xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp (revision a7623790fb345e6dc986dfd31df0ace115e6f2e4)
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
32 //
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
36 //
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/LoopUtils.h"
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-simplify"
80 
81 STATISTIC(NumNested  , "Number of nested loops split out");
82 
83 // If the block isn't already, move the new block to right after some 'outside
84 // block' block.  This prevents the preheader from being placed inside the loop
85 // body, e.g. when the loop hasn't been rotated.
86 static void placeSplitBlockCarefully(BasicBlock *NewBB,
87                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
88                                      Loop *L) {
89   // Check to see if NewBB is already well placed.
90   Function::iterator BBI = --NewBB->getIterator();
91   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
92     if (&*BBI == SplitPreds[i])
93       return;
94   }
95 
96   // If it isn't already after an outside block, move it after one.  This is
97   // always good as it makes the uncond branch from the outside block into a
98   // fall-through.
99 
100   // Figure out *which* outside block to put this after.  Prefer an outside
101   // block that neighbors a BB actually in the loop.
102   BasicBlock *FoundBB = nullptr;
103   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
104     Function::iterator BBI = SplitPreds[i]->getIterator();
105     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
106       FoundBB = SplitPreds[i];
107       break;
108     }
109   }
110 
111   // If our heuristic for a *good* bb to place this after doesn't find
112   // anything, just pick something.  It's likely better than leaving it within
113   // the loop.
114   if (!FoundBB)
115     FoundBB = SplitPreds[0];
116   NewBB->moveAfter(FoundBB);
117 }
118 
119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
120 /// preheader, this method is called to insert one.  This method has two phases:
121 /// preheader insertion and analysis updating.
122 ///
123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
124                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
125                                          bool PreserveLCSSA) {
126   BasicBlock *Header = L->getHeader();
127 
128   // Compute the set of predecessors of the loop that are not in the loop.
129   SmallVector<BasicBlock*, 8> OutsideBlocks;
130   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
131        PI != PE; ++PI) {
132     BasicBlock *P = *PI;
133     if (!L->contains(P)) {         // Coming in from outside the loop?
134       // If the loop is branched to from an indirect terminator, we won't
135       // be able to fully transform the loop, because it prohibits
136       // edge splitting.
137       if (P->getTerminator()->isIndirectTerminator())
138         return nullptr;
139 
140       // Keep track of it.
141       OutsideBlocks.push_back(P);
142     }
143   }
144 
145   // Split out the loop pre-header.
146   BasicBlock *PreheaderBB;
147   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
148                                        LI, MSSAU, PreserveLCSSA);
149   if (!PreheaderBB)
150     return nullptr;
151 
152   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
153                     << PreheaderBB->getName() << "\n");
154 
155   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
156   // code layout too horribly.
157   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
158 
159   return PreheaderBB;
160 }
161 
162 /// Add the specified block, and all of its predecessors, to the specified set,
163 /// if it's not already in there.  Stop predecessor traversal when we reach
164 /// StopBlock.
165 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
166                                   std::set<BasicBlock*> &Blocks) {
167   SmallVector<BasicBlock *, 8> Worklist;
168   Worklist.push_back(InputBB);
169   do {
170     BasicBlock *BB = Worklist.pop_back_val();
171     if (Blocks.insert(BB).second && BB != StopBlock)
172       // If BB is not already processed and it is not a stop block then
173       // insert its predecessor in the work list
174       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
175         BasicBlock *WBB = *I;
176         Worklist.push_back(WBB);
177       }
178   } while (!Worklist.empty());
179 }
180 
181 /// The first part of loop-nestification is to find a PHI node that tells
182 /// us how to partition the loops.
183 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
184                                         AssumptionCache *AC) {
185   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
186   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
187     PHINode *PN = cast<PHINode>(I);
188     ++I;
189     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
190       // This is a degenerate PHI already, don't modify it!
191       PN->replaceAllUsesWith(V);
192       PN->eraseFromParent();
193       continue;
194     }
195 
196     // Scan this PHI node looking for a use of the PHI node by itself.
197     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
198       if (PN->getIncomingValue(i) == PN &&
199           L->contains(PN->getIncomingBlock(i)))
200         // We found something tasty to remove.
201         return PN;
202   }
203   return nullptr;
204 }
205 
206 /// If this loop has multiple backedges, try to pull one of them out into
207 /// a nested loop.
208 ///
209 /// This is important for code that looks like
210 /// this:
211 ///
212 ///  Loop:
213 ///     ...
214 ///     br cond, Loop, Next
215 ///     ...
216 ///     br cond2, Loop, Out
217 ///
218 /// To identify this common case, we look at the PHI nodes in the header of the
219 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
220 /// that change in the "outer" loop, but not in the "inner" loop.
221 ///
222 /// If we are able to separate out a loop, return the new outer loop that was
223 /// created.
224 ///
225 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
226                                 DominatorTree *DT, LoopInfo *LI,
227                                 ScalarEvolution *SE, bool PreserveLCSSA,
228                                 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
229   // Don't try to separate loops without a preheader.
230   if (!Preheader)
231     return nullptr;
232 
233   // Treat the presence of convergent functions conservatively. The
234   // transformation is invalid if calls to certain convergent
235   // functions (like an AMDGPU barrier) get included in the resulting
236   // inner loop. But blocks meant for the inner loop will be
237   // identified later at a point where it's too late to abort the
238   // transformation. Also, the convergent attribute is not really
239   // sufficient to express the semantics of functions that are
240   // affected by this transformation. So we choose to back off if such
241   // a function call is present until a better alternative becomes
242   // available. This is similar to the conservative treatment of
243   // convergent function calls in GVNHoist and JumpThreading.
244   for (auto BB : L->blocks()) {
245     for (auto &II : *BB) {
246       if (auto CI = dyn_cast<CallBase>(&II)) {
247         if (CI->isConvergent()) {
248           return nullptr;
249         }
250       }
251     }
252   }
253 
254   // The header is not a landing pad; preheader insertion should ensure this.
255   BasicBlock *Header = L->getHeader();
256   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
257 
258   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
259   if (!PN) return nullptr;  // No known way to partition.
260 
261   // Pull out all predecessors that have varying values in the loop.  This
262   // handles the case when a PHI node has multiple instances of itself as
263   // arguments.
264   SmallVector<BasicBlock*, 8> OuterLoopPreds;
265   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
266     if (PN->getIncomingValue(i) != PN ||
267         !L->contains(PN->getIncomingBlock(i))) {
268       // We can't split indirect control flow edges.
269       if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
270         return nullptr;
271       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
272     }
273   }
274   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
275 
276   // If ScalarEvolution is around and knows anything about values in
277   // this loop, tell it to forget them, because we're about to
278   // substantially change it.
279   if (SE)
280     SE->forgetLoop(L);
281 
282   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
283                                              DT, LI, MSSAU, PreserveLCSSA);
284 
285   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
286   // code layout too horribly.
287   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
288 
289   // Create the new outer loop.
290   Loop *NewOuter = LI->AllocateLoop();
291 
292   // Change the parent loop to use the outer loop as its child now.
293   if (Loop *Parent = L->getParentLoop())
294     Parent->replaceChildLoopWith(L, NewOuter);
295   else
296     LI->changeTopLevelLoop(L, NewOuter);
297 
298   // L is now a subloop of our outer loop.
299   NewOuter->addChildLoop(L);
300 
301   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
302        I != E; ++I)
303     NewOuter->addBlockEntry(*I);
304 
305   // Now reset the header in L, which had been moved by
306   // SplitBlockPredecessors for the outer loop.
307   L->moveToHeader(Header);
308 
309   // Determine which blocks should stay in L and which should be moved out to
310   // the Outer loop now.
311   std::set<BasicBlock*> BlocksInL;
312   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
313     BasicBlock *P = *PI;
314     if (DT->dominates(Header, P))
315       addBlockAndPredsToSet(P, Header, BlocksInL);
316   }
317 
318   // Scan all of the loop children of L, moving them to OuterLoop if they are
319   // not part of the inner loop.
320   const std::vector<Loop*> &SubLoops = L->getSubLoops();
321   for (size_t I = 0; I != SubLoops.size(); )
322     if (BlocksInL.count(SubLoops[I]->getHeader()))
323       ++I;   // Loop remains in L
324     else
325       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
326 
327   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
328   OuterLoopBlocks.push_back(NewBB);
329   // Now that we know which blocks are in L and which need to be moved to
330   // OuterLoop, move any blocks that need it.
331   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
332     BasicBlock *BB = L->getBlocks()[i];
333     if (!BlocksInL.count(BB)) {
334       // Move this block to the parent, updating the exit blocks sets
335       L->removeBlockFromLoop(BB);
336       if ((*LI)[BB] == L) {
337         LI->changeLoopFor(BB, NewOuter);
338         OuterLoopBlocks.push_back(BB);
339       }
340       --i;
341     }
342   }
343 
344   // Split edges to exit blocks from the inner loop, if they emerged in the
345   // process of separating the outer one.
346   formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
347 
348   if (PreserveLCSSA) {
349     // Fix LCSSA form for L. Some values, which previously were only used inside
350     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
351     // in corresponding exit blocks.
352     // We don't need to form LCSSA recursively, because there cannot be uses
353     // inside a newly created loop of defs from inner loops as those would
354     // already be a use of an LCSSA phi node.
355     formLCSSA(*L, *DT, LI, SE);
356 
357     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
358            "LCSSA is broken after separating nested loops!");
359   }
360 
361   return NewOuter;
362 }
363 
364 /// This method is called when the specified loop has more than one
365 /// backedge in it.
366 ///
367 /// If this occurs, revector all of these backedges to target a new basic block
368 /// and have that block branch to the loop header.  This ensures that loops
369 /// have exactly one backedge.
370 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
371                                              DominatorTree *DT, LoopInfo *LI,
372                                              MemorySSAUpdater *MSSAU) {
373   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
374 
375   // Get information about the loop
376   BasicBlock *Header = L->getHeader();
377   Function *F = Header->getParent();
378 
379   // Unique backedge insertion currently depends on having a preheader.
380   if (!Preheader)
381     return nullptr;
382 
383   // The header is not an EH pad; preheader insertion should ensure this.
384   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
385 
386   // Figure out which basic blocks contain back-edges to the loop header.
387   std::vector<BasicBlock*> BackedgeBlocks;
388   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
389     BasicBlock *P = *I;
390 
391     // Indirect edges cannot be split, so we must fail if we find one.
392     if (P->getTerminator()->isIndirectTerminator())
393       return nullptr;
394 
395     if (P != Preheader) BackedgeBlocks.push_back(P);
396   }
397 
398   // Create and insert the new backedge block...
399   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
400                                            Header->getName() + ".backedge", F);
401   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
402   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
403 
404   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
405                     << BEBlock->getName() << "\n");
406 
407   // Move the new backedge block to right after the last backedge block.
408   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
409   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
410 
411   // Now that the block has been inserted into the function, create PHI nodes in
412   // the backedge block which correspond to any PHI nodes in the header block.
413   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
414     PHINode *PN = cast<PHINode>(I);
415     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
416                                      PN->getName()+".be", BETerminator);
417 
418     // Loop over the PHI node, moving all entries except the one for the
419     // preheader over to the new PHI node.
420     unsigned PreheaderIdx = ~0U;
421     bool HasUniqueIncomingValue = true;
422     Value *UniqueValue = nullptr;
423     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
424       BasicBlock *IBB = PN->getIncomingBlock(i);
425       Value *IV = PN->getIncomingValue(i);
426       if (IBB == Preheader) {
427         PreheaderIdx = i;
428       } else {
429         NewPN->addIncoming(IV, IBB);
430         if (HasUniqueIncomingValue) {
431           if (!UniqueValue)
432             UniqueValue = IV;
433           else if (UniqueValue != IV)
434             HasUniqueIncomingValue = false;
435         }
436       }
437     }
438 
439     // Delete all of the incoming values from the old PN except the preheader's
440     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
441     if (PreheaderIdx != 0) {
442       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
443       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
444     }
445     // Nuke all entries except the zero'th.
446     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
447       PN->removeIncomingValue(e-i, false);
448 
449     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
450     PN->addIncoming(NewPN, BEBlock);
451 
452     // As an optimization, if all incoming values in the new PhiNode (which is a
453     // subset of the incoming values of the old PHI node) have the same value,
454     // eliminate the PHI Node.
455     if (HasUniqueIncomingValue) {
456       NewPN->replaceAllUsesWith(UniqueValue);
457       BEBlock->getInstList().erase(NewPN);
458     }
459   }
460 
461   // Now that all of the PHI nodes have been inserted and adjusted, modify the
462   // backedge blocks to jump to the BEBlock instead of the header.
463   // If one of the backedges has llvm.loop metadata attached, we remove
464   // it from the backedge and add it to BEBlock.
465   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
466   MDNode *LoopMD = nullptr;
467   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
468     Instruction *TI = BackedgeBlocks[i]->getTerminator();
469     if (!LoopMD)
470       LoopMD = TI->getMetadata(LoopMDKind);
471     TI->setMetadata(LoopMDKind, nullptr);
472     TI->replaceSuccessorWith(Header, BEBlock);
473   }
474   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
475 
476   //===--- Update all analyses which we must preserve now -----------------===//
477 
478   // Update Loop Information - we know that this block is now in the current
479   // loop and all parent loops.
480   L->addBasicBlockToLoop(BEBlock, *LI);
481 
482   // Update dominator information
483   DT->splitBlock(BEBlock);
484 
485   if (MSSAU)
486     MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
487                                                       BEBlock);
488 
489   return BEBlock;
490 }
491 
492 /// Simplify one loop and queue further loops for simplification.
493 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
494                             DominatorTree *DT, LoopInfo *LI,
495                             ScalarEvolution *SE, AssumptionCache *AC,
496                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
497   bool Changed = false;
498   if (MSSAU && VerifyMemorySSA)
499     MSSAU->getMemorySSA()->verifyMemorySSA();
500 
501 ReprocessLoop:
502 
503   // Check to see that no blocks (other than the header) in this loop have
504   // predecessors that are not in the loop.  This is not valid for natural
505   // loops, but can occur if the blocks are unreachable.  Since they are
506   // unreachable we can just shamelessly delete those CFG edges!
507   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
508        BB != E; ++BB) {
509     if (*BB == L->getHeader()) continue;
510 
511     SmallPtrSet<BasicBlock*, 4> BadPreds;
512     for (pred_iterator PI = pred_begin(*BB),
513          PE = pred_end(*BB); PI != PE; ++PI) {
514       BasicBlock *P = *PI;
515       if (!L->contains(P))
516         BadPreds.insert(P);
517     }
518 
519     // Delete each unique out-of-loop (and thus dead) predecessor.
520     for (BasicBlock *P : BadPreds) {
521 
522       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
523                         << P->getName() << "\n");
524 
525       // Zap the dead pred's terminator and replace it with unreachable.
526       Instruction *TI = P->getTerminator();
527       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA,
528                           /*DTU=*/nullptr, MSSAU);
529       Changed = true;
530     }
531   }
532 
533   if (MSSAU && VerifyMemorySSA)
534     MSSAU->getMemorySSA()->verifyMemorySSA();
535 
536   // If there are exiting blocks with branches on undef, resolve the undef in
537   // the direction which will exit the loop. This will help simplify loop
538   // trip count computations.
539   SmallVector<BasicBlock*, 8> ExitingBlocks;
540   L->getExitingBlocks(ExitingBlocks);
541   for (BasicBlock *ExitingBlock : ExitingBlocks)
542     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
543       if (BI->isConditional()) {
544         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
545 
546           LLVM_DEBUG(dbgs()
547                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
548                      << ExitingBlock->getName() << "\n");
549 
550           BI->setCondition(ConstantInt::get(Cond->getType(),
551                                             !L->contains(BI->getSuccessor(0))));
552 
553           Changed = true;
554         }
555       }
556 
557   // Does the loop already have a preheader?  If so, don't insert one.
558   BasicBlock *Preheader = L->getLoopPreheader();
559   if (!Preheader) {
560     Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
561     if (Preheader)
562       Changed = true;
563   }
564 
565   // Next, check to make sure that all exit nodes of the loop only have
566   // predecessors that are inside of the loop.  This check guarantees that the
567   // loop preheader/header will dominate the exit blocks.  If the exit block has
568   // predecessors from outside of the loop, split the edge now.
569   if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
570     Changed = true;
571 
572   if (MSSAU && VerifyMemorySSA)
573     MSSAU->getMemorySSA()->verifyMemorySSA();
574 
575   // If the header has more than two predecessors at this point (from the
576   // preheader and from multiple backedges), we must adjust the loop.
577   BasicBlock *LoopLatch = L->getLoopLatch();
578   if (!LoopLatch) {
579     // If this is really a nested loop, rip it out into a child loop.  Don't do
580     // this for loops with a giant number of backedges, just factor them into a
581     // common backedge instead.
582     if (L->getNumBackEdges() < 8) {
583       if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
584                                             PreserveLCSSA, AC, MSSAU)) {
585         ++NumNested;
586         // Enqueue the outer loop as it should be processed next in our
587         // depth-first nest walk.
588         Worklist.push_back(OuterL);
589 
590         // This is a big restructuring change, reprocess the whole loop.
591         Changed = true;
592         // GCC doesn't tail recursion eliminate this.
593         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
594         goto ReprocessLoop;
595       }
596     }
597 
598     // If we either couldn't, or didn't want to, identify nesting of the loops,
599     // insert a new block that all backedges target, then make it jump to the
600     // loop header.
601     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
602     if (LoopLatch)
603       Changed = true;
604   }
605 
606   if (MSSAU && VerifyMemorySSA)
607     MSSAU->getMemorySSA()->verifyMemorySSA();
608 
609   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
610 
611   // Scan over the PHI nodes in the loop header.  Since they now have only two
612   // incoming values (the loop is canonicalized), we may have simplified the PHI
613   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
614   PHINode *PN;
615   for (BasicBlock::iterator I = L->getHeader()->begin();
616        (PN = dyn_cast<PHINode>(I++)); )
617     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
618       if (SE) SE->forgetValue(PN);
619       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
620         PN->replaceAllUsesWith(V);
621         PN->eraseFromParent();
622         Changed = true;
623       }
624     }
625 
626   // If this loop has multiple exits and the exits all go to the same
627   // block, attempt to merge the exits. This helps several passes, such
628   // as LoopRotation, which do not support loops with multiple exits.
629   // SimplifyCFG also does this (and this code uses the same utility
630   // function), however this code is loop-aware, where SimplifyCFG is
631   // not. That gives it the advantage of being able to hoist
632   // loop-invariant instructions out of the way to open up more
633   // opportunities, and the disadvantage of having the responsibility
634   // to preserve dominator information.
635   auto HasUniqueExitBlock = [&]() {
636     BasicBlock *UniqueExit = nullptr;
637     for (auto *ExitingBB : ExitingBlocks)
638       for (auto *SuccBB : successors(ExitingBB)) {
639         if (L->contains(SuccBB))
640           continue;
641 
642         if (!UniqueExit)
643           UniqueExit = SuccBB;
644         else if (UniqueExit != SuccBB)
645           return false;
646       }
647 
648     return true;
649   };
650   if (HasUniqueExitBlock()) {
651     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
652       BasicBlock *ExitingBlock = ExitingBlocks[i];
653       if (!ExitingBlock->getSinglePredecessor()) continue;
654       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
655       if (!BI || !BI->isConditional()) continue;
656       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
657       if (!CI || CI->getParent() != ExitingBlock) continue;
658 
659       // Attempt to hoist out all instructions except for the
660       // comparison and the branch.
661       bool AllInvariant = true;
662       bool AnyInvariant = false;
663       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
664         Instruction *Inst = &*I++;
665         if (Inst == CI)
666           continue;
667         if (!L->makeLoopInvariant(
668                 Inst, AnyInvariant,
669                 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
670           AllInvariant = false;
671           break;
672         }
673       }
674       if (AnyInvariant) {
675         Changed = true;
676         // The loop disposition of all SCEV expressions that depend on any
677         // hoisted values have also changed.
678         if (SE)
679           SE->forgetLoopDispositions(L);
680       }
681       if (!AllInvariant) continue;
682 
683       // The block has now been cleared of all instructions except for
684       // a comparison and a conditional branch. SimplifyCFG may be able
685       // to fold it now.
686       if (!FoldBranchToCommonDest(BI, MSSAU))
687         continue;
688 
689       // Success. The block is now dead, so remove it from the loop,
690       // update the dominator tree and delete it.
691       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
692                         << ExitingBlock->getName() << "\n");
693 
694       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
695       Changed = true;
696       LI->removeBlock(ExitingBlock);
697 
698       DomTreeNode *Node = DT->getNode(ExitingBlock);
699       while (!Node->isLeaf()) {
700         DomTreeNode *Child = Node->back();
701         DT->changeImmediateDominator(Child, Node->getIDom());
702       }
703       DT->eraseNode(ExitingBlock);
704       if (MSSAU) {
705         SmallSetVector<BasicBlock *, 8> ExitBlockSet;
706         ExitBlockSet.insert(ExitingBlock);
707         MSSAU->removeBlocks(ExitBlockSet);
708       }
709 
710       BI->getSuccessor(0)->removePredecessor(
711           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
712       BI->getSuccessor(1)->removePredecessor(
713           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
714       ExitingBlock->eraseFromParent();
715     }
716   }
717 
718   // Changing exit conditions for blocks may affect exit counts of this loop and
719   // any of its paretns, so we must invalidate the entire subtree if we've made
720   // any changes.
721   if (Changed && SE)
722     SE->forgetTopmostLoop(L);
723 
724   if (MSSAU && VerifyMemorySSA)
725     MSSAU->getMemorySSA()->verifyMemorySSA();
726 
727   return Changed;
728 }
729 
730 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
731                         ScalarEvolution *SE, AssumptionCache *AC,
732                         MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
733   bool Changed = false;
734 
735 #ifndef NDEBUG
736   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
737   // form.
738   if (PreserveLCSSA) {
739     assert(DT && "DT not available.");
740     assert(LI && "LI not available.");
741     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
742            "Requested to preserve LCSSA, but it's already broken.");
743   }
744 #endif
745 
746   // Worklist maintains our depth-first queue of loops in this nest to process.
747   SmallVector<Loop *, 4> Worklist;
748   Worklist.push_back(L);
749 
750   // Walk the worklist from front to back, pushing newly found sub loops onto
751   // the back. This will let us process loops from back to front in depth-first
752   // order. We can use this simple process because loops form a tree.
753   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
754     Loop *L2 = Worklist[Idx];
755     Worklist.append(L2->begin(), L2->end());
756   }
757 
758   while (!Worklist.empty())
759     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
760                                AC, MSSAU, PreserveLCSSA);
761 
762   return Changed;
763 }
764 
765 namespace {
766   struct LoopSimplify : public FunctionPass {
767     static char ID; // Pass identification, replacement for typeid
768     LoopSimplify() : FunctionPass(ID) {
769       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
770     }
771 
772     bool runOnFunction(Function &F) override;
773 
774     void getAnalysisUsage(AnalysisUsage &AU) const override {
775       AU.addRequired<AssumptionCacheTracker>();
776 
777       // We need loop information to identify the loops...
778       AU.addRequired<DominatorTreeWrapperPass>();
779       AU.addPreserved<DominatorTreeWrapperPass>();
780 
781       AU.addRequired<LoopInfoWrapperPass>();
782       AU.addPreserved<LoopInfoWrapperPass>();
783 
784       AU.addPreserved<BasicAAWrapperPass>();
785       AU.addPreserved<AAResultsWrapperPass>();
786       AU.addPreserved<GlobalsAAWrapperPass>();
787       AU.addPreserved<ScalarEvolutionWrapperPass>();
788       AU.addPreserved<SCEVAAWrapperPass>();
789       AU.addPreservedID(LCSSAID);
790       AU.addPreserved<DependenceAnalysisWrapperPass>();
791       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
792       AU.addPreserved<BranchProbabilityInfoWrapperPass>();
793       if (EnableMSSALoopDependency)
794         AU.addPreserved<MemorySSAWrapperPass>();
795     }
796 
797     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
798     void verifyAnalysis() const override;
799   };
800 }
801 
802 char LoopSimplify::ID = 0;
803 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
804                 "Canonicalize natural loops", false, false)
805 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
806 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
807 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
808 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
809                 "Canonicalize natural loops", false, false)
810 
811 // Publicly exposed interface to pass...
812 char &llvm::LoopSimplifyID = LoopSimplify::ID;
813 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
814 
815 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
816 /// it in any convenient order) inserting preheaders...
817 ///
818 bool LoopSimplify::runOnFunction(Function &F) {
819   bool Changed = false;
820   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
821   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
822   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
823   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
824   AssumptionCache *AC =
825       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
826   MemorySSA *MSSA = nullptr;
827   std::unique_ptr<MemorySSAUpdater> MSSAU;
828   if (EnableMSSALoopDependency) {
829     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
830     if (MSSAAnalysis) {
831       MSSA = &MSSAAnalysis->getMSSA();
832       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
833     }
834   }
835 
836   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
837 
838   // Simplify each loop nest in the function.
839   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
840     Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
841 
842 #ifndef NDEBUG
843   if (PreserveLCSSA) {
844     bool InLCSSA = all_of(
845         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
846     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
847   }
848 #endif
849   return Changed;
850 }
851 
852 PreservedAnalyses LoopSimplifyPass::run(Function &F,
853                                         FunctionAnalysisManager &AM) {
854   bool Changed = false;
855   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
856   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
857   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
858   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
859   auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
860   std::unique_ptr<MemorySSAUpdater> MSSAU;
861   if (MSSAAnalysis) {
862     auto *MSSA = &MSSAAnalysis->getMSSA();
863     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
864   }
865 
866 
867   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
868   // after simplifying the loops. MemorySSA is preserved if it exists.
869   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
870     Changed |=
871         simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
872 
873   if (!Changed)
874     return PreservedAnalyses::all();
875 
876   PreservedAnalyses PA;
877   PA.preserve<DominatorTreeAnalysis>();
878   PA.preserve<LoopAnalysis>();
879   PA.preserve<BasicAA>();
880   PA.preserve<GlobalsAA>();
881   PA.preserve<SCEVAA>();
882   PA.preserve<ScalarEvolutionAnalysis>();
883   PA.preserve<DependenceAnalysis>();
884   if (MSSAAnalysis)
885     PA.preserve<MemorySSAAnalysis>();
886   // BPI maps conditional terminators to probabilities, LoopSimplify can insert
887   // blocks, but it does so only by splitting existing blocks and edges. This
888   // results in the interesting property that all new terminators inserted are
889   // unconditional branches which do not appear in BPI. All deletions are
890   // handled via ValueHandle callbacks w/in BPI.
891   PA.preserve<BranchProbabilityAnalysis>();
892   return PA;
893 }
894 
895 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
896 // below.
897 #if 0
898 static void verifyLoop(Loop *L) {
899   // Verify subloops.
900   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
901     verifyLoop(*I);
902 
903   // It used to be possible to just assert L->isLoopSimplifyForm(), however
904   // with the introduction of indirectbr, there are now cases where it's
905   // not possible to transform a loop as necessary. We can at least check
906   // that there is an indirectbr near any time there's trouble.
907 
908   // Indirectbr can interfere with preheader and unique backedge insertion.
909   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
910     bool HasIndBrPred = false;
911     for (pred_iterator PI = pred_begin(L->getHeader()),
912          PE = pred_end(L->getHeader()); PI != PE; ++PI)
913       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
914         HasIndBrPred = true;
915         break;
916       }
917     assert(HasIndBrPred &&
918            "LoopSimplify has no excuse for missing loop header info!");
919     (void)HasIndBrPred;
920   }
921 
922   // Indirectbr can interfere with exit block canonicalization.
923   if (!L->hasDedicatedExits()) {
924     bool HasIndBrExiting = false;
925     SmallVector<BasicBlock*, 8> ExitingBlocks;
926     L->getExitingBlocks(ExitingBlocks);
927     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
928       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
929         HasIndBrExiting = true;
930         break;
931       }
932     }
933 
934     assert(HasIndBrExiting &&
935            "LoopSimplify has no excuse for missing exit block info!");
936     (void)HasIndBrExiting;
937   }
938 }
939 #endif
940 
941 void LoopSimplify::verifyAnalysis() const {
942   // FIXME: This routine is being called mid-way through the loop pass manager
943   // as loop passes destroy this analysis. That's actually fine, but we have no
944   // way of expressing that here. Once all of the passes that destroy this are
945   // hoisted out of the loop pass manager we can add back verification here.
946 #if 0
947   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
948     verifyLoop(*I);
949 #endif
950 }
951