1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs several transformations to transform natural loops into a 10 // simpler form, which makes subsequent analyses and transformations simpler and 11 // more effective. 12 // 13 // Loop pre-header insertion guarantees that there is a single, non-critical 14 // entry edge from outside of the loop to the loop header. This simplifies a 15 // number of analyses and transformations, such as LICM. 16 // 17 // Loop exit-block insertion guarantees that all exit blocks from the loop 18 // (blocks which are outside of the loop that have predecessors inside of the 19 // loop) only have predecessors from inside of the loop (and are thus dominated 20 // by the loop header). This simplifies transformations such as store-sinking 21 // that are built into LICM. 22 // 23 // This pass also guarantees that loops will have exactly one backedge. 24 // 25 // Indirectbr instructions introduce several complications. If the loop 26 // contains or is entered by an indirectbr instruction, it may not be possible 27 // to transform the loop and make these guarantees. Client code should check 28 // that these conditions are true before relying on them. 29 // 30 // Similar complications arise from callbr instructions, particularly in 31 // asm-goto where blockaddress expressions are used. 32 // 33 // Note that the simplifycfg pass will clean up blocks which are split out but 34 // end up being unnecessary, so usage of this pass should not pessimize 35 // generated code. 36 // 37 // This pass obviously modifies the CFG, but updates loop information and 38 // dominator information. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/Transforms/Utils/LoopSimplify.h" 43 #include "llvm/ADT/SetVector.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BranchProbabilityInfo.h" 50 #include "llvm/Analysis/DependenceAnalysis.h" 51 #include "llvm/Analysis/GlobalsModRef.h" 52 #include "llvm/Analysis/InstructionSimplify.h" 53 #include "llvm/Analysis/LoopInfo.h" 54 #include "llvm/Analysis/MemorySSA.h" 55 #include "llvm/Analysis/MemorySSAUpdater.h" 56 #include "llvm/Analysis/ScalarEvolution.h" 57 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 58 #include "llvm/IR/CFG.h" 59 #include "llvm/IR/Constants.h" 60 #include "llvm/IR/Dominators.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/InitializePasses.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/LoopUtils.h" 72 using namespace llvm; 73 74 #define DEBUG_TYPE "loop-simplify" 75 76 STATISTIC(NumNested , "Number of nested loops split out"); 77 78 // If the block isn't already, move the new block to right after some 'outside 79 // block' block. This prevents the preheader from being placed inside the loop 80 // body, e.g. when the loop hasn't been rotated. 81 static void placeSplitBlockCarefully(BasicBlock *NewBB, 82 SmallVectorImpl<BasicBlock *> &SplitPreds, 83 Loop *L) { 84 // Check to see if NewBB is already well placed. 85 Function::iterator BBI = --NewBB->getIterator(); 86 for (BasicBlock *Pred : SplitPreds) { 87 if (&*BBI == Pred) 88 return; 89 } 90 91 // If it isn't already after an outside block, move it after one. This is 92 // always good as it makes the uncond branch from the outside block into a 93 // fall-through. 94 95 // Figure out *which* outside block to put this after. Prefer an outside 96 // block that neighbors a BB actually in the loop. 97 BasicBlock *FoundBB = nullptr; 98 for (BasicBlock *Pred : SplitPreds) { 99 Function::iterator BBI = Pred->getIterator(); 100 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 101 FoundBB = Pred; 102 break; 103 } 104 } 105 106 // If our heuristic for a *good* bb to place this after doesn't find 107 // anything, just pick something. It's likely better than leaving it within 108 // the loop. 109 if (!FoundBB) 110 FoundBB = SplitPreds[0]; 111 NewBB->moveAfter(FoundBB); 112 } 113 114 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 115 /// preheader, this method is called to insert one. This method has two phases: 116 /// preheader insertion and analysis updating. 117 /// 118 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 119 LoopInfo *LI, MemorySSAUpdater *MSSAU, 120 bool PreserveLCSSA) { 121 BasicBlock *Header = L->getHeader(); 122 123 // Compute the set of predecessors of the loop that are not in the loop. 124 SmallVector<BasicBlock*, 8> OutsideBlocks; 125 for (BasicBlock *P : predecessors(Header)) { 126 if (!L->contains(P)) { // Coming in from outside the loop? 127 // If the loop is branched to from an indirect terminator, we won't 128 // be able to fully transform the loop, because it prohibits 129 // edge splitting. 130 if (isa<IndirectBrInst>(P->getTerminator())) 131 return nullptr; 132 133 // Keep track of it. 134 OutsideBlocks.push_back(P); 135 } 136 } 137 138 // Split out the loop pre-header. 139 BasicBlock *PreheaderBB; 140 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 141 LI, MSSAU, PreserveLCSSA); 142 if (!PreheaderBB) 143 return nullptr; 144 145 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 146 << PreheaderBB->getName() << "\n"); 147 148 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 149 // code layout too horribly. 150 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 151 152 return PreheaderBB; 153 } 154 155 /// Add the specified block, and all of its predecessors, to the specified set, 156 /// if it's not already in there. Stop predecessor traversal when we reach 157 /// StopBlock. 158 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 159 SmallPtrSetImpl<BasicBlock *> &Blocks) { 160 SmallVector<BasicBlock *, 8> Worklist; 161 Worklist.push_back(InputBB); 162 do { 163 BasicBlock *BB = Worklist.pop_back_val(); 164 if (Blocks.insert(BB).second && BB != StopBlock) 165 // If BB is not already processed and it is not a stop block then 166 // insert its predecessor in the work list 167 append_range(Worklist, predecessors(BB)); 168 } while (!Worklist.empty()); 169 } 170 171 /// The first part of loop-nestification is to find a PHI node that tells 172 /// us how to partition the loops. 173 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 174 AssumptionCache *AC) { 175 const DataLayout &DL = L->getHeader()->getDataLayout(); 176 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 177 PHINode *PN = cast<PHINode>(I); 178 ++I; 179 if (Value *V = simplifyInstruction(PN, {DL, nullptr, DT, AC})) { 180 // This is a degenerate PHI already, don't modify it! 181 PN->replaceAllUsesWith(V); 182 PN->eraseFromParent(); 183 continue; 184 } 185 186 // Scan this PHI node looking for a use of the PHI node by itself. 187 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 188 if (PN->getIncomingValue(i) == PN && 189 L->contains(PN->getIncomingBlock(i))) 190 // We found something tasty to remove. 191 return PN; 192 } 193 return nullptr; 194 } 195 196 /// If this loop has multiple backedges, try to pull one of them out into 197 /// a nested loop. 198 /// 199 /// This is important for code that looks like 200 /// this: 201 /// 202 /// Loop: 203 /// ... 204 /// br cond, Loop, Next 205 /// ... 206 /// br cond2, Loop, Out 207 /// 208 /// To identify this common case, we look at the PHI nodes in the header of the 209 /// loop. PHI nodes with unchanging values on one backedge correspond to values 210 /// that change in the "outer" loop, but not in the "inner" loop. 211 /// 212 /// If we are able to separate out a loop, return the new outer loop that was 213 /// created. 214 /// 215 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 216 DominatorTree *DT, LoopInfo *LI, 217 ScalarEvolution *SE, bool PreserveLCSSA, 218 AssumptionCache *AC, MemorySSAUpdater *MSSAU) { 219 // Don't try to separate loops without a preheader. 220 if (!Preheader) 221 return nullptr; 222 223 // Treat the presence of convergent functions conservatively. The 224 // transformation is invalid if calls to certain convergent 225 // functions (like an AMDGPU barrier) get included in the resulting 226 // inner loop. But blocks meant for the inner loop will be 227 // identified later at a point where it's too late to abort the 228 // transformation. Also, the convergent attribute is not really 229 // sufficient to express the semantics of functions that are 230 // affected by this transformation. So we choose to back off if such 231 // a function call is present until a better alternative becomes 232 // available. This is similar to the conservative treatment of 233 // convergent function calls in GVNHoist and JumpThreading. 234 for (auto *BB : L->blocks()) { 235 for (auto &II : *BB) { 236 if (auto CI = dyn_cast<CallBase>(&II)) { 237 if (CI->isConvergent()) { 238 return nullptr; 239 } 240 } 241 } 242 } 243 244 // The header is not a landing pad; preheader insertion should ensure this. 245 BasicBlock *Header = L->getHeader(); 246 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 247 248 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 249 if (!PN) return nullptr; // No known way to partition. 250 251 // Pull out all predecessors that have varying values in the loop. This 252 // handles the case when a PHI node has multiple instances of itself as 253 // arguments. 254 SmallVector<BasicBlock*, 8> OuterLoopPreds; 255 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 256 if (PN->getIncomingValue(i) != PN || 257 !L->contains(PN->getIncomingBlock(i))) { 258 // We can't split indirect control flow edges. 259 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 260 return nullptr; 261 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 262 } 263 } 264 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 265 266 // If ScalarEvolution is around and knows anything about values in 267 // this loop, tell it to forget them, because we're about to 268 // substantially change it. 269 if (SE) 270 SE->forgetLoop(L); 271 272 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 273 DT, LI, MSSAU, PreserveLCSSA); 274 275 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 276 // code layout too horribly. 277 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 278 279 // Create the new outer loop. 280 Loop *NewOuter = LI->AllocateLoop(); 281 282 // Change the parent loop to use the outer loop as its child now. 283 if (Loop *Parent = L->getParentLoop()) 284 Parent->replaceChildLoopWith(L, NewOuter); 285 else 286 LI->changeTopLevelLoop(L, NewOuter); 287 288 // L is now a subloop of our outer loop. 289 NewOuter->addChildLoop(L); 290 291 for (BasicBlock *BB : L->blocks()) 292 NewOuter->addBlockEntry(BB); 293 294 // Now reset the header in L, which had been moved by 295 // SplitBlockPredecessors for the outer loop. 296 L->moveToHeader(Header); 297 298 // Determine which blocks should stay in L and which should be moved out to 299 // the Outer loop now. 300 SmallPtrSet<BasicBlock *, 4> BlocksInL; 301 for (BasicBlock *P : predecessors(Header)) { 302 if (DT->dominates(Header, P)) 303 addBlockAndPredsToSet(P, Header, BlocksInL); 304 } 305 306 // Scan all of the loop children of L, moving them to OuterLoop if they are 307 // not part of the inner loop. 308 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 309 for (size_t I = 0; I != SubLoops.size(); ) 310 if (BlocksInL.count(SubLoops[I]->getHeader())) 311 ++I; // Loop remains in L 312 else 313 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 314 315 SmallVector<BasicBlock *, 8> OuterLoopBlocks; 316 OuterLoopBlocks.push_back(NewBB); 317 // Now that we know which blocks are in L and which need to be moved to 318 // OuterLoop, move any blocks that need it. 319 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 320 BasicBlock *BB = L->getBlocks()[i]; 321 if (!BlocksInL.count(BB)) { 322 // Move this block to the parent, updating the exit blocks sets 323 L->removeBlockFromLoop(BB); 324 if ((*LI)[BB] == L) { 325 LI->changeLoopFor(BB, NewOuter); 326 OuterLoopBlocks.push_back(BB); 327 } 328 --i; 329 } 330 } 331 332 // Split edges to exit blocks from the inner loop, if they emerged in the 333 // process of separating the outer one. 334 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); 335 336 if (PreserveLCSSA) { 337 // Fix LCSSA form for L. Some values, which previously were only used inside 338 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them 339 // in corresponding exit blocks. 340 // We don't need to form LCSSA recursively, because there cannot be uses 341 // inside a newly created loop of defs from inner loops as those would 342 // already be a use of an LCSSA phi node. 343 formLCSSA(*L, *DT, LI, SE); 344 345 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && 346 "LCSSA is broken after separating nested loops!"); 347 } 348 349 return NewOuter; 350 } 351 352 /// This method is called when the specified loop has more than one 353 /// backedge in it. 354 /// 355 /// If this occurs, revector all of these backedges to target a new basic block 356 /// and have that block branch to the loop header. This ensures that loops 357 /// have exactly one backedge. 358 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 359 DominatorTree *DT, LoopInfo *LI, 360 MemorySSAUpdater *MSSAU) { 361 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 362 363 // Get information about the loop 364 BasicBlock *Header = L->getHeader(); 365 Function *F = Header->getParent(); 366 367 // Unique backedge insertion currently depends on having a preheader. 368 if (!Preheader) 369 return nullptr; 370 371 // The header is not an EH pad; preheader insertion should ensure this. 372 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 373 374 // Figure out which basic blocks contain back-edges to the loop header. 375 std::vector<BasicBlock*> BackedgeBlocks; 376 for (BasicBlock *P : predecessors(Header)) { 377 // Indirect edges cannot be split, so we must fail if we find one. 378 if (isa<IndirectBrInst>(P->getTerminator())) 379 return nullptr; 380 381 if (P != Preheader) BackedgeBlocks.push_back(P); 382 } 383 384 // Create and insert the new backedge block... 385 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 386 Header->getName() + ".backedge", F); 387 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 388 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 389 390 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 391 << BEBlock->getName() << "\n"); 392 393 // Move the new backedge block to right after the last backedge block. 394 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 395 F->splice(InsertPos, F, BEBlock->getIterator()); 396 397 // Now that the block has been inserted into the function, create PHI nodes in 398 // the backedge block which correspond to any PHI nodes in the header block. 399 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 400 PHINode *PN = cast<PHINode>(I); 401 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 402 PN->getName()+".be", BETerminator->getIterator()); 403 404 // Loop over the PHI node, moving all entries except the one for the 405 // preheader over to the new PHI node. 406 unsigned PreheaderIdx = ~0U; 407 bool HasUniqueIncomingValue = true; 408 Value *UniqueValue = nullptr; 409 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 410 BasicBlock *IBB = PN->getIncomingBlock(i); 411 Value *IV = PN->getIncomingValue(i); 412 if (IBB == Preheader) { 413 PreheaderIdx = i; 414 } else { 415 NewPN->addIncoming(IV, IBB); 416 if (HasUniqueIncomingValue) { 417 if (!UniqueValue) 418 UniqueValue = IV; 419 else if (UniqueValue != IV) 420 HasUniqueIncomingValue = false; 421 } 422 } 423 } 424 425 // Delete all of the incoming values from the old PN except the preheader's 426 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 427 if (PreheaderIdx != 0) { 428 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 429 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 430 } 431 // Nuke all entries except the zero'th. 432 PN->removeIncomingValueIf([](unsigned Idx) { return Idx != 0; }, 433 /* DeletePHIIfEmpty */ false); 434 435 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 436 PN->addIncoming(NewPN, BEBlock); 437 438 // As an optimization, if all incoming values in the new PhiNode (which is a 439 // subset of the incoming values of the old PHI node) have the same value, 440 // eliminate the PHI Node. 441 if (HasUniqueIncomingValue) { 442 NewPN->replaceAllUsesWith(UniqueValue); 443 NewPN->eraseFromParent(); 444 } 445 } 446 447 // Now that all of the PHI nodes have been inserted and adjusted, modify the 448 // backedge blocks to jump to the BEBlock instead of the header. 449 // If one of the backedges has llvm.loop metadata attached, we remove 450 // it from the backedge and add it to BEBlock. 451 MDNode *LoopMD = nullptr; 452 for (BasicBlock *BB : BackedgeBlocks) { 453 Instruction *TI = BB->getTerminator(); 454 if (!LoopMD) 455 LoopMD = TI->getMetadata(LLVMContext::MD_loop); 456 TI->setMetadata(LLVMContext::MD_loop, nullptr); 457 TI->replaceSuccessorWith(Header, BEBlock); 458 } 459 BEBlock->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 460 461 //===--- Update all analyses which we must preserve now -----------------===// 462 463 // Update Loop Information - we know that this block is now in the current 464 // loop and all parent loops. 465 L->addBasicBlockToLoop(BEBlock, *LI); 466 467 // Update dominator information 468 DT->splitBlock(BEBlock); 469 470 if (MSSAU) 471 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, 472 BEBlock); 473 474 return BEBlock; 475 } 476 477 /// Simplify one loop and queue further loops for simplification. 478 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 479 DominatorTree *DT, LoopInfo *LI, 480 ScalarEvolution *SE, AssumptionCache *AC, 481 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 482 bool Changed = false; 483 if (MSSAU && VerifyMemorySSA) 484 MSSAU->getMemorySSA()->verifyMemorySSA(); 485 486 ReprocessLoop: 487 488 // Check to see that no blocks (other than the header) in this loop have 489 // predecessors that are not in the loop. This is not valid for natural 490 // loops, but can occur if the blocks are unreachable. Since they are 491 // unreachable we can just shamelessly delete those CFG edges! 492 for (BasicBlock *BB : L->blocks()) { 493 if (BB == L->getHeader()) 494 continue; 495 496 SmallPtrSet<BasicBlock*, 4> BadPreds; 497 for (BasicBlock *P : predecessors(BB)) 498 if (!L->contains(P)) 499 BadPreds.insert(P); 500 501 // Delete each unique out-of-loop (and thus dead) predecessor. 502 for (BasicBlock *P : BadPreds) { 503 504 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 505 << P->getName() << "\n"); 506 507 // Zap the dead pred's terminator and replace it with unreachable. 508 Instruction *TI = P->getTerminator(); 509 changeToUnreachable(TI, PreserveLCSSA, 510 /*DTU=*/nullptr, MSSAU); 511 Changed = true; 512 } 513 } 514 515 if (MSSAU && VerifyMemorySSA) 516 MSSAU->getMemorySSA()->verifyMemorySSA(); 517 518 // If there are exiting blocks with branches on undef, resolve the undef in 519 // the direction which will exit the loop. This will help simplify loop 520 // trip count computations. 521 SmallVector<BasicBlock*, 8> ExitingBlocks; 522 L->getExitingBlocks(ExitingBlocks); 523 for (BasicBlock *ExitingBlock : ExitingBlocks) 524 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 525 if (BI->isConditional()) { 526 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 527 528 LLVM_DEBUG(dbgs() 529 << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 530 << ExitingBlock->getName() << "\n"); 531 532 BI->setCondition(ConstantInt::get(Cond->getType(), 533 !L->contains(BI->getSuccessor(0)))); 534 535 Changed = true; 536 } 537 } 538 539 // Does the loop already have a preheader? If so, don't insert one. 540 BasicBlock *Preheader = L->getLoopPreheader(); 541 if (!Preheader) { 542 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); 543 if (Preheader) 544 Changed = true; 545 } 546 547 // Next, check to make sure that all exit nodes of the loop only have 548 // predecessors that are inside of the loop. This check guarantees that the 549 // loop preheader/header will dominate the exit blocks. If the exit block has 550 // predecessors from outside of the loop, split the edge now. 551 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) 552 Changed = true; 553 554 if (MSSAU && VerifyMemorySSA) 555 MSSAU->getMemorySSA()->verifyMemorySSA(); 556 557 // If the header has more than two predecessors at this point (from the 558 // preheader and from multiple backedges), we must adjust the loop. 559 BasicBlock *LoopLatch = L->getLoopLatch(); 560 if (!LoopLatch) { 561 // If this is really a nested loop, rip it out into a child loop. Don't do 562 // this for loops with a giant number of backedges, just factor them into a 563 // common backedge instead. 564 if (L->getNumBackEdges() < 8) { 565 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, 566 PreserveLCSSA, AC, MSSAU)) { 567 ++NumNested; 568 // Enqueue the outer loop as it should be processed next in our 569 // depth-first nest walk. 570 Worklist.push_back(OuterL); 571 572 // This is a big restructuring change, reprocess the whole loop. 573 Changed = true; 574 // GCC doesn't tail recursion eliminate this. 575 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 576 goto ReprocessLoop; 577 } 578 } 579 580 // If we either couldn't, or didn't want to, identify nesting of the loops, 581 // insert a new block that all backedges target, then make it jump to the 582 // loop header. 583 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); 584 if (LoopLatch) 585 Changed = true; 586 } 587 588 if (MSSAU && VerifyMemorySSA) 589 MSSAU->getMemorySSA()->verifyMemorySSA(); 590 591 const DataLayout &DL = L->getHeader()->getDataLayout(); 592 593 // Scan over the PHI nodes in the loop header. Since they now have only two 594 // incoming values (the loop is canonicalized), we may have simplified the PHI 595 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 596 PHINode *PN; 597 for (BasicBlock::iterator I = L->getHeader()->begin(); 598 (PN = dyn_cast<PHINode>(I++)); ) 599 if (Value *V = simplifyInstruction(PN, {DL, nullptr, DT, AC})) { 600 if (SE) SE->forgetValue(PN); 601 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { 602 PN->replaceAllUsesWith(V); 603 PN->eraseFromParent(); 604 Changed = true; 605 } 606 } 607 608 // If this loop has multiple exits and the exits all go to the same 609 // block, attempt to merge the exits. This helps several passes, such 610 // as LoopRotation, which do not support loops with multiple exits. 611 // SimplifyCFG also does this (and this code uses the same utility 612 // function), however this code is loop-aware, where SimplifyCFG is 613 // not. That gives it the advantage of being able to hoist 614 // loop-invariant instructions out of the way to open up more 615 // opportunities, and the disadvantage of having the responsibility 616 // to preserve dominator information. 617 auto HasUniqueExitBlock = [&]() { 618 BasicBlock *UniqueExit = nullptr; 619 for (auto *ExitingBB : ExitingBlocks) 620 for (auto *SuccBB : successors(ExitingBB)) { 621 if (L->contains(SuccBB)) 622 continue; 623 624 if (!UniqueExit) 625 UniqueExit = SuccBB; 626 else if (UniqueExit != SuccBB) 627 return false; 628 } 629 630 return true; 631 }; 632 if (HasUniqueExitBlock()) { 633 for (BasicBlock *ExitingBlock : ExitingBlocks) { 634 if (!ExitingBlock->getSinglePredecessor()) continue; 635 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 636 if (!BI || !BI->isConditional()) continue; 637 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 638 if (!CI || CI->getParent() != ExitingBlock) continue; 639 640 // Attempt to hoist out all instructions except for the 641 // comparison and the branch. 642 bool AllInvariant = true; 643 bool AnyInvariant = false; 644 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { 645 Instruction *Inst = &*I++; 646 if (Inst == CI) 647 continue; 648 if (!L->makeLoopInvariant( 649 Inst, AnyInvariant, 650 Preheader ? Preheader->getTerminator() : nullptr, MSSAU, SE)) { 651 AllInvariant = false; 652 break; 653 } 654 } 655 if (AnyInvariant) 656 Changed = true; 657 if (!AllInvariant) continue; 658 659 // The block has now been cleared of all instructions except for 660 // a comparison and a conditional branch. SimplifyCFG may be able 661 // to fold it now. 662 if (!FoldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU)) 663 continue; 664 665 // Success. The block is now dead, so remove it from the loop, 666 // update the dominator tree and delete it. 667 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 668 << ExitingBlock->getName() << "\n"); 669 670 assert(pred_empty(ExitingBlock)); 671 Changed = true; 672 LI->removeBlock(ExitingBlock); 673 674 DomTreeNode *Node = DT->getNode(ExitingBlock); 675 while (!Node->isLeaf()) { 676 DomTreeNode *Child = Node->back(); 677 DT->changeImmediateDominator(Child, Node->getIDom()); 678 } 679 DT->eraseNode(ExitingBlock); 680 if (MSSAU) { 681 SmallSetVector<BasicBlock *, 8> ExitBlockSet; 682 ExitBlockSet.insert(ExitingBlock); 683 MSSAU->removeBlocks(ExitBlockSet); 684 } 685 686 BI->getSuccessor(0)->removePredecessor( 687 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 688 BI->getSuccessor(1)->removePredecessor( 689 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 690 ExitingBlock->eraseFromParent(); 691 } 692 } 693 694 if (MSSAU && VerifyMemorySSA) 695 MSSAU->getMemorySSA()->verifyMemorySSA(); 696 697 return Changed; 698 } 699 700 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 701 ScalarEvolution *SE, AssumptionCache *AC, 702 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 703 bool Changed = false; 704 705 #ifndef NDEBUG 706 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA 707 // form. 708 if (PreserveLCSSA) { 709 assert(DT && "DT not available."); 710 assert(LI && "LI not available."); 711 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 712 "Requested to preserve LCSSA, but it's already broken."); 713 } 714 #endif 715 716 // Worklist maintains our depth-first queue of loops in this nest to process. 717 SmallVector<Loop *, 4> Worklist; 718 Worklist.push_back(L); 719 720 // Walk the worklist from front to back, pushing newly found sub loops onto 721 // the back. This will let us process loops from back to front in depth-first 722 // order. We can use this simple process because loops form a tree. 723 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 724 Loop *L2 = Worklist[Idx]; 725 Worklist.append(L2->begin(), L2->end()); 726 } 727 728 while (!Worklist.empty()) 729 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 730 AC, MSSAU, PreserveLCSSA); 731 732 // Changing exit conditions for blocks may affect exit counts of this loop and 733 // any of its parents, so we must invalidate the entire subtree if we've made 734 // any changes. Do this here rather than in simplifyOneLoop() as the top-most 735 // loop is going to be the same for all child loops. 736 if (Changed && SE) 737 SE->forgetTopmostLoop(L); 738 739 return Changed; 740 } 741 742 namespace { 743 struct LoopSimplify : public FunctionPass { 744 static char ID; // Pass identification, replacement for typeid 745 LoopSimplify() : FunctionPass(ID) { 746 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 747 } 748 749 bool runOnFunction(Function &F) override; 750 751 void getAnalysisUsage(AnalysisUsage &AU) const override { 752 AU.addRequired<AssumptionCacheTracker>(); 753 754 // We need loop information to identify the loops... 755 AU.addRequired<DominatorTreeWrapperPass>(); 756 AU.addPreserved<DominatorTreeWrapperPass>(); 757 758 AU.addRequired<LoopInfoWrapperPass>(); 759 AU.addPreserved<LoopInfoWrapperPass>(); 760 761 AU.addPreserved<BasicAAWrapperPass>(); 762 AU.addPreserved<AAResultsWrapperPass>(); 763 AU.addPreserved<GlobalsAAWrapperPass>(); 764 AU.addPreserved<ScalarEvolutionWrapperPass>(); 765 AU.addPreserved<SCEVAAWrapperPass>(); 766 AU.addPreservedID(LCSSAID); 767 AU.addPreserved<DependenceAnalysisWrapperPass>(); 768 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 769 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 770 AU.addPreserved<MemorySSAWrapperPass>(); 771 } 772 773 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 774 void verifyAnalysis() const override; 775 }; 776 } 777 778 char LoopSimplify::ID = 0; 779 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 780 "Canonicalize natural loops", false, false) 781 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 782 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 783 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 784 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 785 "Canonicalize natural loops", false, false) 786 787 // Publicly exposed interface to pass... 788 char &llvm::LoopSimplifyID = LoopSimplify::ID; 789 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 790 791 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 792 /// it in any convenient order) inserting preheaders... 793 /// 794 bool LoopSimplify::runOnFunction(Function &F) { 795 bool Changed = false; 796 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 797 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 798 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 799 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 800 AssumptionCache *AC = 801 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 802 MemorySSA *MSSA = nullptr; 803 std::unique_ptr<MemorySSAUpdater> MSSAU; 804 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 805 if (MSSAAnalysis) { 806 MSSA = &MSSAAnalysis->getMSSA(); 807 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 808 } 809 810 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 811 812 // Simplify each loop nest in the function. 813 for (auto *L : *LI) 814 Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); 815 816 #ifndef NDEBUG 817 if (PreserveLCSSA) { 818 bool InLCSSA = all_of( 819 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); 820 assert(InLCSSA && "LCSSA is broken after loop-simplify."); 821 } 822 #endif 823 return Changed; 824 } 825 826 PreservedAnalyses LoopSimplifyPass::run(Function &F, 827 FunctionAnalysisManager &AM) { 828 bool Changed = false; 829 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); 830 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 831 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 832 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); 833 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F); 834 std::unique_ptr<MemorySSAUpdater> MSSAU; 835 if (MSSAAnalysis) { 836 auto *MSSA = &MSSAAnalysis->getMSSA(); 837 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 838 } 839 840 841 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA 842 // after simplifying the loops. MemorySSA is preserved if it exists. 843 for (auto *L : *LI) 844 Changed |= 845 simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false); 846 847 if (!Changed) 848 return PreservedAnalyses::all(); 849 850 PreservedAnalyses PA; 851 PA.preserve<DominatorTreeAnalysis>(); 852 PA.preserve<LoopAnalysis>(); 853 PA.preserve<ScalarEvolutionAnalysis>(); 854 PA.preserve<DependenceAnalysis>(); 855 if (MSSAAnalysis) 856 PA.preserve<MemorySSAAnalysis>(); 857 // BPI maps conditional terminators to probabilities, LoopSimplify can insert 858 // blocks, but it does so only by splitting existing blocks and edges. This 859 // results in the interesting property that all new terminators inserted are 860 // unconditional branches which do not appear in BPI. All deletions are 861 // handled via ValueHandle callbacks w/in BPI. 862 PA.preserve<BranchProbabilityAnalysis>(); 863 return PA; 864 } 865 866 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 867 // below. 868 #if 0 869 static void verifyLoop(Loop *L) { 870 // Verify subloops. 871 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 872 verifyLoop(*I); 873 874 // It used to be possible to just assert L->isLoopSimplifyForm(), however 875 // with the introduction of indirectbr, there are now cases where it's 876 // not possible to transform a loop as necessary. We can at least check 877 // that there is an indirectbr near any time there's trouble. 878 879 // Indirectbr can interfere with preheader and unique backedge insertion. 880 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 881 bool HasIndBrPred = false; 882 for (BasicBlock *Pred : predecessors(L->getHeader())) 883 if (isa<IndirectBrInst>(Pred->getTerminator())) { 884 HasIndBrPred = true; 885 break; 886 } 887 assert(HasIndBrPred && 888 "LoopSimplify has no excuse for missing loop header info!"); 889 (void)HasIndBrPred; 890 } 891 892 // Indirectbr can interfere with exit block canonicalization. 893 if (!L->hasDedicatedExits()) { 894 bool HasIndBrExiting = false; 895 SmallVector<BasicBlock*, 8> ExitingBlocks; 896 L->getExitingBlocks(ExitingBlocks); 897 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 898 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 899 HasIndBrExiting = true; 900 break; 901 } 902 } 903 904 assert(HasIndBrExiting && 905 "LoopSimplify has no excuse for missing exit block info!"); 906 (void)HasIndBrExiting; 907 } 908 } 909 #endif 910 911 void LoopSimplify::verifyAnalysis() const { 912 // FIXME: This routine is being called mid-way through the loop pass manager 913 // as loop passes destroy this analysis. That's actually fine, but we have no 914 // way of expressing that here. Once all of the passes that destroy this are 915 // hoisted out of the loop pass manager we can add back verification here. 916 #if 0 917 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 918 verifyLoop(*I); 919 #endif 920 } 921