xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
32 //
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
36 //
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/LoopUtils.h"
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-simplify"
80 
81 STATISTIC(NumNested  , "Number of nested loops split out");
82 
83 // If the block isn't already, move the new block to right after some 'outside
84 // block' block.  This prevents the preheader from being placed inside the loop
85 // body, e.g. when the loop hasn't been rotated.
86 static void placeSplitBlockCarefully(BasicBlock *NewBB,
87                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
88                                      Loop *L) {
89   // Check to see if NewBB is already well placed.
90   Function::iterator BBI = --NewBB->getIterator();
91   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
92     if (&*BBI == SplitPreds[i])
93       return;
94   }
95 
96   // If it isn't already after an outside block, move it after one.  This is
97   // always good as it makes the uncond branch from the outside block into a
98   // fall-through.
99 
100   // Figure out *which* outside block to put this after.  Prefer an outside
101   // block that neighbors a BB actually in the loop.
102   BasicBlock *FoundBB = nullptr;
103   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
104     Function::iterator BBI = SplitPreds[i]->getIterator();
105     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
106       FoundBB = SplitPreds[i];
107       break;
108     }
109   }
110 
111   // If our heuristic for a *good* bb to place this after doesn't find
112   // anything, just pick something.  It's likely better than leaving it within
113   // the loop.
114   if (!FoundBB)
115     FoundBB = SplitPreds[0];
116   NewBB->moveAfter(FoundBB);
117 }
118 
119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
120 /// preheader, this method is called to insert one.  This method has two phases:
121 /// preheader insertion and analysis updating.
122 ///
123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
124                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
125                                          bool PreserveLCSSA) {
126   BasicBlock *Header = L->getHeader();
127 
128   // Compute the set of predecessors of the loop that are not in the loop.
129   SmallVector<BasicBlock*, 8> OutsideBlocks;
130   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
131        PI != PE; ++PI) {
132     BasicBlock *P = *PI;
133     if (!L->contains(P)) {         // Coming in from outside the loop?
134       // If the loop is branched to from an indirect terminator, we won't
135       // be able to fully transform the loop, because it prohibits
136       // edge splitting.
137       if (P->getTerminator()->isIndirectTerminator())
138         return nullptr;
139 
140       // Keep track of it.
141       OutsideBlocks.push_back(P);
142     }
143   }
144 
145   // Split out the loop pre-header.
146   BasicBlock *PreheaderBB;
147   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
148                                        LI, MSSAU, PreserveLCSSA);
149   if (!PreheaderBB)
150     return nullptr;
151 
152   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
153                     << PreheaderBB->getName() << "\n");
154 
155   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
156   // code layout too horribly.
157   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
158 
159   return PreheaderBB;
160 }
161 
162 /// Add the specified block, and all of its predecessors, to the specified set,
163 /// if it's not already in there.  Stop predecessor traversal when we reach
164 /// StopBlock.
165 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
166                                   std::set<BasicBlock*> &Blocks) {
167   SmallVector<BasicBlock *, 8> Worklist;
168   Worklist.push_back(InputBB);
169   do {
170     BasicBlock *BB = Worklist.pop_back_val();
171     if (Blocks.insert(BB).second && BB != StopBlock)
172       // If BB is not already processed and it is not a stop block then
173       // insert its predecessor in the work list
174       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
175         BasicBlock *WBB = *I;
176         Worklist.push_back(WBB);
177       }
178   } while (!Worklist.empty());
179 }
180 
181 /// The first part of loop-nestification is to find a PHI node that tells
182 /// us how to partition the loops.
183 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
184                                         AssumptionCache *AC) {
185   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
186   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
187     PHINode *PN = cast<PHINode>(I);
188     ++I;
189     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
190       // This is a degenerate PHI already, don't modify it!
191       PN->replaceAllUsesWith(V);
192       PN->eraseFromParent();
193       continue;
194     }
195 
196     // Scan this PHI node looking for a use of the PHI node by itself.
197     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
198       if (PN->getIncomingValue(i) == PN &&
199           L->contains(PN->getIncomingBlock(i)))
200         // We found something tasty to remove.
201         return PN;
202   }
203   return nullptr;
204 }
205 
206 /// If this loop has multiple backedges, try to pull one of them out into
207 /// a nested loop.
208 ///
209 /// This is important for code that looks like
210 /// this:
211 ///
212 ///  Loop:
213 ///     ...
214 ///     br cond, Loop, Next
215 ///     ...
216 ///     br cond2, Loop, Out
217 ///
218 /// To identify this common case, we look at the PHI nodes in the header of the
219 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
220 /// that change in the "outer" loop, but not in the "inner" loop.
221 ///
222 /// If we are able to separate out a loop, return the new outer loop that was
223 /// created.
224 ///
225 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
226                                 DominatorTree *DT, LoopInfo *LI,
227                                 ScalarEvolution *SE, bool PreserveLCSSA,
228                                 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
229   // Don't try to separate loops without a preheader.
230   if (!Preheader)
231     return nullptr;
232 
233   // The header is not a landing pad; preheader insertion should ensure this.
234   BasicBlock *Header = L->getHeader();
235   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
236 
237   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
238   if (!PN) return nullptr;  // No known way to partition.
239 
240   // Pull out all predecessors that have varying values in the loop.  This
241   // handles the case when a PHI node has multiple instances of itself as
242   // arguments.
243   SmallVector<BasicBlock*, 8> OuterLoopPreds;
244   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
245     if (PN->getIncomingValue(i) != PN ||
246         !L->contains(PN->getIncomingBlock(i))) {
247       // We can't split indirect control flow edges.
248       if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
249         return nullptr;
250       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
251     }
252   }
253   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
254 
255   // If ScalarEvolution is around and knows anything about values in
256   // this loop, tell it to forget them, because we're about to
257   // substantially change it.
258   if (SE)
259     SE->forgetLoop(L);
260 
261   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
262                                              DT, LI, MSSAU, PreserveLCSSA);
263 
264   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
265   // code layout too horribly.
266   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
267 
268   // Create the new outer loop.
269   Loop *NewOuter = LI->AllocateLoop();
270 
271   // Change the parent loop to use the outer loop as its child now.
272   if (Loop *Parent = L->getParentLoop())
273     Parent->replaceChildLoopWith(L, NewOuter);
274   else
275     LI->changeTopLevelLoop(L, NewOuter);
276 
277   // L is now a subloop of our outer loop.
278   NewOuter->addChildLoop(L);
279 
280   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
281        I != E; ++I)
282     NewOuter->addBlockEntry(*I);
283 
284   // Now reset the header in L, which had been moved by
285   // SplitBlockPredecessors for the outer loop.
286   L->moveToHeader(Header);
287 
288   // Determine which blocks should stay in L and which should be moved out to
289   // the Outer loop now.
290   std::set<BasicBlock*> BlocksInL;
291   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
292     BasicBlock *P = *PI;
293     if (DT->dominates(Header, P))
294       addBlockAndPredsToSet(P, Header, BlocksInL);
295   }
296 
297   // Scan all of the loop children of L, moving them to OuterLoop if they are
298   // not part of the inner loop.
299   const std::vector<Loop*> &SubLoops = L->getSubLoops();
300   for (size_t I = 0; I != SubLoops.size(); )
301     if (BlocksInL.count(SubLoops[I]->getHeader()))
302       ++I;   // Loop remains in L
303     else
304       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
305 
306   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
307   OuterLoopBlocks.push_back(NewBB);
308   // Now that we know which blocks are in L and which need to be moved to
309   // OuterLoop, move any blocks that need it.
310   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
311     BasicBlock *BB = L->getBlocks()[i];
312     if (!BlocksInL.count(BB)) {
313       // Move this block to the parent, updating the exit blocks sets
314       L->removeBlockFromLoop(BB);
315       if ((*LI)[BB] == L) {
316         LI->changeLoopFor(BB, NewOuter);
317         OuterLoopBlocks.push_back(BB);
318       }
319       --i;
320     }
321   }
322 
323   // Split edges to exit blocks from the inner loop, if they emerged in the
324   // process of separating the outer one.
325   formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
326 
327   if (PreserveLCSSA) {
328     // Fix LCSSA form for L. Some values, which previously were only used inside
329     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
330     // in corresponding exit blocks.
331     // We don't need to form LCSSA recursively, because there cannot be uses
332     // inside a newly created loop of defs from inner loops as those would
333     // already be a use of an LCSSA phi node.
334     formLCSSA(*L, *DT, LI, SE);
335 
336     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
337            "LCSSA is broken after separating nested loops!");
338   }
339 
340   return NewOuter;
341 }
342 
343 /// This method is called when the specified loop has more than one
344 /// backedge in it.
345 ///
346 /// If this occurs, revector all of these backedges to target a new basic block
347 /// and have that block branch to the loop header.  This ensures that loops
348 /// have exactly one backedge.
349 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
350                                              DominatorTree *DT, LoopInfo *LI,
351                                              MemorySSAUpdater *MSSAU) {
352   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
353 
354   // Get information about the loop
355   BasicBlock *Header = L->getHeader();
356   Function *F = Header->getParent();
357 
358   // Unique backedge insertion currently depends on having a preheader.
359   if (!Preheader)
360     return nullptr;
361 
362   // The header is not an EH pad; preheader insertion should ensure this.
363   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
364 
365   // Figure out which basic blocks contain back-edges to the loop header.
366   std::vector<BasicBlock*> BackedgeBlocks;
367   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
368     BasicBlock *P = *I;
369 
370     // Indirect edges cannot be split, so we must fail if we find one.
371     if (P->getTerminator()->isIndirectTerminator())
372       return nullptr;
373 
374     if (P != Preheader) BackedgeBlocks.push_back(P);
375   }
376 
377   // Create and insert the new backedge block...
378   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
379                                            Header->getName() + ".backedge", F);
380   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
381   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
382 
383   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
384                     << BEBlock->getName() << "\n");
385 
386   // Move the new backedge block to right after the last backedge block.
387   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
388   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
389 
390   // Now that the block has been inserted into the function, create PHI nodes in
391   // the backedge block which correspond to any PHI nodes in the header block.
392   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
393     PHINode *PN = cast<PHINode>(I);
394     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
395                                      PN->getName()+".be", BETerminator);
396 
397     // Loop over the PHI node, moving all entries except the one for the
398     // preheader over to the new PHI node.
399     unsigned PreheaderIdx = ~0U;
400     bool HasUniqueIncomingValue = true;
401     Value *UniqueValue = nullptr;
402     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
403       BasicBlock *IBB = PN->getIncomingBlock(i);
404       Value *IV = PN->getIncomingValue(i);
405       if (IBB == Preheader) {
406         PreheaderIdx = i;
407       } else {
408         NewPN->addIncoming(IV, IBB);
409         if (HasUniqueIncomingValue) {
410           if (!UniqueValue)
411             UniqueValue = IV;
412           else if (UniqueValue != IV)
413             HasUniqueIncomingValue = false;
414         }
415       }
416     }
417 
418     // Delete all of the incoming values from the old PN except the preheader's
419     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
420     if (PreheaderIdx != 0) {
421       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
422       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
423     }
424     // Nuke all entries except the zero'th.
425     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
426       PN->removeIncomingValue(e-i, false);
427 
428     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
429     PN->addIncoming(NewPN, BEBlock);
430 
431     // As an optimization, if all incoming values in the new PhiNode (which is a
432     // subset of the incoming values of the old PHI node) have the same value,
433     // eliminate the PHI Node.
434     if (HasUniqueIncomingValue) {
435       NewPN->replaceAllUsesWith(UniqueValue);
436       BEBlock->getInstList().erase(NewPN);
437     }
438   }
439 
440   // Now that all of the PHI nodes have been inserted and adjusted, modify the
441   // backedge blocks to jump to the BEBlock instead of the header.
442   // If one of the backedges has llvm.loop metadata attached, we remove
443   // it from the backedge and add it to BEBlock.
444   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
445   MDNode *LoopMD = nullptr;
446   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
447     Instruction *TI = BackedgeBlocks[i]->getTerminator();
448     if (!LoopMD)
449       LoopMD = TI->getMetadata(LoopMDKind);
450     TI->setMetadata(LoopMDKind, nullptr);
451     TI->replaceSuccessorWith(Header, BEBlock);
452   }
453   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
454 
455   //===--- Update all analyses which we must preserve now -----------------===//
456 
457   // Update Loop Information - we know that this block is now in the current
458   // loop and all parent loops.
459   L->addBasicBlockToLoop(BEBlock, *LI);
460 
461   // Update dominator information
462   DT->splitBlock(BEBlock);
463 
464   if (MSSAU)
465     MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
466                                                       BEBlock);
467 
468   return BEBlock;
469 }
470 
471 /// Simplify one loop and queue further loops for simplification.
472 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
473                             DominatorTree *DT, LoopInfo *LI,
474                             ScalarEvolution *SE, AssumptionCache *AC,
475                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
476   bool Changed = false;
477   if (MSSAU && VerifyMemorySSA)
478     MSSAU->getMemorySSA()->verifyMemorySSA();
479 
480 ReprocessLoop:
481 
482   // Check to see that no blocks (other than the header) in this loop have
483   // predecessors that are not in the loop.  This is not valid for natural
484   // loops, but can occur if the blocks are unreachable.  Since they are
485   // unreachable we can just shamelessly delete those CFG edges!
486   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
487        BB != E; ++BB) {
488     if (*BB == L->getHeader()) continue;
489 
490     SmallPtrSet<BasicBlock*, 4> BadPreds;
491     for (pred_iterator PI = pred_begin(*BB),
492          PE = pred_end(*BB); PI != PE; ++PI) {
493       BasicBlock *P = *PI;
494       if (!L->contains(P))
495         BadPreds.insert(P);
496     }
497 
498     // Delete each unique out-of-loop (and thus dead) predecessor.
499     for (BasicBlock *P : BadPreds) {
500 
501       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
502                         << P->getName() << "\n");
503 
504       // Zap the dead pred's terminator and replace it with unreachable.
505       Instruction *TI = P->getTerminator();
506       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA,
507                           /*DTU=*/nullptr, MSSAU);
508       Changed = true;
509     }
510   }
511 
512   if (MSSAU && VerifyMemorySSA)
513     MSSAU->getMemorySSA()->verifyMemorySSA();
514 
515   // If there are exiting blocks with branches on undef, resolve the undef in
516   // the direction which will exit the loop. This will help simplify loop
517   // trip count computations.
518   SmallVector<BasicBlock*, 8> ExitingBlocks;
519   L->getExitingBlocks(ExitingBlocks);
520   for (BasicBlock *ExitingBlock : ExitingBlocks)
521     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
522       if (BI->isConditional()) {
523         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
524 
525           LLVM_DEBUG(dbgs()
526                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
527                      << ExitingBlock->getName() << "\n");
528 
529           BI->setCondition(ConstantInt::get(Cond->getType(),
530                                             !L->contains(BI->getSuccessor(0))));
531 
532           Changed = true;
533         }
534       }
535 
536   // Does the loop already have a preheader?  If so, don't insert one.
537   BasicBlock *Preheader = L->getLoopPreheader();
538   if (!Preheader) {
539     Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
540     if (Preheader)
541       Changed = true;
542   }
543 
544   // Next, check to make sure that all exit nodes of the loop only have
545   // predecessors that are inside of the loop.  This check guarantees that the
546   // loop preheader/header will dominate the exit blocks.  If the exit block has
547   // predecessors from outside of the loop, split the edge now.
548   if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
549     Changed = true;
550 
551   if (MSSAU && VerifyMemorySSA)
552     MSSAU->getMemorySSA()->verifyMemorySSA();
553 
554   // If the header has more than two predecessors at this point (from the
555   // preheader and from multiple backedges), we must adjust the loop.
556   BasicBlock *LoopLatch = L->getLoopLatch();
557   if (!LoopLatch) {
558     // If this is really a nested loop, rip it out into a child loop.  Don't do
559     // this for loops with a giant number of backedges, just factor them into a
560     // common backedge instead.
561     if (L->getNumBackEdges() < 8) {
562       if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
563                                             PreserveLCSSA, AC, MSSAU)) {
564         ++NumNested;
565         // Enqueue the outer loop as it should be processed next in our
566         // depth-first nest walk.
567         Worklist.push_back(OuterL);
568 
569         // This is a big restructuring change, reprocess the whole loop.
570         Changed = true;
571         // GCC doesn't tail recursion eliminate this.
572         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
573         goto ReprocessLoop;
574       }
575     }
576 
577     // If we either couldn't, or didn't want to, identify nesting of the loops,
578     // insert a new block that all backedges target, then make it jump to the
579     // loop header.
580     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
581     if (LoopLatch)
582       Changed = true;
583   }
584 
585   if (MSSAU && VerifyMemorySSA)
586     MSSAU->getMemorySSA()->verifyMemorySSA();
587 
588   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
589 
590   // Scan over the PHI nodes in the loop header.  Since they now have only two
591   // incoming values (the loop is canonicalized), we may have simplified the PHI
592   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
593   PHINode *PN;
594   for (BasicBlock::iterator I = L->getHeader()->begin();
595        (PN = dyn_cast<PHINode>(I++)); )
596     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
597       if (SE) SE->forgetValue(PN);
598       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
599         PN->replaceAllUsesWith(V);
600         PN->eraseFromParent();
601       }
602     }
603 
604   // If this loop has multiple exits and the exits all go to the same
605   // block, attempt to merge the exits. This helps several passes, such
606   // as LoopRotation, which do not support loops with multiple exits.
607   // SimplifyCFG also does this (and this code uses the same utility
608   // function), however this code is loop-aware, where SimplifyCFG is
609   // not. That gives it the advantage of being able to hoist
610   // loop-invariant instructions out of the way to open up more
611   // opportunities, and the disadvantage of having the responsibility
612   // to preserve dominator information.
613   auto HasUniqueExitBlock = [&]() {
614     BasicBlock *UniqueExit = nullptr;
615     for (auto *ExitingBB : ExitingBlocks)
616       for (auto *SuccBB : successors(ExitingBB)) {
617         if (L->contains(SuccBB))
618           continue;
619 
620         if (!UniqueExit)
621           UniqueExit = SuccBB;
622         else if (UniqueExit != SuccBB)
623           return false;
624       }
625 
626     return true;
627   };
628   if (HasUniqueExitBlock()) {
629     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
630       BasicBlock *ExitingBlock = ExitingBlocks[i];
631       if (!ExitingBlock->getSinglePredecessor()) continue;
632       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
633       if (!BI || !BI->isConditional()) continue;
634       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
635       if (!CI || CI->getParent() != ExitingBlock) continue;
636 
637       // Attempt to hoist out all instructions except for the
638       // comparison and the branch.
639       bool AllInvariant = true;
640       bool AnyInvariant = false;
641       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
642         Instruction *Inst = &*I++;
643         if (Inst == CI)
644           continue;
645         if (!L->makeLoopInvariant(
646                 Inst, AnyInvariant,
647                 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
648           AllInvariant = false;
649           break;
650         }
651       }
652       if (AnyInvariant) {
653         Changed = true;
654         // The loop disposition of all SCEV expressions that depend on any
655         // hoisted values have also changed.
656         if (SE)
657           SE->forgetLoopDispositions(L);
658       }
659       if (!AllInvariant) continue;
660 
661       // The block has now been cleared of all instructions except for
662       // a comparison and a conditional branch. SimplifyCFG may be able
663       // to fold it now.
664       if (!FoldBranchToCommonDest(BI, MSSAU))
665         continue;
666 
667       // Success. The block is now dead, so remove it from the loop,
668       // update the dominator tree and delete it.
669       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
670                         << ExitingBlock->getName() << "\n");
671 
672       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
673       Changed = true;
674       LI->removeBlock(ExitingBlock);
675 
676       DomTreeNode *Node = DT->getNode(ExitingBlock);
677       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
678         Node->getChildren();
679       while (!Children.empty()) {
680         DomTreeNode *Child = Children.front();
681         DT->changeImmediateDominator(Child, Node->getIDom());
682       }
683       DT->eraseNode(ExitingBlock);
684       if (MSSAU) {
685         SmallSetVector<BasicBlock *, 8> ExitBlockSet;
686         ExitBlockSet.insert(ExitingBlock);
687         MSSAU->removeBlocks(ExitBlockSet);
688       }
689 
690       BI->getSuccessor(0)->removePredecessor(
691           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
692       BI->getSuccessor(1)->removePredecessor(
693           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
694       ExitingBlock->eraseFromParent();
695     }
696   }
697 
698   // Changing exit conditions for blocks may affect exit counts of this loop and
699   // any of its paretns, so we must invalidate the entire subtree if we've made
700   // any changes.
701   if (Changed && SE)
702     SE->forgetTopmostLoop(L);
703 
704   if (MSSAU && VerifyMemorySSA)
705     MSSAU->getMemorySSA()->verifyMemorySSA();
706 
707   return Changed;
708 }
709 
710 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
711                         ScalarEvolution *SE, AssumptionCache *AC,
712                         MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
713   bool Changed = false;
714 
715 #ifndef NDEBUG
716   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
717   // form.
718   if (PreserveLCSSA) {
719     assert(DT && "DT not available.");
720     assert(LI && "LI not available.");
721     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
722            "Requested to preserve LCSSA, but it's already broken.");
723   }
724 #endif
725 
726   // Worklist maintains our depth-first queue of loops in this nest to process.
727   SmallVector<Loop *, 4> Worklist;
728   Worklist.push_back(L);
729 
730   // Walk the worklist from front to back, pushing newly found sub loops onto
731   // the back. This will let us process loops from back to front in depth-first
732   // order. We can use this simple process because loops form a tree.
733   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
734     Loop *L2 = Worklist[Idx];
735     Worklist.append(L2->begin(), L2->end());
736   }
737 
738   while (!Worklist.empty())
739     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
740                                AC, MSSAU, PreserveLCSSA);
741 
742   return Changed;
743 }
744 
745 namespace {
746   struct LoopSimplify : public FunctionPass {
747     static char ID; // Pass identification, replacement for typeid
748     LoopSimplify() : FunctionPass(ID) {
749       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
750     }
751 
752     bool runOnFunction(Function &F) override;
753 
754     void getAnalysisUsage(AnalysisUsage &AU) const override {
755       AU.addRequired<AssumptionCacheTracker>();
756 
757       // We need loop information to identify the loops...
758       AU.addRequired<DominatorTreeWrapperPass>();
759       AU.addPreserved<DominatorTreeWrapperPass>();
760 
761       AU.addRequired<LoopInfoWrapperPass>();
762       AU.addPreserved<LoopInfoWrapperPass>();
763 
764       AU.addPreserved<BasicAAWrapperPass>();
765       AU.addPreserved<AAResultsWrapperPass>();
766       AU.addPreserved<GlobalsAAWrapperPass>();
767       AU.addPreserved<ScalarEvolutionWrapperPass>();
768       AU.addPreserved<SCEVAAWrapperPass>();
769       AU.addPreservedID(LCSSAID);
770       AU.addPreserved<DependenceAnalysisWrapperPass>();
771       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
772       AU.addPreserved<BranchProbabilityInfoWrapperPass>();
773       if (EnableMSSALoopDependency)
774         AU.addPreserved<MemorySSAWrapperPass>();
775     }
776 
777     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
778     void verifyAnalysis() const override;
779   };
780 }
781 
782 char LoopSimplify::ID = 0;
783 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
784                 "Canonicalize natural loops", false, false)
785 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
786 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
787 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
788 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
789                 "Canonicalize natural loops", false, false)
790 
791 // Publicly exposed interface to pass...
792 char &llvm::LoopSimplifyID = LoopSimplify::ID;
793 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
794 
795 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
796 /// it in any convenient order) inserting preheaders...
797 ///
798 bool LoopSimplify::runOnFunction(Function &F) {
799   bool Changed = false;
800   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
801   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
802   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
803   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
804   AssumptionCache *AC =
805       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
806   MemorySSA *MSSA = nullptr;
807   std::unique_ptr<MemorySSAUpdater> MSSAU;
808   if (EnableMSSALoopDependency) {
809     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
810     if (MSSAAnalysis) {
811       MSSA = &MSSAAnalysis->getMSSA();
812       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
813     }
814   }
815 
816   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
817 
818   // Simplify each loop nest in the function.
819   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
820     Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
821 
822 #ifndef NDEBUG
823   if (PreserveLCSSA) {
824     bool InLCSSA = all_of(
825         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
826     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
827   }
828 #endif
829   return Changed;
830 }
831 
832 PreservedAnalyses LoopSimplifyPass::run(Function &F,
833                                         FunctionAnalysisManager &AM) {
834   bool Changed = false;
835   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
836   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
837   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
838   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
839   auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
840   std::unique_ptr<MemorySSAUpdater> MSSAU;
841   if (MSSAAnalysis) {
842     auto *MSSA = &MSSAAnalysis->getMSSA();
843     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
844   }
845 
846 
847   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
848   // after simplifying the loops. MemorySSA is preserved if it exists.
849   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
850     Changed |=
851         simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
852 
853   if (!Changed)
854     return PreservedAnalyses::all();
855 
856   PreservedAnalyses PA;
857   PA.preserve<DominatorTreeAnalysis>();
858   PA.preserve<LoopAnalysis>();
859   PA.preserve<BasicAA>();
860   PA.preserve<GlobalsAA>();
861   PA.preserve<SCEVAA>();
862   PA.preserve<ScalarEvolutionAnalysis>();
863   PA.preserve<DependenceAnalysis>();
864   if (MSSAAnalysis)
865     PA.preserve<MemorySSAAnalysis>();
866   // BPI maps conditional terminators to probabilities, LoopSimplify can insert
867   // blocks, but it does so only by splitting existing blocks and edges. This
868   // results in the interesting property that all new terminators inserted are
869   // unconditional branches which do not appear in BPI. All deletions are
870   // handled via ValueHandle callbacks w/in BPI.
871   PA.preserve<BranchProbabilityAnalysis>();
872   return PA;
873 }
874 
875 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
876 // below.
877 #if 0
878 static void verifyLoop(Loop *L) {
879   // Verify subloops.
880   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
881     verifyLoop(*I);
882 
883   // It used to be possible to just assert L->isLoopSimplifyForm(), however
884   // with the introduction of indirectbr, there are now cases where it's
885   // not possible to transform a loop as necessary. We can at least check
886   // that there is an indirectbr near any time there's trouble.
887 
888   // Indirectbr can interfere with preheader and unique backedge insertion.
889   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
890     bool HasIndBrPred = false;
891     for (pred_iterator PI = pred_begin(L->getHeader()),
892          PE = pred_end(L->getHeader()); PI != PE; ++PI)
893       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
894         HasIndBrPred = true;
895         break;
896       }
897     assert(HasIndBrPred &&
898            "LoopSimplify has no excuse for missing loop header info!");
899     (void)HasIndBrPred;
900   }
901 
902   // Indirectbr can interfere with exit block canonicalization.
903   if (!L->hasDedicatedExits()) {
904     bool HasIndBrExiting = false;
905     SmallVector<BasicBlock*, 8> ExitingBlocks;
906     L->getExitingBlocks(ExitingBlocks);
907     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
908       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
909         HasIndBrExiting = true;
910         break;
911       }
912     }
913 
914     assert(HasIndBrExiting &&
915            "LoopSimplify has no excuse for missing exit block info!");
916     (void)HasIndBrExiting;
917   }
918 }
919 #endif
920 
921 void LoopSimplify::verifyAnalysis() const {
922   // FIXME: This routine is being called mid-way through the loop pass manager
923   // as loop passes destroy this analysis. That's actually fine, but we have no
924   // way of expressing that here. Once all of the passes that destroy this are
925   // hoisted out of the loop pass manager we can add back verification here.
926 #if 0
927   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
928     verifyLoop(*I);
929 #endif
930 }
931