1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs several transformations to transform natural loops into a 10 // simpler form, which makes subsequent analyses and transformations simpler and 11 // more effective. 12 // 13 // Loop pre-header insertion guarantees that there is a single, non-critical 14 // entry edge from outside of the loop to the loop header. This simplifies a 15 // number of analyses and transformations, such as LICM. 16 // 17 // Loop exit-block insertion guarantees that all exit blocks from the loop 18 // (blocks which are outside of the loop that have predecessors inside of the 19 // loop) only have predecessors from inside of the loop (and are thus dominated 20 // by the loop header). This simplifies transformations such as store-sinking 21 // that are built into LICM. 22 // 23 // This pass also guarantees that loops will have exactly one backedge. 24 // 25 // Indirectbr instructions introduce several complications. If the loop 26 // contains or is entered by an indirectbr instruction, it may not be possible 27 // to transform the loop and make these guarantees. Client code should check 28 // that these conditions are true before relying on them. 29 // 30 // Similar complications arise from callbr instructions, particularly in 31 // asm-goto where blockaddress expressions are used. 32 // 33 // Note that the simplifycfg pass will clean up blocks which are split out but 34 // end up being unnecessary, so usage of this pass should not pessimize 35 // generated code. 36 // 37 // This pass obviously modifies the CFG, but updates loop information and 38 // dominator information. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/Transforms/Utils/LoopSimplify.h" 43 #include "llvm/ADT/DepthFirstIterator.h" 44 #include "llvm/ADT/SetOperations.h" 45 #include "llvm/ADT/SetVector.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/BasicAliasAnalysis.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/DependenceAnalysis.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemorySSA.h" 57 #include "llvm/Analysis/MemorySSAUpdater.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/LLVMContext.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/LoopUtils.h" 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-simplify" 80 81 STATISTIC(NumNested , "Number of nested loops split out"); 82 83 // If the block isn't already, move the new block to right after some 'outside 84 // block' block. This prevents the preheader from being placed inside the loop 85 // body, e.g. when the loop hasn't been rotated. 86 static void placeSplitBlockCarefully(BasicBlock *NewBB, 87 SmallVectorImpl<BasicBlock *> &SplitPreds, 88 Loop *L) { 89 // Check to see if NewBB is already well placed. 90 Function::iterator BBI = --NewBB->getIterator(); 91 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 92 if (&*BBI == SplitPreds[i]) 93 return; 94 } 95 96 // If it isn't already after an outside block, move it after one. This is 97 // always good as it makes the uncond branch from the outside block into a 98 // fall-through. 99 100 // Figure out *which* outside block to put this after. Prefer an outside 101 // block that neighbors a BB actually in the loop. 102 BasicBlock *FoundBB = nullptr; 103 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 104 Function::iterator BBI = SplitPreds[i]->getIterator(); 105 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 106 FoundBB = SplitPreds[i]; 107 break; 108 } 109 } 110 111 // If our heuristic for a *good* bb to place this after doesn't find 112 // anything, just pick something. It's likely better than leaving it within 113 // the loop. 114 if (!FoundBB) 115 FoundBB = SplitPreds[0]; 116 NewBB->moveAfter(FoundBB); 117 } 118 119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 120 /// preheader, this method is called to insert one. This method has two phases: 121 /// preheader insertion and analysis updating. 122 /// 123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 124 LoopInfo *LI, MemorySSAUpdater *MSSAU, 125 bool PreserveLCSSA) { 126 BasicBlock *Header = L->getHeader(); 127 128 // Compute the set of predecessors of the loop that are not in the loop. 129 SmallVector<BasicBlock*, 8> OutsideBlocks; 130 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 131 PI != PE; ++PI) { 132 BasicBlock *P = *PI; 133 if (!L->contains(P)) { // Coming in from outside the loop? 134 // If the loop is branched to from an indirect terminator, we won't 135 // be able to fully transform the loop, because it prohibits 136 // edge splitting. 137 if (P->getTerminator()->isIndirectTerminator()) 138 return nullptr; 139 140 // Keep track of it. 141 OutsideBlocks.push_back(P); 142 } 143 } 144 145 // Split out the loop pre-header. 146 BasicBlock *PreheaderBB; 147 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 148 LI, MSSAU, PreserveLCSSA); 149 if (!PreheaderBB) 150 return nullptr; 151 152 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 153 << PreheaderBB->getName() << "\n"); 154 155 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 156 // code layout too horribly. 157 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 158 159 return PreheaderBB; 160 } 161 162 /// Add the specified block, and all of its predecessors, to the specified set, 163 /// if it's not already in there. Stop predecessor traversal when we reach 164 /// StopBlock. 165 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 166 std::set<BasicBlock*> &Blocks) { 167 SmallVector<BasicBlock *, 8> Worklist; 168 Worklist.push_back(InputBB); 169 do { 170 BasicBlock *BB = Worklist.pop_back_val(); 171 if (Blocks.insert(BB).second && BB != StopBlock) 172 // If BB is not already processed and it is not a stop block then 173 // insert its predecessor in the work list 174 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 175 BasicBlock *WBB = *I; 176 Worklist.push_back(WBB); 177 } 178 } while (!Worklist.empty()); 179 } 180 181 /// The first part of loop-nestification is to find a PHI node that tells 182 /// us how to partition the loops. 183 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 184 AssumptionCache *AC) { 185 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 186 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 187 PHINode *PN = cast<PHINode>(I); 188 ++I; 189 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 190 // This is a degenerate PHI already, don't modify it! 191 PN->replaceAllUsesWith(V); 192 PN->eraseFromParent(); 193 continue; 194 } 195 196 // Scan this PHI node looking for a use of the PHI node by itself. 197 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 198 if (PN->getIncomingValue(i) == PN && 199 L->contains(PN->getIncomingBlock(i))) 200 // We found something tasty to remove. 201 return PN; 202 } 203 return nullptr; 204 } 205 206 /// If this loop has multiple backedges, try to pull one of them out into 207 /// a nested loop. 208 /// 209 /// This is important for code that looks like 210 /// this: 211 /// 212 /// Loop: 213 /// ... 214 /// br cond, Loop, Next 215 /// ... 216 /// br cond2, Loop, Out 217 /// 218 /// To identify this common case, we look at the PHI nodes in the header of the 219 /// loop. PHI nodes with unchanging values on one backedge correspond to values 220 /// that change in the "outer" loop, but not in the "inner" loop. 221 /// 222 /// If we are able to separate out a loop, return the new outer loop that was 223 /// created. 224 /// 225 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 226 DominatorTree *DT, LoopInfo *LI, 227 ScalarEvolution *SE, bool PreserveLCSSA, 228 AssumptionCache *AC, MemorySSAUpdater *MSSAU) { 229 // Don't try to separate loops without a preheader. 230 if (!Preheader) 231 return nullptr; 232 233 // Treat the presence of convergent functions conservatively. The 234 // transformation is invalid if calls to certain convergent 235 // functions (like an AMDGPU barrier) get included in the resulting 236 // inner loop. But blocks meant for the inner loop will be 237 // identified later at a point where it's too late to abort the 238 // transformation. Also, the convergent attribute is not really 239 // sufficient to express the semantics of functions that are 240 // affected by this transformation. So we choose to back off if such 241 // a function call is present until a better alternative becomes 242 // available. This is similar to the conservative treatment of 243 // convergent function calls in GVNHoist and JumpThreading. 244 for (auto BB : L->blocks()) { 245 for (auto &II : *BB) { 246 if (auto CI = dyn_cast<CallBase>(&II)) { 247 if (CI->isConvergent()) { 248 return nullptr; 249 } 250 } 251 } 252 } 253 254 // The header is not a landing pad; preheader insertion should ensure this. 255 BasicBlock *Header = L->getHeader(); 256 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 257 258 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 259 if (!PN) return nullptr; // No known way to partition. 260 261 // Pull out all predecessors that have varying values in the loop. This 262 // handles the case when a PHI node has multiple instances of itself as 263 // arguments. 264 SmallVector<BasicBlock*, 8> OuterLoopPreds; 265 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 266 if (PN->getIncomingValue(i) != PN || 267 !L->contains(PN->getIncomingBlock(i))) { 268 // We can't split indirect control flow edges. 269 if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) 270 return nullptr; 271 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 272 } 273 } 274 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 275 276 // If ScalarEvolution is around and knows anything about values in 277 // this loop, tell it to forget them, because we're about to 278 // substantially change it. 279 if (SE) 280 SE->forgetLoop(L); 281 282 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 283 DT, LI, MSSAU, PreserveLCSSA); 284 285 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 286 // code layout too horribly. 287 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 288 289 // Create the new outer loop. 290 Loop *NewOuter = LI->AllocateLoop(); 291 292 // Change the parent loop to use the outer loop as its child now. 293 if (Loop *Parent = L->getParentLoop()) 294 Parent->replaceChildLoopWith(L, NewOuter); 295 else 296 LI->changeTopLevelLoop(L, NewOuter); 297 298 // L is now a subloop of our outer loop. 299 NewOuter->addChildLoop(L); 300 301 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 302 I != E; ++I) 303 NewOuter->addBlockEntry(*I); 304 305 // Now reset the header in L, which had been moved by 306 // SplitBlockPredecessors for the outer loop. 307 L->moveToHeader(Header); 308 309 // Determine which blocks should stay in L and which should be moved out to 310 // the Outer loop now. 311 std::set<BasicBlock*> BlocksInL; 312 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 313 BasicBlock *P = *PI; 314 if (DT->dominates(Header, P)) 315 addBlockAndPredsToSet(P, Header, BlocksInL); 316 } 317 318 // Scan all of the loop children of L, moving them to OuterLoop if they are 319 // not part of the inner loop. 320 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 321 for (size_t I = 0; I != SubLoops.size(); ) 322 if (BlocksInL.count(SubLoops[I]->getHeader())) 323 ++I; // Loop remains in L 324 else 325 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 326 327 SmallVector<BasicBlock *, 8> OuterLoopBlocks; 328 OuterLoopBlocks.push_back(NewBB); 329 // Now that we know which blocks are in L and which need to be moved to 330 // OuterLoop, move any blocks that need it. 331 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 332 BasicBlock *BB = L->getBlocks()[i]; 333 if (!BlocksInL.count(BB)) { 334 // Move this block to the parent, updating the exit blocks sets 335 L->removeBlockFromLoop(BB); 336 if ((*LI)[BB] == L) { 337 LI->changeLoopFor(BB, NewOuter); 338 OuterLoopBlocks.push_back(BB); 339 } 340 --i; 341 } 342 } 343 344 // Split edges to exit blocks from the inner loop, if they emerged in the 345 // process of separating the outer one. 346 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); 347 348 if (PreserveLCSSA) { 349 // Fix LCSSA form for L. Some values, which previously were only used inside 350 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them 351 // in corresponding exit blocks. 352 // We don't need to form LCSSA recursively, because there cannot be uses 353 // inside a newly created loop of defs from inner loops as those would 354 // already be a use of an LCSSA phi node. 355 formLCSSA(*L, *DT, LI, SE); 356 357 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && 358 "LCSSA is broken after separating nested loops!"); 359 } 360 361 return NewOuter; 362 } 363 364 /// This method is called when the specified loop has more than one 365 /// backedge in it. 366 /// 367 /// If this occurs, revector all of these backedges to target a new basic block 368 /// and have that block branch to the loop header. This ensures that loops 369 /// have exactly one backedge. 370 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 371 DominatorTree *DT, LoopInfo *LI, 372 MemorySSAUpdater *MSSAU) { 373 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 374 375 // Get information about the loop 376 BasicBlock *Header = L->getHeader(); 377 Function *F = Header->getParent(); 378 379 // Unique backedge insertion currently depends on having a preheader. 380 if (!Preheader) 381 return nullptr; 382 383 // The header is not an EH pad; preheader insertion should ensure this. 384 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 385 386 // Figure out which basic blocks contain back-edges to the loop header. 387 std::vector<BasicBlock*> BackedgeBlocks; 388 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 389 BasicBlock *P = *I; 390 391 // Indirect edges cannot be split, so we must fail if we find one. 392 if (P->getTerminator()->isIndirectTerminator()) 393 return nullptr; 394 395 if (P != Preheader) BackedgeBlocks.push_back(P); 396 } 397 398 // Create and insert the new backedge block... 399 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 400 Header->getName() + ".backedge", F); 401 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 402 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 403 404 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 405 << BEBlock->getName() << "\n"); 406 407 // Move the new backedge block to right after the last backedge block. 408 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 409 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 410 411 // Now that the block has been inserted into the function, create PHI nodes in 412 // the backedge block which correspond to any PHI nodes in the header block. 413 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 414 PHINode *PN = cast<PHINode>(I); 415 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 416 PN->getName()+".be", BETerminator); 417 418 // Loop over the PHI node, moving all entries except the one for the 419 // preheader over to the new PHI node. 420 unsigned PreheaderIdx = ~0U; 421 bool HasUniqueIncomingValue = true; 422 Value *UniqueValue = nullptr; 423 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 424 BasicBlock *IBB = PN->getIncomingBlock(i); 425 Value *IV = PN->getIncomingValue(i); 426 if (IBB == Preheader) { 427 PreheaderIdx = i; 428 } else { 429 NewPN->addIncoming(IV, IBB); 430 if (HasUniqueIncomingValue) { 431 if (!UniqueValue) 432 UniqueValue = IV; 433 else if (UniqueValue != IV) 434 HasUniqueIncomingValue = false; 435 } 436 } 437 } 438 439 // Delete all of the incoming values from the old PN except the preheader's 440 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 441 if (PreheaderIdx != 0) { 442 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 443 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 444 } 445 // Nuke all entries except the zero'th. 446 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 447 PN->removeIncomingValue(e-i, false); 448 449 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 450 PN->addIncoming(NewPN, BEBlock); 451 452 // As an optimization, if all incoming values in the new PhiNode (which is a 453 // subset of the incoming values of the old PHI node) have the same value, 454 // eliminate the PHI Node. 455 if (HasUniqueIncomingValue) { 456 NewPN->replaceAllUsesWith(UniqueValue); 457 BEBlock->getInstList().erase(NewPN); 458 } 459 } 460 461 // Now that all of the PHI nodes have been inserted and adjusted, modify the 462 // backedge blocks to jump to the BEBlock instead of the header. 463 // If one of the backedges has llvm.loop metadata attached, we remove 464 // it from the backedge and add it to BEBlock. 465 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); 466 MDNode *LoopMD = nullptr; 467 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 468 Instruction *TI = BackedgeBlocks[i]->getTerminator(); 469 if (!LoopMD) 470 LoopMD = TI->getMetadata(LoopMDKind); 471 TI->setMetadata(LoopMDKind, nullptr); 472 TI->replaceSuccessorWith(Header, BEBlock); 473 } 474 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); 475 476 //===--- Update all analyses which we must preserve now -----------------===// 477 478 // Update Loop Information - we know that this block is now in the current 479 // loop and all parent loops. 480 L->addBasicBlockToLoop(BEBlock, *LI); 481 482 // Update dominator information 483 DT->splitBlock(BEBlock); 484 485 if (MSSAU) 486 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, 487 BEBlock); 488 489 return BEBlock; 490 } 491 492 /// Simplify one loop and queue further loops for simplification. 493 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 494 DominatorTree *DT, LoopInfo *LI, 495 ScalarEvolution *SE, AssumptionCache *AC, 496 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 497 bool Changed = false; 498 if (MSSAU && VerifyMemorySSA) 499 MSSAU->getMemorySSA()->verifyMemorySSA(); 500 501 ReprocessLoop: 502 503 // Check to see that no blocks (other than the header) in this loop have 504 // predecessors that are not in the loop. This is not valid for natural 505 // loops, but can occur if the blocks are unreachable. Since they are 506 // unreachable we can just shamelessly delete those CFG edges! 507 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 508 BB != E; ++BB) { 509 if (*BB == L->getHeader()) continue; 510 511 SmallPtrSet<BasicBlock*, 4> BadPreds; 512 for (pred_iterator PI = pred_begin(*BB), 513 PE = pred_end(*BB); PI != PE; ++PI) { 514 BasicBlock *P = *PI; 515 if (!L->contains(P)) 516 BadPreds.insert(P); 517 } 518 519 // Delete each unique out-of-loop (and thus dead) predecessor. 520 for (BasicBlock *P : BadPreds) { 521 522 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 523 << P->getName() << "\n"); 524 525 // Zap the dead pred's terminator and replace it with unreachable. 526 Instruction *TI = P->getTerminator(); 527 changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA, 528 /*DTU=*/nullptr, MSSAU); 529 Changed = true; 530 } 531 } 532 533 if (MSSAU && VerifyMemorySSA) 534 MSSAU->getMemorySSA()->verifyMemorySSA(); 535 536 // If there are exiting blocks with branches on undef, resolve the undef in 537 // the direction which will exit the loop. This will help simplify loop 538 // trip count computations. 539 SmallVector<BasicBlock*, 8> ExitingBlocks; 540 L->getExitingBlocks(ExitingBlocks); 541 for (BasicBlock *ExitingBlock : ExitingBlocks) 542 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 543 if (BI->isConditional()) { 544 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 545 546 LLVM_DEBUG(dbgs() 547 << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 548 << ExitingBlock->getName() << "\n"); 549 550 BI->setCondition(ConstantInt::get(Cond->getType(), 551 !L->contains(BI->getSuccessor(0)))); 552 553 Changed = true; 554 } 555 } 556 557 // Does the loop already have a preheader? If so, don't insert one. 558 BasicBlock *Preheader = L->getLoopPreheader(); 559 if (!Preheader) { 560 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); 561 if (Preheader) 562 Changed = true; 563 } 564 565 // Next, check to make sure that all exit nodes of the loop only have 566 // predecessors that are inside of the loop. This check guarantees that the 567 // loop preheader/header will dominate the exit blocks. If the exit block has 568 // predecessors from outside of the loop, split the edge now. 569 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) 570 Changed = true; 571 572 if (MSSAU && VerifyMemorySSA) 573 MSSAU->getMemorySSA()->verifyMemorySSA(); 574 575 // If the header has more than two predecessors at this point (from the 576 // preheader and from multiple backedges), we must adjust the loop. 577 BasicBlock *LoopLatch = L->getLoopLatch(); 578 if (!LoopLatch) { 579 // If this is really a nested loop, rip it out into a child loop. Don't do 580 // this for loops with a giant number of backedges, just factor them into a 581 // common backedge instead. 582 if (L->getNumBackEdges() < 8) { 583 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, 584 PreserveLCSSA, AC, MSSAU)) { 585 ++NumNested; 586 // Enqueue the outer loop as it should be processed next in our 587 // depth-first nest walk. 588 Worklist.push_back(OuterL); 589 590 // This is a big restructuring change, reprocess the whole loop. 591 Changed = true; 592 // GCC doesn't tail recursion eliminate this. 593 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 594 goto ReprocessLoop; 595 } 596 } 597 598 // If we either couldn't, or didn't want to, identify nesting of the loops, 599 // insert a new block that all backedges target, then make it jump to the 600 // loop header. 601 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); 602 if (LoopLatch) 603 Changed = true; 604 } 605 606 if (MSSAU && VerifyMemorySSA) 607 MSSAU->getMemorySSA()->verifyMemorySSA(); 608 609 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 610 611 // Scan over the PHI nodes in the loop header. Since they now have only two 612 // incoming values (the loop is canonicalized), we may have simplified the PHI 613 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 614 PHINode *PN; 615 for (BasicBlock::iterator I = L->getHeader()->begin(); 616 (PN = dyn_cast<PHINode>(I++)); ) 617 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 618 if (SE) SE->forgetValue(PN); 619 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { 620 PN->replaceAllUsesWith(V); 621 PN->eraseFromParent(); 622 Changed = true; 623 } 624 } 625 626 // If this loop has multiple exits and the exits all go to the same 627 // block, attempt to merge the exits. This helps several passes, such 628 // as LoopRotation, which do not support loops with multiple exits. 629 // SimplifyCFG also does this (and this code uses the same utility 630 // function), however this code is loop-aware, where SimplifyCFG is 631 // not. That gives it the advantage of being able to hoist 632 // loop-invariant instructions out of the way to open up more 633 // opportunities, and the disadvantage of having the responsibility 634 // to preserve dominator information. 635 auto HasUniqueExitBlock = [&]() { 636 BasicBlock *UniqueExit = nullptr; 637 for (auto *ExitingBB : ExitingBlocks) 638 for (auto *SuccBB : successors(ExitingBB)) { 639 if (L->contains(SuccBB)) 640 continue; 641 642 if (!UniqueExit) 643 UniqueExit = SuccBB; 644 else if (UniqueExit != SuccBB) 645 return false; 646 } 647 648 return true; 649 }; 650 if (HasUniqueExitBlock()) { 651 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 652 BasicBlock *ExitingBlock = ExitingBlocks[i]; 653 if (!ExitingBlock->getSinglePredecessor()) continue; 654 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 655 if (!BI || !BI->isConditional()) continue; 656 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 657 if (!CI || CI->getParent() != ExitingBlock) continue; 658 659 // Attempt to hoist out all instructions except for the 660 // comparison and the branch. 661 bool AllInvariant = true; 662 bool AnyInvariant = false; 663 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { 664 Instruction *Inst = &*I++; 665 if (Inst == CI) 666 continue; 667 if (!L->makeLoopInvariant( 668 Inst, AnyInvariant, 669 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) { 670 AllInvariant = false; 671 break; 672 } 673 } 674 if (AnyInvariant) { 675 Changed = true; 676 // The loop disposition of all SCEV expressions that depend on any 677 // hoisted values have also changed. 678 if (SE) 679 SE->forgetLoopDispositions(L); 680 } 681 if (!AllInvariant) continue; 682 683 // The block has now been cleared of all instructions except for 684 // a comparison and a conditional branch. SimplifyCFG may be able 685 // to fold it now. 686 if (!FoldBranchToCommonDest(BI, MSSAU)) 687 continue; 688 689 // Success. The block is now dead, so remove it from the loop, 690 // update the dominator tree and delete it. 691 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 692 << ExitingBlock->getName() << "\n"); 693 694 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 695 Changed = true; 696 LI->removeBlock(ExitingBlock); 697 698 DomTreeNode *Node = DT->getNode(ExitingBlock); 699 while (!Node->isLeaf()) { 700 DomTreeNode *Child = Node->back(); 701 DT->changeImmediateDominator(Child, Node->getIDom()); 702 } 703 DT->eraseNode(ExitingBlock); 704 if (MSSAU) { 705 SmallSetVector<BasicBlock *, 8> ExitBlockSet; 706 ExitBlockSet.insert(ExitingBlock); 707 MSSAU->removeBlocks(ExitBlockSet); 708 } 709 710 BI->getSuccessor(0)->removePredecessor( 711 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 712 BI->getSuccessor(1)->removePredecessor( 713 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 714 ExitingBlock->eraseFromParent(); 715 } 716 } 717 718 // Changing exit conditions for blocks may affect exit counts of this loop and 719 // any of its paretns, so we must invalidate the entire subtree if we've made 720 // any changes. 721 if (Changed && SE) 722 SE->forgetTopmostLoop(L); 723 724 if (MSSAU && VerifyMemorySSA) 725 MSSAU->getMemorySSA()->verifyMemorySSA(); 726 727 return Changed; 728 } 729 730 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 731 ScalarEvolution *SE, AssumptionCache *AC, 732 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 733 bool Changed = false; 734 735 #ifndef NDEBUG 736 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA 737 // form. 738 if (PreserveLCSSA) { 739 assert(DT && "DT not available."); 740 assert(LI && "LI not available."); 741 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 742 "Requested to preserve LCSSA, but it's already broken."); 743 } 744 #endif 745 746 // Worklist maintains our depth-first queue of loops in this nest to process. 747 SmallVector<Loop *, 4> Worklist; 748 Worklist.push_back(L); 749 750 // Walk the worklist from front to back, pushing newly found sub loops onto 751 // the back. This will let us process loops from back to front in depth-first 752 // order. We can use this simple process because loops form a tree. 753 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 754 Loop *L2 = Worklist[Idx]; 755 Worklist.append(L2->begin(), L2->end()); 756 } 757 758 while (!Worklist.empty()) 759 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 760 AC, MSSAU, PreserveLCSSA); 761 762 return Changed; 763 } 764 765 namespace { 766 struct LoopSimplify : public FunctionPass { 767 static char ID; // Pass identification, replacement for typeid 768 LoopSimplify() : FunctionPass(ID) { 769 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 770 } 771 772 bool runOnFunction(Function &F) override; 773 774 void getAnalysisUsage(AnalysisUsage &AU) const override { 775 AU.addRequired<AssumptionCacheTracker>(); 776 777 // We need loop information to identify the loops... 778 AU.addRequired<DominatorTreeWrapperPass>(); 779 AU.addPreserved<DominatorTreeWrapperPass>(); 780 781 AU.addRequired<LoopInfoWrapperPass>(); 782 AU.addPreserved<LoopInfoWrapperPass>(); 783 784 AU.addPreserved<BasicAAWrapperPass>(); 785 AU.addPreserved<AAResultsWrapperPass>(); 786 AU.addPreserved<GlobalsAAWrapperPass>(); 787 AU.addPreserved<ScalarEvolutionWrapperPass>(); 788 AU.addPreserved<SCEVAAWrapperPass>(); 789 AU.addPreservedID(LCSSAID); 790 AU.addPreserved<DependenceAnalysisWrapperPass>(); 791 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 792 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 793 if (EnableMSSALoopDependency) 794 AU.addPreserved<MemorySSAWrapperPass>(); 795 } 796 797 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 798 void verifyAnalysis() const override; 799 }; 800 } 801 802 char LoopSimplify::ID = 0; 803 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 804 "Canonicalize natural loops", false, false) 805 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 806 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 807 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 808 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 809 "Canonicalize natural loops", false, false) 810 811 // Publicly exposed interface to pass... 812 char &llvm::LoopSimplifyID = LoopSimplify::ID; 813 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 814 815 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 816 /// it in any convenient order) inserting preheaders... 817 /// 818 bool LoopSimplify::runOnFunction(Function &F) { 819 bool Changed = false; 820 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 821 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 822 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 823 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 824 AssumptionCache *AC = 825 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 826 MemorySSA *MSSA = nullptr; 827 std::unique_ptr<MemorySSAUpdater> MSSAU; 828 if (EnableMSSALoopDependency) { 829 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 830 if (MSSAAnalysis) { 831 MSSA = &MSSAAnalysis->getMSSA(); 832 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 833 } 834 } 835 836 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 837 838 // Simplify each loop nest in the function. 839 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 840 Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); 841 842 #ifndef NDEBUG 843 if (PreserveLCSSA) { 844 bool InLCSSA = all_of( 845 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); 846 assert(InLCSSA && "LCSSA is broken after loop-simplify."); 847 } 848 #endif 849 return Changed; 850 } 851 852 PreservedAnalyses LoopSimplifyPass::run(Function &F, 853 FunctionAnalysisManager &AM) { 854 bool Changed = false; 855 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); 856 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 857 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 858 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); 859 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F); 860 std::unique_ptr<MemorySSAUpdater> MSSAU; 861 if (MSSAAnalysis) { 862 auto *MSSA = &MSSAAnalysis->getMSSA(); 863 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 864 } 865 866 867 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA 868 // after simplifying the loops. MemorySSA is preserved if it exists. 869 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 870 Changed |= 871 simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false); 872 873 if (!Changed) 874 return PreservedAnalyses::all(); 875 876 PreservedAnalyses PA; 877 PA.preserve<DominatorTreeAnalysis>(); 878 PA.preserve<LoopAnalysis>(); 879 PA.preserve<BasicAA>(); 880 PA.preserve<GlobalsAA>(); 881 PA.preserve<SCEVAA>(); 882 PA.preserve<ScalarEvolutionAnalysis>(); 883 PA.preserve<DependenceAnalysis>(); 884 if (MSSAAnalysis) 885 PA.preserve<MemorySSAAnalysis>(); 886 // BPI maps conditional terminators to probabilities, LoopSimplify can insert 887 // blocks, but it does so only by splitting existing blocks and edges. This 888 // results in the interesting property that all new terminators inserted are 889 // unconditional branches which do not appear in BPI. All deletions are 890 // handled via ValueHandle callbacks w/in BPI. 891 PA.preserve<BranchProbabilityAnalysis>(); 892 return PA; 893 } 894 895 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 896 // below. 897 #if 0 898 static void verifyLoop(Loop *L) { 899 // Verify subloops. 900 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 901 verifyLoop(*I); 902 903 // It used to be possible to just assert L->isLoopSimplifyForm(), however 904 // with the introduction of indirectbr, there are now cases where it's 905 // not possible to transform a loop as necessary. We can at least check 906 // that there is an indirectbr near any time there's trouble. 907 908 // Indirectbr can interfere with preheader and unique backedge insertion. 909 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 910 bool HasIndBrPred = false; 911 for (pred_iterator PI = pred_begin(L->getHeader()), 912 PE = pred_end(L->getHeader()); PI != PE; ++PI) 913 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 914 HasIndBrPred = true; 915 break; 916 } 917 assert(HasIndBrPred && 918 "LoopSimplify has no excuse for missing loop header info!"); 919 (void)HasIndBrPred; 920 } 921 922 // Indirectbr can interfere with exit block canonicalization. 923 if (!L->hasDedicatedExits()) { 924 bool HasIndBrExiting = false; 925 SmallVector<BasicBlock*, 8> ExitingBlocks; 926 L->getExitingBlocks(ExitingBlocks); 927 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 928 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 929 HasIndBrExiting = true; 930 break; 931 } 932 } 933 934 assert(HasIndBrExiting && 935 "LoopSimplify has no excuse for missing exit block info!"); 936 (void)HasIndBrExiting; 937 } 938 } 939 #endif 940 941 void LoopSimplify::verifyAnalysis() const { 942 // FIXME: This routine is being called mid-way through the loop pass manager 943 // as loop passes destroy this analysis. That's actually fine, but we have no 944 // way of expressing that here. Once all of the passes that destroy this are 945 // hoisted out of the loop pass manager we can add back verification here. 946 #if 0 947 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 948 verifyLoop(*I); 949 #endif 950 } 951