1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs several transformations to transform natural loops into a 10 // simpler form, which makes subsequent analyses and transformations simpler and 11 // more effective. 12 // 13 // Loop pre-header insertion guarantees that there is a single, non-critical 14 // entry edge from outside of the loop to the loop header. This simplifies a 15 // number of analyses and transformations, such as LICM. 16 // 17 // Loop exit-block insertion guarantees that all exit blocks from the loop 18 // (blocks which are outside of the loop that have predecessors inside of the 19 // loop) only have predecessors from inside of the loop (and are thus dominated 20 // by the loop header). This simplifies transformations such as store-sinking 21 // that are built into LICM. 22 // 23 // This pass also guarantees that loops will have exactly one backedge. 24 // 25 // Indirectbr instructions introduce several complications. If the loop 26 // contains or is entered by an indirectbr instruction, it may not be possible 27 // to transform the loop and make these guarantees. Client code should check 28 // that these conditions are true before relying on them. 29 // 30 // Similar complications arise from callbr instructions, particularly in 31 // asm-goto where blockaddress expressions are used. 32 // 33 // Note that the simplifycfg pass will clean up blocks which are split out but 34 // end up being unnecessary, so usage of this pass should not pessimize 35 // generated code. 36 // 37 // This pass obviously modifies the CFG, but updates loop information and 38 // dominator information. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/Transforms/Utils/LoopSimplify.h" 43 #include "llvm/ADT/DepthFirstIterator.h" 44 #include "llvm/ADT/SetOperations.h" 45 #include "llvm/ADT/SetVector.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/BasicAliasAnalysis.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/DependenceAnalysis.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemorySSA.h" 57 #include "llvm/Analysis/MemorySSAUpdater.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/LLVMContext.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/LoopUtils.h" 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-simplify" 80 81 STATISTIC(NumNested , "Number of nested loops split out"); 82 83 // If the block isn't already, move the new block to right after some 'outside 84 // block' block. This prevents the preheader from being placed inside the loop 85 // body, e.g. when the loop hasn't been rotated. 86 static void placeSplitBlockCarefully(BasicBlock *NewBB, 87 SmallVectorImpl<BasicBlock *> &SplitPreds, 88 Loop *L) { 89 // Check to see if NewBB is already well placed. 90 Function::iterator BBI = --NewBB->getIterator(); 91 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 92 if (&*BBI == SplitPreds[i]) 93 return; 94 } 95 96 // If it isn't already after an outside block, move it after one. This is 97 // always good as it makes the uncond branch from the outside block into a 98 // fall-through. 99 100 // Figure out *which* outside block to put this after. Prefer an outside 101 // block that neighbors a BB actually in the loop. 102 BasicBlock *FoundBB = nullptr; 103 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 104 Function::iterator BBI = SplitPreds[i]->getIterator(); 105 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 106 FoundBB = SplitPreds[i]; 107 break; 108 } 109 } 110 111 // If our heuristic for a *good* bb to place this after doesn't find 112 // anything, just pick something. It's likely better than leaving it within 113 // the loop. 114 if (!FoundBB) 115 FoundBB = SplitPreds[0]; 116 NewBB->moveAfter(FoundBB); 117 } 118 119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 120 /// preheader, this method is called to insert one. This method has two phases: 121 /// preheader insertion and analysis updating. 122 /// 123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 124 LoopInfo *LI, MemorySSAUpdater *MSSAU, 125 bool PreserveLCSSA) { 126 BasicBlock *Header = L->getHeader(); 127 128 // Compute the set of predecessors of the loop that are not in the loop. 129 SmallVector<BasicBlock*, 8> OutsideBlocks; 130 for (BasicBlock *P : predecessors(Header)) { 131 if (!L->contains(P)) { // Coming in from outside the loop? 132 // If the loop is branched to from an indirect terminator, we won't 133 // be able to fully transform the loop, because it prohibits 134 // edge splitting. 135 if (P->getTerminator()->isIndirectTerminator()) 136 return nullptr; 137 138 // Keep track of it. 139 OutsideBlocks.push_back(P); 140 } 141 } 142 143 // Split out the loop pre-header. 144 BasicBlock *PreheaderBB; 145 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 146 LI, MSSAU, PreserveLCSSA); 147 if (!PreheaderBB) 148 return nullptr; 149 150 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 151 << PreheaderBB->getName() << "\n"); 152 153 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 154 // code layout too horribly. 155 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 156 157 return PreheaderBB; 158 } 159 160 /// Add the specified block, and all of its predecessors, to the specified set, 161 /// if it's not already in there. Stop predecessor traversal when we reach 162 /// StopBlock. 163 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 164 SmallPtrSetImpl<BasicBlock *> &Blocks) { 165 SmallVector<BasicBlock *, 8> Worklist; 166 Worklist.push_back(InputBB); 167 do { 168 BasicBlock *BB = Worklist.pop_back_val(); 169 if (Blocks.insert(BB).second && BB != StopBlock) 170 // If BB is not already processed and it is not a stop block then 171 // insert its predecessor in the work list 172 append_range(Worklist, predecessors(BB)); 173 } while (!Worklist.empty()); 174 } 175 176 /// The first part of loop-nestification is to find a PHI node that tells 177 /// us how to partition the loops. 178 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 179 AssumptionCache *AC) { 180 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 181 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 182 PHINode *PN = cast<PHINode>(I); 183 ++I; 184 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 185 // This is a degenerate PHI already, don't modify it! 186 PN->replaceAllUsesWith(V); 187 PN->eraseFromParent(); 188 continue; 189 } 190 191 // Scan this PHI node looking for a use of the PHI node by itself. 192 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 193 if (PN->getIncomingValue(i) == PN && 194 L->contains(PN->getIncomingBlock(i))) 195 // We found something tasty to remove. 196 return PN; 197 } 198 return nullptr; 199 } 200 201 /// If this loop has multiple backedges, try to pull one of them out into 202 /// a nested loop. 203 /// 204 /// This is important for code that looks like 205 /// this: 206 /// 207 /// Loop: 208 /// ... 209 /// br cond, Loop, Next 210 /// ... 211 /// br cond2, Loop, Out 212 /// 213 /// To identify this common case, we look at the PHI nodes in the header of the 214 /// loop. PHI nodes with unchanging values on one backedge correspond to values 215 /// that change in the "outer" loop, but not in the "inner" loop. 216 /// 217 /// If we are able to separate out a loop, return the new outer loop that was 218 /// created. 219 /// 220 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 221 DominatorTree *DT, LoopInfo *LI, 222 ScalarEvolution *SE, bool PreserveLCSSA, 223 AssumptionCache *AC, MemorySSAUpdater *MSSAU) { 224 // Don't try to separate loops without a preheader. 225 if (!Preheader) 226 return nullptr; 227 228 // Treat the presence of convergent functions conservatively. The 229 // transformation is invalid if calls to certain convergent 230 // functions (like an AMDGPU barrier) get included in the resulting 231 // inner loop. But blocks meant for the inner loop will be 232 // identified later at a point where it's too late to abort the 233 // transformation. Also, the convergent attribute is not really 234 // sufficient to express the semantics of functions that are 235 // affected by this transformation. So we choose to back off if such 236 // a function call is present until a better alternative becomes 237 // available. This is similar to the conservative treatment of 238 // convergent function calls in GVNHoist and JumpThreading. 239 for (auto BB : L->blocks()) { 240 for (auto &II : *BB) { 241 if (auto CI = dyn_cast<CallBase>(&II)) { 242 if (CI->isConvergent()) { 243 return nullptr; 244 } 245 } 246 } 247 } 248 249 // The header is not a landing pad; preheader insertion should ensure this. 250 BasicBlock *Header = L->getHeader(); 251 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 252 253 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 254 if (!PN) return nullptr; // No known way to partition. 255 256 // Pull out all predecessors that have varying values in the loop. This 257 // handles the case when a PHI node has multiple instances of itself as 258 // arguments. 259 SmallVector<BasicBlock*, 8> OuterLoopPreds; 260 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 261 if (PN->getIncomingValue(i) != PN || 262 !L->contains(PN->getIncomingBlock(i))) { 263 // We can't split indirect control flow edges. 264 if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) 265 return nullptr; 266 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 267 } 268 } 269 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 270 271 // If ScalarEvolution is around and knows anything about values in 272 // this loop, tell it to forget them, because we're about to 273 // substantially change it. 274 if (SE) 275 SE->forgetLoop(L); 276 277 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 278 DT, LI, MSSAU, PreserveLCSSA); 279 280 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 281 // code layout too horribly. 282 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 283 284 // Create the new outer loop. 285 Loop *NewOuter = LI->AllocateLoop(); 286 287 // Change the parent loop to use the outer loop as its child now. 288 if (Loop *Parent = L->getParentLoop()) 289 Parent->replaceChildLoopWith(L, NewOuter); 290 else 291 LI->changeTopLevelLoop(L, NewOuter); 292 293 // L is now a subloop of our outer loop. 294 NewOuter->addChildLoop(L); 295 296 for (BasicBlock *BB : L->blocks()) 297 NewOuter->addBlockEntry(BB); 298 299 // Now reset the header in L, which had been moved by 300 // SplitBlockPredecessors for the outer loop. 301 L->moveToHeader(Header); 302 303 // Determine which blocks should stay in L and which should be moved out to 304 // the Outer loop now. 305 SmallPtrSet<BasicBlock *, 4> BlocksInL; 306 for (BasicBlock *P : predecessors(Header)) { 307 if (DT->dominates(Header, P)) 308 addBlockAndPredsToSet(P, Header, BlocksInL); 309 } 310 311 // Scan all of the loop children of L, moving them to OuterLoop if they are 312 // not part of the inner loop. 313 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 314 for (size_t I = 0; I != SubLoops.size(); ) 315 if (BlocksInL.count(SubLoops[I]->getHeader())) 316 ++I; // Loop remains in L 317 else 318 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 319 320 SmallVector<BasicBlock *, 8> OuterLoopBlocks; 321 OuterLoopBlocks.push_back(NewBB); 322 // Now that we know which blocks are in L and which need to be moved to 323 // OuterLoop, move any blocks that need it. 324 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 325 BasicBlock *BB = L->getBlocks()[i]; 326 if (!BlocksInL.count(BB)) { 327 // Move this block to the parent, updating the exit blocks sets 328 L->removeBlockFromLoop(BB); 329 if ((*LI)[BB] == L) { 330 LI->changeLoopFor(BB, NewOuter); 331 OuterLoopBlocks.push_back(BB); 332 } 333 --i; 334 } 335 } 336 337 // Split edges to exit blocks from the inner loop, if they emerged in the 338 // process of separating the outer one. 339 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); 340 341 if (PreserveLCSSA) { 342 // Fix LCSSA form for L. Some values, which previously were only used inside 343 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them 344 // in corresponding exit blocks. 345 // We don't need to form LCSSA recursively, because there cannot be uses 346 // inside a newly created loop of defs from inner loops as those would 347 // already be a use of an LCSSA phi node. 348 formLCSSA(*L, *DT, LI, SE); 349 350 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && 351 "LCSSA is broken after separating nested loops!"); 352 } 353 354 return NewOuter; 355 } 356 357 /// This method is called when the specified loop has more than one 358 /// backedge in it. 359 /// 360 /// If this occurs, revector all of these backedges to target a new basic block 361 /// and have that block branch to the loop header. This ensures that loops 362 /// have exactly one backedge. 363 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 364 DominatorTree *DT, LoopInfo *LI, 365 MemorySSAUpdater *MSSAU) { 366 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 367 368 // Get information about the loop 369 BasicBlock *Header = L->getHeader(); 370 Function *F = Header->getParent(); 371 372 // Unique backedge insertion currently depends on having a preheader. 373 if (!Preheader) 374 return nullptr; 375 376 // The header is not an EH pad; preheader insertion should ensure this. 377 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 378 379 // Figure out which basic blocks contain back-edges to the loop header. 380 std::vector<BasicBlock*> BackedgeBlocks; 381 for (BasicBlock *P : predecessors(Header)) { 382 // Indirect edges cannot be split, so we must fail if we find one. 383 if (P->getTerminator()->isIndirectTerminator()) 384 return nullptr; 385 386 if (P != Preheader) BackedgeBlocks.push_back(P); 387 } 388 389 // Create and insert the new backedge block... 390 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 391 Header->getName() + ".backedge", F); 392 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 393 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 394 395 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 396 << BEBlock->getName() << "\n"); 397 398 // Move the new backedge block to right after the last backedge block. 399 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 400 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 401 402 // Now that the block has been inserted into the function, create PHI nodes in 403 // the backedge block which correspond to any PHI nodes in the header block. 404 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 405 PHINode *PN = cast<PHINode>(I); 406 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 407 PN->getName()+".be", BETerminator); 408 409 // Loop over the PHI node, moving all entries except the one for the 410 // preheader over to the new PHI node. 411 unsigned PreheaderIdx = ~0U; 412 bool HasUniqueIncomingValue = true; 413 Value *UniqueValue = nullptr; 414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 415 BasicBlock *IBB = PN->getIncomingBlock(i); 416 Value *IV = PN->getIncomingValue(i); 417 if (IBB == Preheader) { 418 PreheaderIdx = i; 419 } else { 420 NewPN->addIncoming(IV, IBB); 421 if (HasUniqueIncomingValue) { 422 if (!UniqueValue) 423 UniqueValue = IV; 424 else if (UniqueValue != IV) 425 HasUniqueIncomingValue = false; 426 } 427 } 428 } 429 430 // Delete all of the incoming values from the old PN except the preheader's 431 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 432 if (PreheaderIdx != 0) { 433 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 434 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 435 } 436 // Nuke all entries except the zero'th. 437 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 438 PN->removeIncomingValue(e-i, false); 439 440 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 441 PN->addIncoming(NewPN, BEBlock); 442 443 // As an optimization, if all incoming values in the new PhiNode (which is a 444 // subset of the incoming values of the old PHI node) have the same value, 445 // eliminate the PHI Node. 446 if (HasUniqueIncomingValue) { 447 NewPN->replaceAllUsesWith(UniqueValue); 448 BEBlock->getInstList().erase(NewPN); 449 } 450 } 451 452 // Now that all of the PHI nodes have been inserted and adjusted, modify the 453 // backedge blocks to jump to the BEBlock instead of the header. 454 // If one of the backedges has llvm.loop metadata attached, we remove 455 // it from the backedge and add it to BEBlock. 456 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); 457 MDNode *LoopMD = nullptr; 458 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 459 Instruction *TI = BackedgeBlocks[i]->getTerminator(); 460 if (!LoopMD) 461 LoopMD = TI->getMetadata(LoopMDKind); 462 TI->setMetadata(LoopMDKind, nullptr); 463 TI->replaceSuccessorWith(Header, BEBlock); 464 } 465 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); 466 467 //===--- Update all analyses which we must preserve now -----------------===// 468 469 // Update Loop Information - we know that this block is now in the current 470 // loop and all parent loops. 471 L->addBasicBlockToLoop(BEBlock, *LI); 472 473 // Update dominator information 474 DT->splitBlock(BEBlock); 475 476 if (MSSAU) 477 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, 478 BEBlock); 479 480 return BEBlock; 481 } 482 483 /// Simplify one loop and queue further loops for simplification. 484 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 485 DominatorTree *DT, LoopInfo *LI, 486 ScalarEvolution *SE, AssumptionCache *AC, 487 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 488 bool Changed = false; 489 if (MSSAU && VerifyMemorySSA) 490 MSSAU->getMemorySSA()->verifyMemorySSA(); 491 492 ReprocessLoop: 493 494 // Check to see that no blocks (other than the header) in this loop have 495 // predecessors that are not in the loop. This is not valid for natural 496 // loops, but can occur if the blocks are unreachable. Since they are 497 // unreachable we can just shamelessly delete those CFG edges! 498 for (BasicBlock *BB : L->blocks()) { 499 if (BB == L->getHeader()) 500 continue; 501 502 SmallPtrSet<BasicBlock*, 4> BadPreds; 503 for (BasicBlock *P : predecessors(BB)) 504 if (!L->contains(P)) 505 BadPreds.insert(P); 506 507 // Delete each unique out-of-loop (and thus dead) predecessor. 508 for (BasicBlock *P : BadPreds) { 509 510 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 511 << P->getName() << "\n"); 512 513 // Zap the dead pred's terminator and replace it with unreachable. 514 Instruction *TI = P->getTerminator(); 515 changeToUnreachable(TI, PreserveLCSSA, 516 /*DTU=*/nullptr, MSSAU); 517 Changed = true; 518 } 519 } 520 521 if (MSSAU && VerifyMemorySSA) 522 MSSAU->getMemorySSA()->verifyMemorySSA(); 523 524 // If there are exiting blocks with branches on undef, resolve the undef in 525 // the direction which will exit the loop. This will help simplify loop 526 // trip count computations. 527 SmallVector<BasicBlock*, 8> ExitingBlocks; 528 L->getExitingBlocks(ExitingBlocks); 529 for (BasicBlock *ExitingBlock : ExitingBlocks) 530 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 531 if (BI->isConditional()) { 532 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 533 534 LLVM_DEBUG(dbgs() 535 << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 536 << ExitingBlock->getName() << "\n"); 537 538 BI->setCondition(ConstantInt::get(Cond->getType(), 539 !L->contains(BI->getSuccessor(0)))); 540 541 Changed = true; 542 } 543 } 544 545 // Does the loop already have a preheader? If so, don't insert one. 546 BasicBlock *Preheader = L->getLoopPreheader(); 547 if (!Preheader) { 548 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); 549 if (Preheader) 550 Changed = true; 551 } 552 553 // Next, check to make sure that all exit nodes of the loop only have 554 // predecessors that are inside of the loop. This check guarantees that the 555 // loop preheader/header will dominate the exit blocks. If the exit block has 556 // predecessors from outside of the loop, split the edge now. 557 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) 558 Changed = true; 559 560 if (MSSAU && VerifyMemorySSA) 561 MSSAU->getMemorySSA()->verifyMemorySSA(); 562 563 // If the header has more than two predecessors at this point (from the 564 // preheader and from multiple backedges), we must adjust the loop. 565 BasicBlock *LoopLatch = L->getLoopLatch(); 566 if (!LoopLatch) { 567 // If this is really a nested loop, rip it out into a child loop. Don't do 568 // this for loops with a giant number of backedges, just factor them into a 569 // common backedge instead. 570 if (L->getNumBackEdges() < 8) { 571 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, 572 PreserveLCSSA, AC, MSSAU)) { 573 ++NumNested; 574 // Enqueue the outer loop as it should be processed next in our 575 // depth-first nest walk. 576 Worklist.push_back(OuterL); 577 578 // This is a big restructuring change, reprocess the whole loop. 579 Changed = true; 580 // GCC doesn't tail recursion eliminate this. 581 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 582 goto ReprocessLoop; 583 } 584 } 585 586 // If we either couldn't, or didn't want to, identify nesting of the loops, 587 // insert a new block that all backedges target, then make it jump to the 588 // loop header. 589 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); 590 if (LoopLatch) 591 Changed = true; 592 } 593 594 if (MSSAU && VerifyMemorySSA) 595 MSSAU->getMemorySSA()->verifyMemorySSA(); 596 597 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 598 599 // Scan over the PHI nodes in the loop header. Since they now have only two 600 // incoming values (the loop is canonicalized), we may have simplified the PHI 601 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 602 PHINode *PN; 603 for (BasicBlock::iterator I = L->getHeader()->begin(); 604 (PN = dyn_cast<PHINode>(I++)); ) 605 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 606 if (SE) SE->forgetValue(PN); 607 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { 608 PN->replaceAllUsesWith(V); 609 PN->eraseFromParent(); 610 Changed = true; 611 } 612 } 613 614 // If this loop has multiple exits and the exits all go to the same 615 // block, attempt to merge the exits. This helps several passes, such 616 // as LoopRotation, which do not support loops with multiple exits. 617 // SimplifyCFG also does this (and this code uses the same utility 618 // function), however this code is loop-aware, where SimplifyCFG is 619 // not. That gives it the advantage of being able to hoist 620 // loop-invariant instructions out of the way to open up more 621 // opportunities, and the disadvantage of having the responsibility 622 // to preserve dominator information. 623 auto HasUniqueExitBlock = [&]() { 624 BasicBlock *UniqueExit = nullptr; 625 for (auto *ExitingBB : ExitingBlocks) 626 for (auto *SuccBB : successors(ExitingBB)) { 627 if (L->contains(SuccBB)) 628 continue; 629 630 if (!UniqueExit) 631 UniqueExit = SuccBB; 632 else if (UniqueExit != SuccBB) 633 return false; 634 } 635 636 return true; 637 }; 638 if (HasUniqueExitBlock()) { 639 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 640 BasicBlock *ExitingBlock = ExitingBlocks[i]; 641 if (!ExitingBlock->getSinglePredecessor()) continue; 642 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 643 if (!BI || !BI->isConditional()) continue; 644 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 645 if (!CI || CI->getParent() != ExitingBlock) continue; 646 647 // Attempt to hoist out all instructions except for the 648 // comparison and the branch. 649 bool AllInvariant = true; 650 bool AnyInvariant = false; 651 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { 652 Instruction *Inst = &*I++; 653 if (Inst == CI) 654 continue; 655 if (!L->makeLoopInvariant( 656 Inst, AnyInvariant, 657 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) { 658 AllInvariant = false; 659 break; 660 } 661 } 662 if (AnyInvariant) { 663 Changed = true; 664 // The loop disposition of all SCEV expressions that depend on any 665 // hoisted values have also changed. 666 if (SE) 667 SE->forgetLoopDispositions(L); 668 } 669 if (!AllInvariant) continue; 670 671 // The block has now been cleared of all instructions except for 672 // a comparison and a conditional branch. SimplifyCFG may be able 673 // to fold it now. 674 if (!FoldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU)) 675 continue; 676 677 // Success. The block is now dead, so remove it from the loop, 678 // update the dominator tree and delete it. 679 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 680 << ExitingBlock->getName() << "\n"); 681 682 assert(pred_empty(ExitingBlock)); 683 Changed = true; 684 LI->removeBlock(ExitingBlock); 685 686 DomTreeNode *Node = DT->getNode(ExitingBlock); 687 while (!Node->isLeaf()) { 688 DomTreeNode *Child = Node->back(); 689 DT->changeImmediateDominator(Child, Node->getIDom()); 690 } 691 DT->eraseNode(ExitingBlock); 692 if (MSSAU) { 693 SmallSetVector<BasicBlock *, 8> ExitBlockSet; 694 ExitBlockSet.insert(ExitingBlock); 695 MSSAU->removeBlocks(ExitBlockSet); 696 } 697 698 BI->getSuccessor(0)->removePredecessor( 699 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 700 BI->getSuccessor(1)->removePredecessor( 701 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 702 ExitingBlock->eraseFromParent(); 703 } 704 } 705 706 // Changing exit conditions for blocks may affect exit counts of this loop and 707 // any of its paretns, so we must invalidate the entire subtree if we've made 708 // any changes. 709 if (Changed && SE) 710 SE->forgetTopmostLoop(L); 711 712 if (MSSAU && VerifyMemorySSA) 713 MSSAU->getMemorySSA()->verifyMemorySSA(); 714 715 return Changed; 716 } 717 718 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 719 ScalarEvolution *SE, AssumptionCache *AC, 720 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 721 bool Changed = false; 722 723 #ifndef NDEBUG 724 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA 725 // form. 726 if (PreserveLCSSA) { 727 assert(DT && "DT not available."); 728 assert(LI && "LI not available."); 729 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 730 "Requested to preserve LCSSA, but it's already broken."); 731 } 732 #endif 733 734 // Worklist maintains our depth-first queue of loops in this nest to process. 735 SmallVector<Loop *, 4> Worklist; 736 Worklist.push_back(L); 737 738 // Walk the worklist from front to back, pushing newly found sub loops onto 739 // the back. This will let us process loops from back to front in depth-first 740 // order. We can use this simple process because loops form a tree. 741 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 742 Loop *L2 = Worklist[Idx]; 743 Worklist.append(L2->begin(), L2->end()); 744 } 745 746 while (!Worklist.empty()) 747 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 748 AC, MSSAU, PreserveLCSSA); 749 750 return Changed; 751 } 752 753 namespace { 754 struct LoopSimplify : public FunctionPass { 755 static char ID; // Pass identification, replacement for typeid 756 LoopSimplify() : FunctionPass(ID) { 757 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 758 } 759 760 bool runOnFunction(Function &F) override; 761 762 void getAnalysisUsage(AnalysisUsage &AU) const override { 763 AU.addRequired<AssumptionCacheTracker>(); 764 765 // We need loop information to identify the loops... 766 AU.addRequired<DominatorTreeWrapperPass>(); 767 AU.addPreserved<DominatorTreeWrapperPass>(); 768 769 AU.addRequired<LoopInfoWrapperPass>(); 770 AU.addPreserved<LoopInfoWrapperPass>(); 771 772 AU.addPreserved<BasicAAWrapperPass>(); 773 AU.addPreserved<AAResultsWrapperPass>(); 774 AU.addPreserved<GlobalsAAWrapperPass>(); 775 AU.addPreserved<ScalarEvolutionWrapperPass>(); 776 AU.addPreserved<SCEVAAWrapperPass>(); 777 AU.addPreservedID(LCSSAID); 778 AU.addPreserved<DependenceAnalysisWrapperPass>(); 779 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 780 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 781 AU.addPreserved<MemorySSAWrapperPass>(); 782 } 783 784 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 785 void verifyAnalysis() const override; 786 }; 787 } 788 789 char LoopSimplify::ID = 0; 790 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 791 "Canonicalize natural loops", false, false) 792 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 793 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 794 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 795 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 796 "Canonicalize natural loops", false, false) 797 798 // Publicly exposed interface to pass... 799 char &llvm::LoopSimplifyID = LoopSimplify::ID; 800 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 801 802 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 803 /// it in any convenient order) inserting preheaders... 804 /// 805 bool LoopSimplify::runOnFunction(Function &F) { 806 bool Changed = false; 807 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 808 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 809 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 810 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 811 AssumptionCache *AC = 812 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 813 MemorySSA *MSSA = nullptr; 814 std::unique_ptr<MemorySSAUpdater> MSSAU; 815 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 816 if (MSSAAnalysis) { 817 MSSA = &MSSAAnalysis->getMSSA(); 818 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 819 } 820 821 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 822 823 // Simplify each loop nest in the function. 824 for (auto *L : *LI) 825 Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); 826 827 #ifndef NDEBUG 828 if (PreserveLCSSA) { 829 bool InLCSSA = all_of( 830 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); 831 assert(InLCSSA && "LCSSA is broken after loop-simplify."); 832 } 833 #endif 834 return Changed; 835 } 836 837 PreservedAnalyses LoopSimplifyPass::run(Function &F, 838 FunctionAnalysisManager &AM) { 839 bool Changed = false; 840 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); 841 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 842 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 843 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); 844 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F); 845 std::unique_ptr<MemorySSAUpdater> MSSAU; 846 if (MSSAAnalysis) { 847 auto *MSSA = &MSSAAnalysis->getMSSA(); 848 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 849 } 850 851 852 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA 853 // after simplifying the loops. MemorySSA is preserved if it exists. 854 for (auto *L : *LI) 855 Changed |= 856 simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false); 857 858 if (!Changed) 859 return PreservedAnalyses::all(); 860 861 PreservedAnalyses PA; 862 PA.preserve<DominatorTreeAnalysis>(); 863 PA.preserve<LoopAnalysis>(); 864 PA.preserve<ScalarEvolutionAnalysis>(); 865 PA.preserve<DependenceAnalysis>(); 866 if (MSSAAnalysis) 867 PA.preserve<MemorySSAAnalysis>(); 868 // BPI maps conditional terminators to probabilities, LoopSimplify can insert 869 // blocks, but it does so only by splitting existing blocks and edges. This 870 // results in the interesting property that all new terminators inserted are 871 // unconditional branches which do not appear in BPI. All deletions are 872 // handled via ValueHandle callbacks w/in BPI. 873 PA.preserve<BranchProbabilityAnalysis>(); 874 return PA; 875 } 876 877 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 878 // below. 879 #if 0 880 static void verifyLoop(Loop *L) { 881 // Verify subloops. 882 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 883 verifyLoop(*I); 884 885 // It used to be possible to just assert L->isLoopSimplifyForm(), however 886 // with the introduction of indirectbr, there are now cases where it's 887 // not possible to transform a loop as necessary. We can at least check 888 // that there is an indirectbr near any time there's trouble. 889 890 // Indirectbr can interfere with preheader and unique backedge insertion. 891 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 892 bool HasIndBrPred = false; 893 for (BasicBlock *Pred : predecessors(L->getHeader())) 894 if (isa<IndirectBrInst>(Pred->getTerminator())) { 895 HasIndBrPred = true; 896 break; 897 } 898 assert(HasIndBrPred && 899 "LoopSimplify has no excuse for missing loop header info!"); 900 (void)HasIndBrPred; 901 } 902 903 // Indirectbr can interfere with exit block canonicalization. 904 if (!L->hasDedicatedExits()) { 905 bool HasIndBrExiting = false; 906 SmallVector<BasicBlock*, 8> ExitingBlocks; 907 L->getExitingBlocks(ExitingBlocks); 908 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 909 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 910 HasIndBrExiting = true; 911 break; 912 } 913 } 914 915 assert(HasIndBrExiting && 916 "LoopSimplify has no excuse for missing exit block info!"); 917 (void)HasIndBrExiting; 918 } 919 } 920 #endif 921 922 void LoopSimplify::verifyAnalysis() const { 923 // FIXME: This routine is being called mid-way through the loop pass manager 924 // as loop passes destroy this analysis. That's actually fine, but we have no 925 // way of expressing that here. Once all of the passes that destroy this are 926 // hoisted out of the loop pass manager we can add back verification here. 927 #if 0 928 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 929 verifyLoop(*I); 930 #endif 931 } 932