULO.Runtime &&
403       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
404                                   EpilogProfitability, ULO.UnrollRemainder,
405                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
406                                   PreserveLCSSA, RemainderLoop)) {
407     if (ULO.Force)
408       ULO.Runtime = false;
409     else {
410       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
411                            "generated when assuming runtime trip count\n");
412       return LoopUnrollResult::Unmodified;
413     }
414   }
415 
416   using namespace ore;
417   // Report the unrolling decision.
418   if (CompletelyUnroll) {
419     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
420                       << " with trip count " << ULO.Count << "!\n");
421     if (ORE)
422       ORE->emit([&]() {
423         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
424                                   L->getHeader())
425                << "completely unrolled loop with "
426                << NV("UnrollCount", ULO.Count) << " iterations";
427       });
428   } else {
429     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
430                       << ULO.Count);
431     if (ULO.Runtime)
432       LLVM_DEBUG(dbgs() << " with run-time trip count");
433     LLVM_DEBUG(dbgs() << "!\n");
434 
435     if (ORE)
436       ORE->emit([&]() {
437         OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
438                                 L->getHeader());
439         Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
440         if (ULO.Runtime)
441           Diag << " with run-time trip count";
442         return Diag;
443       });
444   }
445 
446   // We are going to make changes to this loop. SCEV may be keeping cached info
447   // about it, in particular about backedge taken count. The changes we make
448   // are guaranteed to invalidate this information for our loop. It is tempting
449   // to only invalidate the loop being unrolled, but it is incorrect as long as
450   // all exiting branches from all inner loops have impact on the outer loops,
451   // and if something changes inside them then any of outer loops may also
452   // change. When we forget outermost loop, we also forget all contained loops
453   // and this is what we need here.
454   if (SE) {
455     if (ULO.ForgetAllSCEV)
456       SE->forgetAllLoops();
457     else
458       SE->forgetTopmostLoop(L);
459   }
460 
461   if (!LatchIsExiting)
462     ++NumUnrolledNotLatch;
463 
464   // For the first iteration of the loop, we should use the precloned values for
465   // PHI nodes.  Insert associations now.
466   ValueToValueMapTy LastValueMap;
467   std::vector<PHINode*> OrigPHINode;
468   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
469     OrigPHINode.push_back(cast<PHINode>(I));
470   }
471 
472   std::vector<BasicBlock *> Headers;
473   std::vector<BasicBlock *> Latches;
474   Headers.push_back(Header);
475   Latches.push_back(LatchBlock);
476 
477   // The current on-the-fly SSA update requires blocks to be processed in
478   // reverse postorder so that LastValueMap contains the correct value at each
479   // exit.
480   LoopBlocksDFS DFS(L);
481   DFS.perform(LI);
482 
483   // Stash the DFS iterators before adding blocks to the loop.
484   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
485   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
486 
487   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
488 
489   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
490   // might break loop-simplified form for these loops (as they, e.g., would
491   // share the same exit blocks). We'll keep track of loops for which we can
492   // break this so that later we can re-simplify them.
493   SmallSetVector<Loop *, 4> LoopsToSimplify;
494   for (Loop *SubLoop : *L)
495     LoopsToSimplify.insert(SubLoop);
496 
497   // When a FSDiscriminator is enabled, we don't need to add the multiply
498   // factors to the discriminators.
499   if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
500     for (BasicBlock *BB : L->getBlocks())
501       for (Instruction &I : *BB)
502         if (!isa<DbgInfoIntrinsic>(&I))
503           if (const DILocation *DIL = I.getDebugLoc()) {
504             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
505             if (NewDIL)
506               I.setDebugLoc(NewDIL.getValue());
507             else
508               LLVM_DEBUG(dbgs()
509                          << "Failed to create new discriminator: "
510                          << DIL->getFilename() << " Line: " << DIL->getLine());
511           }
512 
513   // Identify what noalias metadata is inside the loop: if it is inside the
514   // loop, the associated metadata must be cloned for each iteration.
515   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
516   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
517 
518   for (unsigned It = 1; It != ULO.Count; ++It) {
519     SmallVector<BasicBlock *, 8> NewBlocks;
520     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
521     NewLoops[L] = L;
522 
523     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
524       ValueToValueMapTy VMap;
525       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
526       Header->getParent()->getBasicBlockList().push_back(New);
527 
528       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
529              "Header should not be in a sub-loop");
530       // Tell LI about New.
531       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
532       if (OldLoop)
533         LoopsToSimplify.insert(NewLoops[OldLoop]);
534 
535       if (*BB == Header)
536         // Loop over all of the PHI nodes in the block, changing them to use
537         // the incoming values from the previous block.
538         for (PHINode *OrigPHI : OrigPHINode) {
539           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
540           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
541           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
542             if (It > 1 && L->contains(InValI))
543               InVal = LastValueMap[InValI];
544           VMap[OrigPHI] = InVal;
545           New->getInstList().erase(NewPHI);
546         }
547 
548       // Update our running map of newest clones
549       LastValueMap[*BB] = New;
550       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
551            VI != VE; ++VI)
552         LastValueMap[VI->first] = VI->second;
553 
554       // Add phi entries for newly created values to all exit blocks.
555       for (BasicBlock *Succ : successors(*BB)) {
556         if (L->contains(Succ))
557           continue;
558         for (PHINode &PHI : Succ->phis()) {
559           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
560           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
561           if (It != LastValueMap.end())
562             Incoming = It->second;
563           PHI.addIncoming(Incoming, New);
564         }
565       }
566       // Keep track of new headers and latches as we create them, so that
567       // we can insert the proper branches later.
568       if (*BB == Header)
569         Headers.push_back(New);
570       if (*BB == LatchBlock)
571         Latches.push_back(New);
572 
573       // Keep track of the exiting block and its successor block contained in
574       // the loop for the current iteration.
575       auto ExitInfoIt = ExitInfos.find(*BB);
576       if (ExitInfoIt != ExitInfos.end())
577         ExitInfoIt->second.ExitingBlocks.push_back(New);
578 
579       NewBlocks.push_back(New);
580       UnrolledLoopBlocks.push_back(New);
581 
582       // Update DomTree: since we just copy the loop body, and each copy has a
583       // dedicated entry block (copy of the header block), this header's copy
584       // dominates all copied blocks. That means, dominance relations in the
585       // copied body are the same as in the original body.
586       if (*BB == Header)
587         DT->addNewBlock(New, Latches[It - 1]);
588       else {
589         auto BBDomNode = DT->getNode(*BB);
590         auto BBIDom = BBDomNode->getIDom();
591         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
592         DT->addNewBlock(
593             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
594       }
595     }
596 
597     // Remap all instructions in the most recent iteration
598     remapInstructionsInBlocks(NewBlocks, LastValueMap);
599     for (BasicBlock *NewBlock : NewBlocks)
600       for (Instruction &I : *NewBlock)
601         if (auto *II = dyn_cast<AssumeInst>(&I))
602           AC->registerAssumption(II);
603 
604     {
605       // Identify what other metadata depends on the cloned version. After
606       // cloning, replace the metadata with the corrected version for both
607       // memory instructions and noalias intrinsics.
608       std::string ext = (Twine("It") + Twine(It)).str();
609       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
610                                  Header->getContext(), ext);
611     }
612   }
613 
614   // Loop over the PHI nodes in the original block, setting incoming values.
615   for (PHINode *PN : OrigPHINode) {
616     if (CompletelyUnroll) {
617       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
618       Header->getInstList().erase(PN);
619     } else if (ULO.Count > 1) {
620       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
621       // If this value was defined in the loop, take the value defined by the
622       // last iteration of the loop.
623       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
624         if (L->contains(InValI))
625           InVal = LastValueMap[InVal];
626       }
627       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
628       PN->addIncoming(InVal, Latches.back());
629     }
630   }
631 
632   // Connect latches of the unrolled iterations to the headers of the next
633   // iteration. Currently they point to the header of the same iteration.
634   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
635     unsigned j = (i + 1) % e;
636     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
637   }
638 
639   // Update dominators of blocks we might reach through exits.
640   // Immediate dominator of such block might change, because we add more
641   // routes which can lead to the exit: we can now reach it from the copied
642   // iterations too.
643   if (ULO.Count > 1) {
644     for (auto *BB : OriginalLoopBlocks) {
645       auto *BBDomNode = DT->getNode(BB);
646       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
647       for (auto *ChildDomNode : BBDomNode->children()) {
648         auto *ChildBB = ChildDomNode->getBlock();
649         if (!L->contains(ChildBB))
650           ChildrenToUpdate.push_back(ChildBB);
651       }
652       // The new idom of the block will be the nearest common dominator
653       // of all copies of the previous idom. This is equivalent to the
654       // nearest common dominator of the previous idom and the first latch,
655       // which dominates all copies of the previous idom.
656       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
657       for (auto *ChildBB : ChildrenToUpdate)
658         DT->changeImmediateDominator(ChildBB, NewIDom);
659     }
660   }
661 
662   assert(!UnrollVerifyDomtree ||
663          DT->verify(DominatorTree::VerificationLevel::Fast));
664 
665   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
666 
667   auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
668     auto *Term = cast<BranchInst>(Src->getTerminator());
669     const unsigned Idx = ExitOnTrue ^ WillExit;
670     BasicBlock *Dest = Term->getSuccessor(Idx);
671     BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
672 
673     // Remove predecessors from all non-Dest successors.
674     DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
675 
676     // Replace the conditional branch with an unconditional one.
677     BranchInst::Create(Dest, Term);
678     Term->eraseFromParent();
679 
680     DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}});
681   };
682 
683   auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
684                       bool IsLatch) -> Optional<bool> {
685     if (CompletelyUnroll) {
686       if (PreserveOnlyFirst) {
687         if (i == 0)
688           return None;
689         return j == 0;
690       }
691       // Complete (but possibly inexact) unrolling
692       if (j == 0)
693         return true;
694       if (Info.TripCount && j != Info.TripCount)
695         return false;
696       return None;
697     }
698 
699     if (ULO.Runtime) {
700       // If runtime unrolling inserts a prologue, information about non-latch
701       // exits may be stale.
702       if (IsLatch && j != 0)
703         return false;
704       return None;
705     }
706 
707     if (j != Info.BreakoutTrip &&
708         (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
709       // If we know the trip count or a multiple of it, we can safely use an
710       // unconditional branch for some iterations.
711       return false;
712     }
713     return None;
714   };
715 
716   // Fold branches for iterations where we know that they will exit or not
717   // exit.
718   for (const auto &Pair : ExitInfos) {
719     const ExitInfo &Info = Pair.second;
720     for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
721       // The branch destination.
722       unsigned j = (i + 1) % e;
723       bool IsLatch = Pair.first == LatchBlock;
724       Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
725       if (!KnownWillExit)
726         continue;
727 
728       // We don't fold known-exiting branches for non-latch exits here,
729       // because this ensures that both all loop blocks and all exit blocks
730       // remain reachable in the CFG.
731       // TODO: We could fold these branches, but it would require much more
732       // sophisticated updates to LoopInfo.
733       if (*KnownWillExit && !IsLatch)
734         continue;
735 
736       SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
737     }
738   }
739 
740   // When completely unrolling, the last latch becomes unreachable.
741   if (!LatchIsExiting && CompletelyUnroll)
742     changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA, &DTU);
743 
744   // Merge adjacent basic blocks, if possible.
745   for (BasicBlock *Latch : Latches) {
746     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
747     assert((Term ||
748             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
749            "Need a branch as terminator, except when fully unrolling with "
750            "unconditional latch");
751     if (Term && Term->isUnconditional()) {
752       BasicBlock *Dest = Term->getSuccessor(0);
753       BasicBlock *Fold = Dest->getUniquePredecessor();
754       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
755         // Dest has been folded into Fold. Update our worklists accordingly.
756         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
757         llvm::erase_value(UnrolledLoopBlocks, Dest);
758       }
759     }
760   }
761   // Apply updates to the DomTree.
762   DT = &DTU.getDomTree();
763 
764   // At this point, the code is well formed.  We now simplify the unrolled loop,
765   // doing constant propagation and dead code elimination as we go.
766   simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
767                           TTI);
768 
769   NumCompletelyUnrolled += CompletelyUnroll;
770   ++NumUnrolled;
771 
772   Loop *OuterL = L->getParentLoop();
773   // Update LoopInfo if the loop is completely removed.
774   if (CompletelyUnroll)
775     LI->erase(L);
776 
777   // After complete unrolling most of the blocks should be contained in OuterL.
778   // However, some of them might happen to be out of OuterL (e.g. if they
779   // precede a loop exit). In this case we might need to insert PHI nodes in
780   // order to preserve LCSSA form.
781   // We don't need to check this if we already know that we need to fix LCSSA
782   // form.
783   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
784   // it should be possible to fix it in-place.
785   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
786     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
787 
788   // Make sure that loop-simplify form is preserved. We want to simplify
789   // at least one layer outside of the loop that was unrolled so that any
790   // changes to the parent loop exposed by the unrolling are considered.
791   if (OuterL) {
792     // OuterL includes all loops for which we can break loop-simplify, so
793     // it's sufficient to simplify only it (it'll recursively simplify inner
794     // loops too).
795     if (NeedToFixLCSSA) {
796       // LCSSA must be performed on the outermost affected loop. The unrolled
797       // loop's last loop latch is guaranteed to be in the outermost loop
798       // after LoopInfo's been updated by LoopInfo::erase.
799       Loop *LatchLoop = LI->getLoopFor(Latches.back());
800       Loop *FixLCSSALoop = OuterL;
801       if (!FixLCSSALoop->contains(LatchLoop))
802         while (FixLCSSALoop->getParentLoop() != LatchLoop)
803           FixLCSSALoop = FixLCSSALoop->getParentLoop();
804 
805       formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
806     } else if (PreserveLCSSA) {
807       assert(OuterL->isLCSSAForm(*DT) &&
808              "Loops should be in LCSSA form after loop-unroll.");
809     }
810 
811     // TODO: That potentially might be compile-time expensive. We should try
812     // to fix the loop-simplified form incrementally.
813     simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
814   } else {
815     // Simplify loops for which we might've broken loop-simplify form.
816     for (Loop *SubLoop : LoopsToSimplify)
817       simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
818   }
819 
820   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
821                           : LoopUnrollResult::PartiallyUnrolled;
822 }
823 
824 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
825 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
826 /// such metadata node exists, then nullptr is returned.
827 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
828   // First operand should refer to the loop id itself.
829   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
830   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
831 
832   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
833     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
834     if (!MD)
835       continue;
836 
837     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
838     if (!S)
839       continue;
840 
841     if (Name.equals(S->getString()))
842       return MD;
843   }
844   return nullptr;
845 }
846